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Abstract
Boosting has become a powerful and useful tool in the

machine learning and computer vision communities in re-
cent years, and many interesting boosting algorithms have
been developed to solve various challenging problems. In
particular, Friedman proposed a flexible framework called
gradient boosting, which has been used to derive boosting
procedures for regression, multiple instance learning, semi-
supervised learning, etc. Recently some attention has been
given to online boosting (where the examples become avail-
able one at a time). In this paper we develop a boosting
framework that can be used to derive online boosting algo-
rithms for various cost functions. Within this framework, we
derive online boosting algorithms for Logistic Regression,
Least Squares Regression, and Multiple Instance Learning.
We present promising results on a wide range of data sets.

1. Introduction
Online learning is a paradigm in which a learning algo-

rithm is presented with one example at a time. This setting
is more challenging than learning in batch mode, but car-
ries with it many benefits. For example, some applications
may have a continuous stream of data (e.g., visual tracking).
In other scenarios, the entire training data set cannot be fit
into the memory of a machine, either because the amount of
data is enormous, or because the machine has tight memory
constraints. Since memory operations are more computa-
tionally expensive than CPU operations, using less memory
can also lead to faster execution. Lastly, learning a model
in an online fashion can be more efficient in many cases
because the model can always be updated if more data be-
comes available, rather than having to retrain a model from
scratch.

Much work has been done on analyzing online learning
algorithms, as well as taking popular batch learning algo-
rithms and creating online versions (e.g., online SVM [7],
incremental decision trees [28], etc.). In this paper we focus
on the boosting family of learning algorithms. In [23] Oza
presents an online variant of the popular AdaBoost [11] al-
gorithm, and proves that this variant converges to the same

solution as the original batch algorithm, given an infinite
number of examples. Since then, some improvements have
been made to his work, and some interesting applications
in computer vision have been developed [14, 21]. However,
Oza’s online algorithm can only be applied to classification
problems, and many other flavors of batch boosting exist
that solve a variety of interesting problems. Although a
couple other flavors of boosting have been adapted to the
online scenario, such as Multiple Instance Learning [3] and
Semi Supervised Learning [15], it is difficult to see the re-
lationship between these algorithms or how to extend these
techniques to other problems. In this paper we propose a
single framework that allows such extensions to be made,
and present three different online boosting algorithms de-
rived using this framework (although many more are pos-
sible). We present a wide range of experimental results for
our algorithms and show that they converge to give similar
performance as standard batch boosting methods, and out-
perform traditional online learning methods.

The paper is structured as follows: in Section (2) we
review the relevant boosting literature; in Section (3) we
present our framework; in Section (4) we use our framework
to develop three online boosting algorithms, and present
empirical results in Section (5); finally, in Section (6) we
discuss other related work.

2. Boosting as Greedy Optimization
The term “boosting” refers to the process of taking a

“weak” learning algorithm (classification or regression) and
boosting its performance by training many classifiers and
combining them in some way [27]. This is particularly
useful in cases where it is difficult to design a high ac-
curacy classifier, but easy to come up with simple deci-
sion rules that perform slightly better than random guess-
ing. Generally, the model for the final “strong” classifier is
a weighted voting or linear combination of the weak classi-
fiers. Formally, suppose we are given a training data set
{xi, yi}N1 where x ∈ X and y ∈ Y (e.g., X = Rd,
Y = {+1,−1}). We seek to learn a function H : X → Y
by combining multiple weak learning functions h, which
come from some hypothesis class H and are parameter-
ized by some vector a. The form of the strong model is



H(x) =
∑M

m=1 αmh(x; am), where αm is a scalar weight.
In recent years, many boosting algorithms have been devel-
oped to solve various problems. To develop a boosting algo-
rithm, one must first define a loss function L(H|{xi, yi}N1 ),
which will generally depend on the application. For clas-
sification, perhaps the most famous boosting algorithm is
AdaBoost [11], which aims to minimize the exponential
loss: L =

