
Planning and Control of UGV Formations in a Dynamic Environment: A

Practical Framework with Experiments

Yongxing Hao∗, Benjamin Laxton†, Sunil K. Agrawal‡, Edward Lee§, Eric Benson¶

Mechanical Systems Laboratory, Department of Mechanical Engineering
University of Delaware, Newark, DE 19716, USA

February 14, 2003

Abstract

This paper provides a practical framework for planning and
control of formations of multiple unmanned ground vehicles to
traverse between goal points in a dynamic environment. This
framework allows online planning of the formation paths us-
ing a Dijkstra’s search algorithm based on the current sensor
data. The formation is allowed to dynamically change in or-
der to avoid obstacles in the environment while minimizing a
cost function aimed at obtaining collision-free and deadlock-
free paths. Based on a feasible path for a virtual leader of
the group, the trajectory planner satisfies the kinematic con-
straints of the individual vehicles while accounting for inter-
vehicle collision and path constraints. A Lyapunov based con-
troller is designed to keep the vehicles on their planned trajec-
tories. Illustrative simulations of groups of unmanned ground
vehicles and their laboratory implementation with three un-
manned ground vehicles are presented.

Keywords: Unmanned Vehicles, Formation Control, Dy-
namic Environment, Dijkstra’s Algorithm.

1 Introduction

It is expected that groups of unmanned ground and air ve-
hicles will play a major role in future civilian and military
applications [1],[2],[3]. Algorithms for their coordination and
control must account for the dynamic nature of the environ-
ment in which they will operate [4]. With this capability, ro-
bots can be used in applications including search and rescue,
exploration, surveillance, and scientific data gathering. In this
paper, we propose a practical framework for online planning
and control of multiple mobile robots moving in groups in a
dynamically changing environment. The group must maintain
some predetermined geometric shape while moving and is al-
lowed to change formation as necessary to negotiate through
the environment. As illustrated in Fig. 1, the framework con-
sists of two main parts: (i) online planning of the formation
and its transitions during the path to the goal; (ii) trajectory
planning of the individual robots and their tracking control.

∗Ph.D. Student, Mechanical Engineering, hao@me.udel.edu
†Research Student, Computer Science, blaxton@udel.edu
‡Professor of Mechanical Engineering, Corresponding author,

agrawal@me.udel.edu
§Research Student, Computer Engineering, edlee@udel.edu
¶Assistant Professor of Bioresources Engineering, eben-

son@udel.edu

The following assumptions are made in this study: (i) Ro-
bots have on-board sensors which can detect surrounding ob-
jects within a range with a small margin of error; (ii) The
odometry data from the robot has small errors over short dis-
tances; (iii) A global camera can update at a slower speed
relative to local sensors; (iv) Robots can reliably communi-
cate with each other and can share the environment informa-
tion; (v) Ground robots are driven by heading and rotation
velocity which have upper and lower bounds; (vi) The envi-
ronment is dynamic with slowly moving obstacles. Based on
these assumptions, the following features must be embedded
in trajectory planning and control: (i) Robots can change for-
mations recursively as needed to avoid obstacles; (ii) Robots’
ability must be accounted for during trajectory planning; (iii)
A tracking controller must be used to keep the error bounded.
Based on these needs, the outline of this paper is as follows: In
Section 2 we present the flow chart and the strategy for forma-
tion change during motion. Map building of the environment
and path selection using Dijkstra’s search strategy is discussed
in Section 3. Trajectory generation and tracking controllers
are presented in Section 4. Illustrative experiments of groups
of unmanned ground vehicles in formations are shown in Sec-
tion 5.

Figure 1: A block diagram of control of a group of un-
manned vehicles with a planner and feedback controller.

