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Abstract

Automatic human motion capture is an important and
significant problem in the computer vision community. A
successful system may have many applications including
inexpensive motion capture and analysis in unconstrained
environments, human-computer interfaces, and automatic
surveillance systems. This work focuses on an impor-
tant sub-problem in computer vision based motion capture:
monocular human pose estimation. This problem is char-
acterized by methods that do not rely on temporal informa-
tion or multiple images, but instead try to estimate a per-
son’s pose by measuring a single image. This sub-problem
is integral to the larger goal of motion capture since human
trackers inevitably drift and must be (re)initialized. Addi-
tionally, single camera environments abound and a monoc-
ular pose estimation method could be deployed in a wide
range of settings. The foundations of research in monoc-
ular human pose estimation will be presented and recent
advancements in the field will be discussed. The various
approaches will be compared to one another and presented
in the larger context of human motion capture. The analysis
culminates with broad insights and suggestions for future
work in this area.

1. Introduction

The analysis and recovery of human body motion has
received a significant amount of attention in the computer
vision research community in recent years. This interest
is due, in part, to the interesting and challenging nature of
this problem domain, but also results from the potentially
far-reaching impacts of a successful system. As computers
become an increasingly ubiquitous presence in our world it
is important to develop natural ways to interact with them.
Automatic human motion analysis is one obvious modality
for this type of interaction. Additionally, with the advent of
mobile robots, and especially humanoid robots, automatic

understanding of human motion is essential for operation in
an environment populated by people. Additional applica-
tion areas include improved surveillance systems and inex-
pensive motion capture for entertainment and biomechani-
cal research purposes. In particular, successful monocular
human pose estimation techniques, the focus of this work,
could significantly lower the entry barrier to many of these
specialized application areas - allowing anyone with a com-
puter and a video camera to capture motion data and de-
velop and use new applications in this domain.

The general problem of computer vision based automatic
human motion capture has been the topic of study for hun-
dreds of researchers over the past decade. Despite the sig-
nificant work that has gone into this problem, it remains
far from solved. There are several sources of significant
challenges to this problem such as viewing variability, pose
variability, self-occlusion and the inherent high degree of
freedom of the problem. In general settings, people wear
many different types of clothing with different texture and
movement characteristics. This, combined with variations
in lighting and viewing direction create many difficulties in
defining useful features for human pose estimation in gen-
eral settings. Additionally, even a modest 3D model of the
human body that does not take small movements such as
hand, head and facial variations into account has more than
50 degrees of freedom in the pose parameter space.

To address these challenges an array of methods have
been proposed that draw from the computer vision and ma-
chine learning research fields. Classic model-based ap-
proaches derived from early work on object detection have
proven successful to some degree in locating people in im-
ages and labeling the positions of body parts. A surprising
and recent advancement in this area is found in a class of
model-free approaches that make use of enormous datasets
and cutting edge machine learning techniques to estimate
human pose parameters directly from features computed
over an image. There is, however, significant room for
improvements. Current limitations are due largely to the
underlying problems of reliable feature extraction and in-



terpretation, as well as scaling to very high dimensional
state spaces. These problems are fundamental to computer
vision in general and suggest that human pose estimation
may be a good target research area that has clear applica-
tion driven goals and that requires fundamental vision tasks
to be solved for success.

It is informative to note that the problem of human pose
estimation has strong parallels to research in the area of
hand pose estimation. A recently published review covering
the field of research on hand pose estimation makes this ob-
servation as well [6]. Both problems address parameter esti-
mation for a high degree of freedom model. Unsurprisingly,
methods from each respective area have been borrowed by
the other on several occasions [3, 6]. This example illus-
trates the wider applicability of methods developed for hu-
man pose estimation. Thus, successes in the human pose
estimation community can have profound effects on this re-
search area as well.

In the remainder of this paper several recent methods for
pose estimation will be discussed and specific instances of
each method will be covered. The goal is to identify paral-
lels, limitations and orthogonal characteristics that are use-
ful for analyzing the current limitations of human pose es-
timation techniques and offering suggestions for possible
avenues of future work in this area. Section 2 will define
the overall problem, put the scope of this work in a broader
context and define a taxonomy for describing the current
methods for monocular human pose estimation. Section 3
will describe the overarching ideas in model-based human
pose estimation techniques and describe details of current
implementations. Section 4 will describe the general form
of model-free human pose estimation techniques and de-
tails of several current algorithms. Finally, a comparison
between the various methods, current limitations and sug-
gestions for future work on human pose estimation tech-
niques will be given in Section 5.