∑
i exp{−yiH(xi)}. Ideally, we would solve for

all the parameters of this model simultaneously. However,
such optimization would not be practical. For this reason
most boosting algorithms search for optimal parameters in
a greedy fashion, adding one weak learner at a time. Let
Hm−1 =

∑m−1
t=1 αth(·; at) be the strong model made up

of the first (m − 1) weak learners. We now want to update
this model by adding one more weak learner with the goal
of minimizing the loss of the resulting strong model:

am = argmin
a
L(Hm−1 + αmh(·; a)|{xi, yi}N1 ) (1)

The boosting algorithm thus rests on our ability to solve
the above equation. For certain loss functions (e.g., ex-
ponential loss) we can solve this equation in closed form.
However, in other interesting cases, there are no closed
form solutions. Some methods have been proposed to solve
this equation in a more generalized manner. A particu-
larly useful framework for doing so was proposed by Fried-
man [12] (a similar framework was described in [22]), and
has been used to develop batch boosting algorithms for
a variety of problems such as regression [31, 12], multi-
ple instance learning [29], semi-supervised learning [16],
etc. Friedman suggests picking parameter am by solv-

ing am = arg mina
1
2

∑
i

(
gm−1(xi) − h(xi; a)

)2

, where

gm−1(x) = − ∂L
∂H(x) |Hm−1(x). If we think of the high di-

mensional space where every axis is the value of H(xi)
(what is referred to as the “function space”), and the loss
as a function of that space, gm−1(x) points in the direction
of greatest change. We would like to move in this direc-
tion to further minimize loss, but we can only move in this
space by adding another weak function h(·; am) onto H .
This gives us a limited number of directions to move in. For
this reason Friedman suggests finding an h that is as close
as possible to gm−1. Note that to compute gm−1 we need
to look at the entire training data set; Friedman’s approach
therefore results in a batch learning algorithm.

The goal of this paper is to formulate a framework that is
as flexible as Friedman’s approach, but works in an online
setting, where examples are acquired one at a time, and are
not stored.

3. Online Boosting
3.1. Stochastic Gradient Descent

Before we begin to discuss online boosting, we briefly
review stochastic gradient descent as it forms the ba-
sis of our approach. Suppose we would like to mini-

mize the loss of some function f given some data points
L(f(·; a)|{xi, yi}N1 ) by finding the optimal parameter vec-
tor a. Perhaps the simplest way to achieve this would
be using gradient descent updates: a(t+1) = a(t) −
ηt

∂L(f(·;a)|{xi,yi}N
1 )

∂a |a(t) , where t specifies the iteration.
This is a batch learning procedure since the loss is defined
over the entire data set. A common online variant of gra-
dient descent is called stochastic gradient descent [4]. Here
the assumption is that the loss over the entire training data
can be expressed as a sum of the loss for each point. That
is, L(f(·; a)|{xi, yi}N1 ) =

∑
i L(f(·; a)|xi, yi). The up-

date rule is then1: a(i+1) = a(i)−ηi
∂L(f(·;a)|xi+1,yi+1)

∂a |a(i) .
Notice that instead of computing the gradient of entire
loss, here we compute the gradient with respect to just one
data point. This update is repeated for every point in the
data set, sometimes with several passed through the data.
Many online algorithms such as the perceptron [25], back-
propagation [26], and least means squares [30] are based on
the idea of stochastic gradient descent.

We note that in almost all cases, the loss functions used
in boosting can be split into a sum of terms, each of which
depends on only one example. Thus, for the remainder
of the paper we will assume this is the case, and will
use the following shorthand notation: L(H|{xi, yi}N1 ) =∑

i Li(H), where Li(H) = L(H|xi, yi).