2 Framework for Planning and
Control

A flow chart for the planning and control of the group is shown
in Fig. 2. First, a robot explores the environment and pro-
duces a map representing the free space in the environment
at that time. Using a Dijkstra’s search algorithm, a reference
path for the virtual leader of the group is identified. A set
of way-points is selected for the virtual leader and the tra-
jectory generator produces continuous time trajectory for the
virtual leader. Then according to the real robots’ positions in

1

Proceedings of the 2003 IEEE
International Conference on Robotics & Automation
 Taipei, Taiwan, September 14-19, 2003

0-7803-7736-2/03/$17.00 ©2003 IEEE 1209

the formation with respect to the virtual leader, the reference
trajectory for each real robot is generated. Next, each robot
tracks its own trajectory. Robots obtain position feedback
through odometry readings and image data. The image data
is more reliable but is updated at a much slower rate than
the odometry readings. Hence, during image data update in-
tervals, robots update their position using odometry. Thus
the errors in the odometry readings get reset periodically. If
the environment doesn’t change, the robots track their com-
puted trajectories. If the environment changes, a new path
and trajectory is generated and is tracked by the controller.

2.1 Formation change

Since one of the goals of the planner is to keep the vehicles in
a given formation, from the planning point of view, one may
treat the entire formation as a point and enlarge the obsta-
cles in the environment to accommodate the formation passing
through it. This procedure is conservative but can potentially
produce a feasible path of the formation through the environ-
ment. However, a situation may occur in which the formation
must change in order to negotiate through the environment.
The following steps are used to trigger formation change: (i)
Compute the path for the formation using Dijkstra’s search
algorithm, (ii) If no feasible path is found, reduce the width
while keeping the formation width at least as large as a sin-
gle robot, (iii) If a feasible solution is found, adjust the path,
compute the formation change points and vehicle trajectories.

For illustration, we consider a formation which has the
form of a binary tree. The units in the formation are required
to travel such that the formation changes from a tree to a
line and then subsequently reassembles itself back into a tree.
A practical scenario that motivates this example is when the
vehicles cross a bridge which has a narrow width. The steps
of the algorithm are illustrated schematically in Fig. 3. In the
phase where the tree transforms into a line, we start from the
bottom of the tree and recursively move up to the leader. In
each step, through appropriate placement of way-points, we
transform the three nodes of a triangle into a line. The way-
points placement can be scheduled and tested offline to make
sure no collision occurs between robots. It can be modularized
and plugged in online whenever necessary. An example of
this scenario on a path with two narrow openings is shown in
Fig. 4. The full path is the result of piecing all five sub-paths
together.

3 Environment Exploration and
Dijkstra’s Search

In our system the environment map was represented as a rec-
tangle with an overlaid grid-cell structure where each cell rep-
resented one point of resolution. By using the rectangular
structure we were able to automate the entire environment
exploration process. The key steps in this process are (i) Map
Creation and Updating; (ii) Path generation.

3.1 Creating and Updating Maps

Our system can be used in situations involving fully known,
partially known, or unknown environments. In the first two Figure 2: Flow chart of formation control.

2

1210

Figure 3: A schematic illustration of a formation change
from a tree to a line to a tree.

Figure 4: Formation change to accommodate narrow
passes.

cases information already known about the environment can
be loaded into the system prior to running the robots. In the
case of an unknown environment, we have implemented a sys-
tem that creates an environment map from scratch that can
be updated as new information is accumulated as illustrated
in Fig. 5. First, the dimensions of the environment’s bound-
ing rectangle and the desired resolution are used to create an
empty grid representation of the environment. Next, a robot
is set out as a scout to autonomously create the initial map
of the environment. This is achieved by using a full-coverage
algorithm that finds points of unexplored space in the envi-
ronment. The initial map creation has been completed when
a desired percentage of the environment has been covered.