3.2. Stochastic Boosting

Recall that in boosting, when training the mth weak
learner, our goal is to minimize (1). To make the prob-
lem simpler, suppose the weight αm is absorbed into the
parameter vector am, and that the function h(·; a) can re-
turn real values. Furthermore, assume that h is differen-
tiable with respect to the parameter vector a. This allows
us to use stochastic gradient descent to directly minimize
L(Hm−1 + h(·; am)) in an iterative manner, leading to the
batch boosting procedure we call Batch Stochastic Boosting
(BSB), shown in Algorithm 1. Note that for simpler nota-
tion we will not show the superscript above am indicating
the iteration of each update.

The BSB algorithm updates each weak learner with all
data points. We can change the flow of the algorithm by
instead updating all weak learners for each data point (i.e.
flipping the order of the two for loops). This results in the
Online Stochastic Boosting algorithm (OSB) shown in the
right column.

The flow of this algorithm is similar to that of Oza’s On-
line AdaBoost [23], although the actual algorithms differ.
Notice that if the data does not fit in memory, in the batch

1In both versions of the gradient descent procedure, ηi is a learning rate
parameter. Most commonly this is set either to some small constant, or to
a decaying rate such as ηi = c/(i + 1), where c is a constant. We have
found empirically that the latter produces better results, and have used this
setting in all algorithms we present.



Algorithm 1 Batch Stochastic Boosting (BSB)
Input: Dataset {xi, yi}Ni=1

1: Initialize a1, a2...aM randomly
2: for m = 1 to M do
3: for i = 1 to N do
4: Update am ← am − ηi

∂
∂aLi(Hm−1 + h(·; a))|am

5: end for
6: end for

case we are forced to load each example multiple times,
where as in the online case we can load each example just
once. Although the time complexity of both online and
batch algorithms are the same, the computational time dif-
fers significantly. Since memory operations are more ex-
pensive than CPU operations, using fewer loads from mem-
ory can lead to significant gain in run time. Furthermore, the
OSB algorithm is able to learn in an online manner, making
it suitable for interactive applications.

3.3. Discussion

We give some intuition of the update steps in the batch
and online boosting algorithms. First, let’s write out the
update rules for the online and batch versions of the algo-
rithms:

BATCH
a
(i+1)
m ← a

(i)
m − ηi

∂
∂a
Li

(∑m−1
t=1 h(·; a(N)

t ) + h(·; a)
)
|
a
(i)
m

ONLINE
a
(i+1)
m ← a

(i)
m − ηi

∂
∂a
Li

(∑m−1
t=1 h(·; a(i+1)

t ) + h(·; a)
)
|
a
(i)
m

Note that the only difference is that when updating the
mth parameter, in the batch version all previous weak learn-
ers are in their final N th state a(N)

t , while in the online ver-
sion they are in the (i + 1)th state. Another observation
is that for a1 the update rule is identical since the summa-
tion term drops out. Suppose that after seeing k examples,
a1 converges (that is, ∂

∂aLi(h(·; a))|
a
(k)
1

= 0). This means
that for a2 the update rule in the online version becomes
identical to the batch version after k examples. It does not
imply that a2 will converge to the same vector in both the
online and batch versions, because the starting conditions
are different. However, it gives us the intuition that both
the online and batch algorithms are trying to optimize the
same thing. We note that even if the loss function is convex
with respect to the final classifier H , this does not imply
that there is a unique solution in terms of weak parameters
(a1, a2, ..aM ) because we can change the order of the weak
learners and get an identical H . This makes it challeng-
ing to derive a formal proof of convergence without making
additional strict assumptions. Therefore, rather than pursu-

Algorithm 2 Online Stochastic Boosting (OSB)
Input: Dataset {xi, yi}Ni=1, available one at a
time

1: Initialize a1, a2...aM randomly
2: for i = 1 to N do
3: for m = 1 to M do
4: Update am ← am − ηi

∂
∂aLi(Hm−1 + h(·; a))|am

5: end for
6: end for

ing theoretical justification, in this paper we provide strong
empirical evidence, which shows that our online algorithms
converge to good performance quickly.