In order to accommodate dynamic environments and for
robots to move about unknown terrain it is necessary for the
map to be updated. The update frequency governs how fast
the robots can react to changes in their environment - in our
case it was around 20 hertz. The robot’s pose as well as its
sensor readings was used to extract data about free and ob-
structed space within the environment. The value of a grid-
cell is incremented when the sensors indicate an obstacle or
decremented if the space is unobstructed. In this way, the
map can represent a constantly changing environment with
varying levels of terrain cost. In order to simplify the im-
plementation, the obstacles represented on the map are made
larger by some buffer radius to account for a single robot or
formation of robots - allowing the robot(s) to be treated as a
point navigating through the free space.

Figure 5: Steps in map creation.

3.2 Path Generation

This step is aimed at finding a path between two points, if
it exists. Given a map, shortest paths can easily be found
using one of the standard graph search algorithms, such as
Dijkstra’s or Floyd and Warshal’s shortest path Algorithm,
A*, or dynamic programming [5]. In the implementation, a
version of Dijkstra’s search algorithm is used which is modified
to suit the needs.

This step returns a path with the lowest cost based on a
heuristic given by

J =

n∑

i=0

[(xg − xi)
2 + (yg − yi)

2] + ci, (1)

where the first term denotes the distance from the ith node
to the goal, and ci is a positive terrain cost for the ith node
in the path.

Combining this algorithm and the map-updating algo-
rithm described above, the system can find deadlock and col-
lision free optimal paths through dynamic environments.

4 Trajectory Generation and
Tracking Controller

4.1 Trajectory Generation

The Dijkstra’s search algorithm generates a set of way-points
for the virtual leader. The trajectory generator uses these
way-points to produce a smooth trajectory of the virtual
leader in the formation. The individual robots in the group
have predetermined geometric relationships with respect to
the leader and each other. These relationships define the ref-
erence trajectory for each robot based on the reference trajec-
tory of the virtual leader.

For a given set of n way-points for a mobile robot, illus-
trated in Fig. 6, a smooth trajectory can be found to pass
through them exactly or approximately [6]. There are many
solutions of this problem based on limits on velocity and ac-
celeration. For example, the way-points can be connected

3

1211

Figure 6: Linear interpolation with polynomial transi-
tion.

by linear interpolation with polynomial transition around the
way-points. Given the way-point coordinates xj , xk, xl, which
are the x coordinates of j, k, l and |ẍk|, which is the absolute
value of acceleration for k, the parameters of motion according
to Fig. 6 are given by

ẋjk =
xk − xj

tdjk

ẍk = sgn(ẋkl − ẋjk)|ẍk|
tk =

ẋkl − ẋjk

ẍk

tjk = tdjk − 1

2
tj − 1

2
tk (2)

The parameters in (2) can be adjusted to meet the kine-
matic and control input constraints. In general, trajectories
with linear interpolation and polynomial transition do not
pass through the way-points but pass near them. If a robot
is required to pass through certain way-points with non-zero
velocity, virtual way-points can be added on to the two sides
of the desired way-point. Sometimes, when the environment
changes, the new way-points may require sharp turns and the
robot may not be able to execute the motion. In such situ-
ations, buffer way-points can be introduced as illustrated in
Fig. 7. Fig. 8 shows the trajectories of seven vehicles in a ma-
neuver from a tree to triple lines to tree given virtual leader’s
way-points and formation change points.

Figure 7: Smooth Turning with buffer way-points.

4.2 Tracking Controller

In this section, we assume that the robot reference trajecto-
ries have already been computed using the procedure in Sec-
tion 4.1. Now, corrective strategies are required to keep the
vehicles on these trajectories. In our experiment, the mobile
robot is driven by a simple differential drive, with two coaxial
powered wheels and a passive supporting castor wheel. The
motion for robot i is governed by the following equations:

Figure 8: The trajectories for the example with seven
vehicles that change formation from a tree to triple lines
to tree.