4. Applying Online Stochastic Boosting
In this section we derive online boosting procedures for

different problems using our framework. In all cases we
will simply show the update rule for each problem, which
can then be plugged into Step 4 of Algorithm 1 or 2.

4.1. Logistic Regression Boosting
Our first example is with binary classification. For this

task, the binomial log likelihood is a commonly used loss
function:

L(H|{xi, yi}N1 ) =

−
N∑

i=1

yi log σ(H) + (1− yi) log(1− σ(H))

where σ(·) is the sigmoid function. To fill in Step 4 of the
algorithms, we first need to solve for the following deriva-
tive:

∂Li(Hm−1 + h(·; a))
∂a

=(
σ(Hm−1(xi) + h(xi; am))− yi

)∂h(xi; a)

∂a

This leads to the following update rule:

UPDATE RULE
am ← am−ηi

(
σ(Hm−1(xi)+h(xi; am))−yi

)
∂h(xi;a)

∂a
|am

4.2. Least Squares Regression Boosting
We now convert the least squares regression boosting al-

gorithm [12] into the online setting. The loss function is:

L(H|{xi, yi}N1 ) =

N∑
i=1

1

2

(
yi −H(xi)

)2

Again, we take the derivative with respect to a:
∂Li(Hm−1 + h(·; a))

∂a
=

(Hm−1(xi) + h(xi; a)− yi)
∂h(xi; a)

∂a



We can now write down the update rule to fill in both algo-
rithms.

UPDATE RULE
am ← am − ηi(Hm−1(xi) + h(xi; am)− yi)

∂h(xi;a)
∂a

|am

4.3. Multiple Instance Boosting

The Multiple Instance Learning (MIL) problem is an ex-
tension of binary classification which was introduced in [9].
The basic idea of this paradigm is that rather than having la-
beled instances in the training data, one is given labeled sets
of instances, or “bags”. If a bag contains one or more pos-
itive instances, its label is positive, and negative otherwise.
This learning paradigm has many useful applications. For
example, Dietterich et al. [9] apply MIL to the problem of
drug discovery, where each drug molecule can have several
different 3D shapes. The properties of the molecule can
be tested, but it is not known which particular shape is re-
sponsible for certain behaviors. Hence, in this case a bag is
a set of feature vectors describing all possible shapes of a
molecule. In [29], Viola et al. apply MIL to the problem of
face detection. They argue the exact bounding box of a face
is ambiguous, and instead gather several possible bounding
boxes around each face to create a positive bag.

Formally, we are given a training data set {Xi, yi}N1
where Xi = (xi1, xi2..) is the ith bag, and yi ∈ {0, 1} is
the bag label. This problem in particular can benefit from an
online approach because MIL datasets tends to be very large
as each bag consists of many (potentially hundreds) of high
dimensional vectors. We will use the loss function proposed
by Viola et al. in [29]2. First let us define the probability of
a bag being positive as pi(H) = 1−

∏
j

(
1− σ(H(xij))

)
,

where again σ(·) is the sigmoid function. The above equa-
tion is based on the Noisy-OR formula. The loss function is

2We use the Noisy-OR version as it was reported with better perfor-
mance than the other one in [29].

Name # of examples/bags # of features
MNIST17 4374 784
MNIST49 4979 784
Forest CoverType 56264 54
Abalone 4177 7
Head Pose 5007 256
Kinematics 8192 8
CBIR Fox 1320/200 230
CBIR Elephant 1391/200 230
CBIR Tiger 1220/200 230
MNIST MIL2 20000/10000 784
MNIST MIL4 20000/5000 784
MNIST MIL6 19998/3333 784

Table 1. Data Sets

the negative log likelihood for all bags:

L(H|{xi, yi}N1 ) =

−
N∑

i=1

yi log pi(H) + (1− yi) log(1− pi(H))