ẋi = u1icosθi (3)

ẏi = u1isinθi (4)

θ̇i = u2i (5)

Here (xi, yi) denotes the position of the center of the axle with
respect to the inertial frame and θi denotes the orientation of
the vehicle in the inertial frame. The inputs to the controller
are u1i and u2i which are the forward driving speed and angu-
lar speed of the robot. The tracking controller is chosen based
on Lyapunov theory. The reference trajectories for the ith ro-
bot are denoted by xri(t), yri(t), θri(t). The errors between
the actual and the reference trajectory are defined by

xei(t) = xri(t) − xi(t)

yei(t) = yri(t) − yi(t)

θei(t) = θdi(t) − θi(t) (6)

where θdi is the desired angle given by the robot’s position
relative to the corresponding point in the reference trajectory
in the inertial frame.

θdi = tan−1 yei(t)

xei(t)
(7)

On differentiating (6), we get

ẋei(t) = ẋri(t) − u1icosθi

ẏei(t) = ẏri(t) − u1isinθi

θ̇ei(t) = θ̇di(t) − u2i (8)

On selecting a Lyapunov function given by

V =
1

2
xei

2 +
1

2
yei

2 +
1

2
θei

2, (9)

We obtain

V̇ = xeiẋei + yeiẏei + θei
˙θei

= xeiẋri + yeiẏri − (xeicosθi + yeisinθi)u1i

+θei(
xei(ẏri − u1isinθi) − yei(ẋri − u1icosθi)

xei
2 + yei

2

−u2i) (10)

4

1212

The tracking controller can be chosen to satisfy the follow-
ing conditions to meet the negative definiteness condition on
Lyapunov function

u1i =
xeiẋri + yeiẏri

xeicosθi + yeisinθi
+ k1i(xeicosθi + yeisinθi)

u2i =
xei(ẏri − u1isinθi) − yei(ẋri − u1icosθi)

xei
2 + yei

2

+ k2iθei (11)

where k1i and k2i are positive constants. There are two singu-
larities: the robot is in the ideal position when xei

2 +yei
2 = 0

or the robot’s heading direction is perpendicular to the desired
angle θdi when xeicosθi+yeisinθi = 0. In implementation, one
can use (12) when xei

2 +yei
2 < ε or |xeicosθi +yeisinθi| < ε,

where ε is a small positive number.

u1i = 0

u2i = ki(θri − θi) (12)

where ki is a positive number.

5 Laboratory Experiments

A physical implementation of the strategy for formation plan-
ning and control was performed to test the practicality of the
concept. The setup consists of three differential drive Magel-
lan Pro mobile robots. A schematic of the experimental setup
is shown in Fig. 9. Eqs.(3), (4), and (5) provide the dynamic
model for each robot. Each robot has an on-board PC consist-
ing of an EBX motherboard and a Pentium III processor. The
robot operates under Linux operating system and its software
integrates sensor and communication data. The robots com-
municate through wireless Ethernet capable of transmitting
data up to 3Mb per second. The distributed computation is
implemented using CORBA.

Figure 9: experimental setup

A Sony CCD camera is mounted 2.6 meters above the ex-
periment floor. A C program accesses the streaming data com-
ing into the frame grabber from the camera and stores the data
in a 320x240 image file. The mean error between the original
coordinates and coordinates extracted from the image is 2.08%
for the X-axis, 9.41% for the Y-axis, and 0.32% for heading
direction. Colored disks of known shape and size are located

on each robot to enhance robot identification and heading di-
rection. Once the image processing is completed, the robot
odometry and heading is calibrated according to the vision
data. There is an array of 16 sonar sensors and 16 IR sensors
on the robot which are also used for local identification of the
environment. Translational and rotational velocity controllers
are used to reposition each robot. MATLAB/C++/JAVA are
used as the computational engine for decision making, control
and graphical display. The purpose of the experiments is to
show that these algorithms work in dynamic environments.
A block-diagram of the computational procedure is shown in
Fig. 10. We ran experiments on two different configurations
of free/obstructed space within the environment.