In the online case we get one bag at a time. Note that al-
though the loss function cannot be split into independent
terms per each instance, it can be split into independent
terms per each bag. We will use pi = pi(Hm−1 +h(·; am))
and pij = σ

(
Hm−1(xij) + h(xij ; am)

)
to simplify nota-

tion. Taking the necessary derivative:

∂Li(Hm−1 + h(·; a))
∂a

=
pi − yi

pi

∑
j

pij
∂h(xij ; a)

∂a

This leads to the following update rule:

UPDATE RULE
am ← am − ηi

pi−yi
pi

∑
j pij

∂h(xij ;a)

∂a
|am

Note that the resulting algorithm is different than the one
presented in [3] because here each weak learner is trained
with weighted samples.

4.4. Weak Learners

As we mentioned before, we would like to choose weak
learners that can return real values (in other words, regres-
sion models) and are differentiable with respect to their pa-
rameters. In this paper we use the following weak models
h(x; a) = β0 +β1tanh(x>β̄2), where a = (β0, β1, β̄2). We
experimented with other similar models replacing the hy-
perbolic tangent with the sigmoid function, arc tangent, etc.
The various alternatives gave similar performance, and we
chose the hyperbolic tangent because it has a simple deriva-
tive.

5. Experiments
In this section we show results for the three algorithms

we derived in previous sections. Our primary objective is to
show that the online and batch versions of stochastic boost-
ing converge to similar results given enough training data.
However, since both of these are novel, we also include re-
sults of a standard batch boosting algorithm. Finally, to
compare absolute performance we include results for two
other online algorithms: stochastic gradient descent used to
train the model in Section 4.43, and a more classic linear
model trained with stochastic gradient descent (for classifi-
cation this is the perceptron [25], for regression this is least
means squares (LMS) [30], and for MIL this is Logistic Re-
gression MIL [24]). For all experiments we split the data

3Both OSB and BSB reduce to this if M = 1.



randomly into 70/30% training and testing sets, and show
averaged results of 10 trials. For all boosting algorithms we
set the total number of weak classifiers, M , to 100. In all
cases, the online algorithms are trained with one example
at a time.

5.1. Binary Classification

In this section we experiment with the algorithm derived
in Section 4.1 with three different data sets. In all cases
we report the equal error rate (EER), which is obtained
by choosing the appropriate confidence threshold. For the
AdaBoost algorithm we use stump weak classifiers 4.

MNIST optical digit recognition
For the first experiment, we took the commonly used
MNIST optical digit recognition benchmark (available at
http://yann.lecun.com/exdb/mnist/) and extracted a binary
data set: 0-4 vs 5-9. We used the raw pixel values as the
features. The results are shown in Figure 3(A).

Smile detection
For this experiment we used the dataset presented in [19],
which contains videos of 97 subjects displaying various
emotions. The last 10 frames from each video (where the
subjects make their most expressive motion) were extracted,
and downsampled to 20 × 20 pixels with histogram equal-
ization (cf . Figure 1). Each sample is represented with pixel
values as features. We labeled the images as ‘smiling’ ver-
sus ‘non-smiling’, 783 and 6,768 images, respectively. Re-
sults are shown in Figure 3(B).

Figure 1. Smile detection: An example of the face images used in the
smile detection experiment in Section (5.1)

Gender recognition
For our last classification experiment we used the data set
from [17], which contains 13,233 images of celebrities. We
labeled these as ‘female’ and ‘male’ and performed gender
recognition. As before, the images were downsampled to
20×20 pixels with histogram equalization, and represented
with pixel values (cf . Figure 2). Note that this dataset is
very challenging as the face images are not well aligned
(as a result of fully automatic face detection), and display

4One could argue that this is an unfair comparison because our weak
classifiers have access to all features, while stump classifiers have access to
only one. However, in experiments that are not included in this paper we
found that AdaBoost with the perceptron as the weak classifier achieves
almost identical performance as it does with stumps. Using the same weak
model as we use for OSB and BSB gave poor performance with AdaBoost.

large changes in illumination, expression, pose as well as
occlusions.