Figure 10: formation planning and tracking control.

In the first experiment, an obstructed area was created
with cardboard boxes in the middle of the workspace, initially
out of view from the robots’ on-board sensors. The map pro-
vided to the robots at the beginning of the run indicated that
it was possible for them to move to the goal in a triangular for-
mation. However, as the robots moved, their on-board sensors
detected the obstacles and their formation had to be changed
to a line. The experiment plots are shown in Fig. 11.

Figure 11: Triangle to a Line.

In the second experiment, the obstacles were moved closer
to the start position of the robots. In this experiment, the
robots detected the obstacles early on and went to a line in
the beginning of the trajectory. After moving past the ob-
stacles, the robots detected that the environment was free of
obstacles, so they could again move to a triangle. Plots for
this experiment are shown in Fig. 12.

5

1213

Fig. 13 shows the robots’ actual trajectory while using the
global camera to correct for odometry errors. In this figure,
there are ’jumps’ in the robot position. These ’jumps’ are not
reflected in actual robot movement, but instead indicate times
at which the robots’ position was updated using the camera.
Given the more precise location, the tracking controller could
allow the robots to smoothly converge back to the correct
trajectory. The videos for the two experiments are online at
http://mechsys4.me.udel.edu. The snap shots taken from the
second experiment are shown in Fig. 14. From the results of
these two experiments, it is clear that the algorithms described
in this paper can be applied to a dynamic environment. In
addition, it is feasible to implement them for real-time respon-
sive behavior for currently available hardware.

Figure 12: Triangle to Line to Triangle.

Figure 13: Triangle to Line to Triangle using camera.

6 Conclusions

This paper provides a practical framework for planning and
control of formations of multiple unmanned ground vehicles
to traverse between goal points in a dynamic environment.
This framework allows online planning of the formation paths
using a Dijkstra’s search algorithm based on the current sen-
sor data. The formation is allowed to dynamically change in
order to avoid obstacles in the environment. By planning the
trajectory of a virtual leader, we reduce the computational
complexity of the planning problem significantly. The trajec-
tory re-planning is realized online and the global convergence
is guaranteed by Dijkstra’s search algorithm. The tracking
controller is developed based on Lyapunov theory. Illustra-
tive experiments of groups of unmanned ground vehicles show
promise of this approach.

Acknowledgments: We acknowledge the research sup-
port of NSF Award # IIS-9912447 and NIST MEL Award #
60NANB2D0137.

Figure 14: experiment snap shots.

References

[1] Balch, T., Arkin, R.C. ”Behavior-based Formation Con-
trol for Multi-robot Teams”, IEEE Transactions on Ro-
botics and Automation, Vol. 14, pp 926-939, Dec. 1998.

[2] Fredslund, J., Mataric, M.J. ”Robot Formations Using
Only Local Sensing and Control”, IEEE International
Symposium on Computational Intelligence in Robotics
and Automation, pp 308-313, Alberta, Canada, 2001.

[3] Guo, Y., Parker, L.E. ”A Distributed and Optimal Mo-
tion Planning Approach for Multiple Mobile Robots”,
Proceedings of IEEE International Conference on Robot-
ics and Automation, Washington, DC, 2002.

[4] Pledgie, S. T., Hao, Y., Ferreira, A. M., Agrawal, S. K.,
Murphey, R., “Groups of Unmanned Vehicles: Differen-
tial Flatness, Trajectory Planning, and Tracking Con-
trol”, Proceedings of IEEE International Conference on
Robotics and Automation, Washington,DC, 2002.

[5] Kortenkamp, D., Bonasso, R.P., Murphy R. Artificial
Intelligence and Mobile Robots, AAAI Press/The MIT
Press, 1998.

[6] Xiong, Y., Fundamental Principal of Robotics, Huazhong
Sci. and Tech. Press, P.R.China, 1996. ISBN: 7-5609-
1305-9.

6

1214