Figure 2. Gender recognition: An example of the face images used in
the gender recognition experiment in Section (5.1)

5.2. Regression

We now experiment with the algorithm derived in
Section 4.2 with three different data sets. In this case the
batch boosting algorithm we compare to is Least Squares
Regression Boosting algorithm from [12], with a regression
stump as a weak classifier.

Abalone age prediction
Our first experiment is with the commonly used
Abalone data set from the UCI repository (available
at http://mlearn.ics.uci.edu/MLRepository.html). This data
set contains various physical measurements and the target
variable is the age of the abalone. Results are shown in
Figure 5(A).

Kinematic control of an 8-link robotic arm
This dataset is a simulation of an 8 link all revolute
robotic arm. The input space contains the joint posi-
tions and angles, and the target variable is the distance
from the end-effector to a target. There are several ver-
sion of this dataset available in the DELVE repository
(http://www.cs.toronto.edu/∼delve/), and we used the
non-linear version, with medium amount of noise. Results
are shown in Figure 5(B).

Figure 4. Head Pose Estimation: An example of the headpose images
used in the experiment in Section (5.2)

Head pose estimation
We applied the algorithms to the task of head pose estima-
tion. For this experiment we collected data using a camera
and a 3D Inertia Measurement Unit (IMU) for six subjects.
Our goal is to predict the yaw angle of the person’s head
(we discard pitch and roll information since yaw is the most
important and most difficult to predict). We used a standard
face tracker [20] to crop out square images containing the
face, and aligned these with the IMU measurements. This
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Figure 3. Binary Classification: (A-B) MNIST 47 VS 19 and MNIST 0-4 VS 5-9 digit recognition. We plot the equal error rate against the size of the
training data set. (C) Same as the previous figure, but with the Viola-Jones face dataset. Batch algorithms represented with dashed lines, online algorithms
with solid lines. See text for details and supplementary material for larger images.

procedure resulted in 5,007 face images, with correspond-
ing ground truth yaw measurements. All face images were
downsampled to of 16× 16 pixels with histogram equaliza-
tion, and the pixel values were used as features (cf . Figure
4). We plan to make this data publicly available in the near
future. Results are shown in Figure 5(C).

5.3. Multiple Instance Learning

Finally, we experiment with the algorithm presented
in Section 4.3. Recall that for online multiple instance
learning, we receive one bag at a time, rather than one
instance. Furthermore, in all experiments we present the
equal error rate on bags.

Content Based Image Retrieval
The task of identifying the main object in a given image
can be framed as a multiple instance learning problem.
The image is segmented into several coherent regions, and
we can assume that one of these regions is the object of
interest, but it is not known which segment “explains” the
bag label. For this experiment we used a standard CBIR
data set that has been mentioned in other MIL work such as
[1]. This data set was generated using the blobworld system
[6]. Each image is represented as a bag of feature vectors,
where each vector is a high dimensional representation of
a segment in that image. The images come from the Corel
catalog, and 3 categories are used in the experiment: fox,
elephant and tiger. The results are shown in Figure 6(A-C).
We found that this data set is rather small, and thus observe
a high variability in error, as well as poor performance
with the fox category (although our results are similar to
previously reported performance). This motivates our next
MIL experiment.

MNIST MIL data
Since most of the commonly used MIL data sets are fairly
small, we created several MIL datasets out of the MNIST

data. We arbitrarily chose the digit ‘4’ to be positive, and all
other digits negative. We then generated positive and nega-
tive bags of different sizes (positive bags containing one ‘4’
and negative bags containing only the other digits). The re-
sults are shown in Figure 6(D-F). We see that with a larger
amount of data, the results are more stable and converge to
a similar error rate.

5.4. Discussion

In all of the experiments we observe that with enough
training data, the online stochastic boosting algorithms con-
verge to similar performance as the batch stochastic boost-
ing algorithms, as well as the standard batch boosting al-
gorithms; they also outperform both stochastic gradient de-
scent and the traditional linear models. Furthermore, the
rate of convergence is in most cases similar for all algo-
rithms.

The exact performance depends on the data set, and in
some cases better absolute performance could be achieved
with elaborate parameter selection and better feature repre-
sentations.

Although we kept almost all parameters fixed for all ex-
periments (changing only the learning rate η), our algo-
rithms performed well on all of the diverse data sets. We
again note that our algorithms are able to learn with one
example at a time, and are straightforward to implement.

6. Related Work
In this section we discuss and compare our algorithms

with related work in the literature. Friedman’s stochastic
gradient boosting algorithm [13] certainly has a similar ti-
tle to ours, but is substantially different. As we reviewed
in Section 2, Friedman’s approach is to optimize the over-
all loss function L with gradient descent in function space.
In [13] he extends this idea to use stochastic gradient de-
scent instead. Each step in this descent results in one weak
classifier. Hence, if this algorithm were used in an online
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Figure 5. Regression: Average squared error versus the number of training examples for three data sets: (A) Abalone; (B) Kinematics; (C) Head pose
estimation. Batch algorithms represented with dashed lines, online algorithms with solid lines. See text for details and supplementary material for larger
images.

setting, it would result in a impractically large strong classi-
fier (there would be 1 weak learner for every example seen).
Friedman chose to experiment with the stochastic variation
because of its resistance to noise, rather than to make the
algorithm learn online. On the other hand, our approach is
to use stochastic gradient descent in weak parameter space
to optimize L(Hm−1 + h(·; a)) for each weak learner. This
allows us to develop boosting algorithm that learn from one
example at a time.

A more recent work by Bradley and Schapire [5] pro-
poses a boosting algorithm with a filter flavor, where each
weak classifier is trained with new data. This approach is
well suited for large datasets, but it cannot learn from one
example at a time, as is necessary in many real-time appli-
cations.

The statistics community has also applied the ideas of
stochastic and convex optimization to boosting (e.g., [32,
18]). Here, however, the set of weak learners is assumed
to be finite and relatively small. These methods then use
convex optimization to find the optimal set of weak learner
weights αi. In our framework there is a continuous space
of weak learners, and these types of approaches would not
work.

Finally, since our approach requires the weak classifiers
to be differentiable, there is an interesting similarity to neu-
ral networks (where each weak classifier is a node). In par-
ticular, Ash [2] proposed an algorithm that adds one node
to the network at a time, which bears some similarity to
boosting in general. We note, however, that although back-
propagation [26] is based on stochastic gradient descent,
Ash’s method requires an iteration of back-propagation for
each new node, which means that each data example is ac-
cessed multiple times.

7. Conclusions and Future Work
We have presented a framework that can be used to de-

rive online boosting algorithms for various interesting loss
functions, and derived three such algorithms. Our algo-

rithms are able to learn with just one example at a time, and
unlike other work [2, 5, 13], access each data point only
once. Our framework can be used to easily derive boost-
ing algorithms for many other problems (i.e. ranking [10],
transfer learning [8], etc.).

We performed a wide range of experiments, and have
presented empirical evidence that our online algorithms
converge to give similar performance as standard batch
boosting algorithms. One requirement of our approach is
that we assume that the weak learners must be differen-
tiable with respect to their parameters, but we believe this
still leaves a wide range of choices for the designers of an
algorithm.

There are two possible avenues for future work. First, it
would be interesting to prove convergence bounds for some
of the algorithms we have developed, although such bounds
are likely to exist only under certain necessary conditions.
Second, we would like to take advantage of the flexibility of
our framework, and apply it to other challenging real world
problems, such as visual tracking.
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