2. Statement of Problem and Scope
Techniques for human motion capture seek to accurately

estimate the body part positions, called pose, of a moving
human body. Human pose can be described by various pa-
rameterizations. Suppose that the goal is to approximately
describe a human pose in terms of the positions of all large
body parts, torso, arms, legs and head, in 3 dimensions
(3D). Two obvious parameterizations to achieve this are to
describe relative part positions in terms of 3D Euler angles,
or alternatively, to describe the joint and end point positions
of parts in terms of 3D cartesian coordinates. These two
possible parameterizations are shown in Figure 1. Notice
that the model of a human body specifies a kinematic chain
where the connections of body parts can be described as
a parent-child relationship. For example, assume the torso
is the root node in the kinematic chain. Then the torso is
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Figure 1. The human body can be modeled as a kinematic chain.
Pose parameters for a given body part are defined relative to the
parent body part in the kinematic chain representation. Possible
parameterizations include relative Cartesian coordinates and rela-
tive Euler angles.

the parent of the upper arms, which are in turn the parents
of the lower arms. In this way, the position of a particu-
lar body part is partially determined by the position of its
parent body part and partially by its own pose parameters.
Thus, it is often convenient to describe the pose parameters
of a body part with respect to the local coordinate frame
determined by its parent.

Under these parameter models a human pose is speci-
fied by the values of the underlying parameters. Cast in
this framework, the goal of human pose estimation is to as-
sign the appropriate parameters to describe a given body
pose. Typically the input to a human motion capture sys-
tem is a video sequence, or a collection of calibrated video
sequences, whose frames capture a person exhibiting some
motion. The challenge is then to locate the individual body
parts in the video frame(s) and estimate the pose parameters
from the relative locations. In commercial motion capture
(MoCap) systems, the task of locating body parts is made
simpler by placing markers on the joints or body parts of a
human subject prior to recording the motion. These mark-
ers uniquely identify each body part, essentially solving
the correspondence problem. In contrast, computer vision
techniques for human motion capture, as defined here, are
characterized by only using typical video frames as input.
Furthermore, no special markings on the human subject are
present. Under these conditions the body part location and
correspondence problem becomes much more difficult.

Although typical human bodies can be represented by a
common underling parameter model, individuals will have
different body part sizes, limb lengths, and exhibit different
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Figure 2. Motion capture is the process of relating image data to
pose data. The image data may be constrained, as above, with
markers used in commercial motion capture systems, or it may
consist of normal video frames. The goal is to estimate the pose
parameters of the body over time from these video frames. Ap-
plications such as animation rendering, activity recognition and
human-computer interaction interfaces may be built on top of the
motion capture representation.

ranges of motion depending on flexibility and body shape.
These individual parameters may be pre-specified or au-
tomatically estimated from the data depending on the so-
phistication of the MoCap system. The ultimate goal of a
computer vision motion capture system is to provide a fully
automatic, accurate and robust estimate of a person’s pose
parameters.

2.1. Taxonomy of Previous Work

Computer vision based motion capture is a large problem
domain and previous research spans several subproblems.
Although the distinctions between sub-problems in human
motion capture are somewhat arbitrary, and certainly blur at
the intersection boundaries, it is useful to describe a taxon-
omy to categorize various approaches. The following tax-
onomy broadly categorizes approaches to the human motion
capture problem into 4 classes:

• Detection and Initialization: The sub-problem of de-
tection and initialization seeks to specify when a per-
son is present in an image or video frame and in some
cases give a course positional estimate. This sub-
problem may also include camera calibration in cali-
brated systems.

• Pose Estimation: The focus of systems for pose-
estimation is to identify how a human body and possi-
bly its constituent parts are positioned. The target may
be a very fine-grained pose estimate that gives the rela-
tive joint angles between each part of the human body.
Pose estimation can be an integral part to a tracking
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Figure 3. Pose estimation procedures can be used to initialize or
reinitialize tracking algorithms. Recognition procedure may use
instantaneous pose data or tracking data for interpretation.

loop providing an (re)initialization to account for drift,
or a completely separate process.

• Tracking: This sub-area addresses the problem of
matching corresponding body parts over a sequence of
video frames. Many cues are used in tracking systems
such as kinematic models and common motion mod-
els. The output of the tracker may be either 2D or 3D
depending on the target application and assumptions
about the environment and motion in the scene.

• Recognition: Human motion recognition systems aim
to estimate the intent of the humans in the videos
through their motions and actions. Depending on the
target application, recognition systems may attempt to
recognize and label large-scale motions such as walk-
ing, running etc., recognize specific gestures for HCI
applications, or recognize some set of actions within a
targeted context. Recognition, with a few exceptions,
is a post-processing step that makes use of tracking
and/or pose estimation data as the input and learns a
mapping to a set of output action labels.

A graphical depiction of the data-flow between these sub
areas is given in Figure 3. Techniques may be further distin-
guished by the granularity of the output representation, the
use of and type of kinematic model, whether the system out-
puts 2D or 3D estimates, and the speed of processing. An
additional way that methods for human motion capture can
differ is in the assumptions made about the operating envi-
ronment, the expected motion types, appearance assump-
tions etc. A list of common assumptions, adapted from
those specified by Moeslund and Granum [17], is shown
in Table 1. Generally, in current systems for human mo-
tion capture there is an inverse relationship between the
performance and the number of assumptions made. Thus,
when evaluating motion capture systems it is important to
not only look at performance in terms of speed, accuracy,



Scenario Assumptions Environment Assumptions Subject Assumptions
Subject is always viewable Constant lighting Known subject

Stationary camera Static background Markers placed on subject
Only one viewable subject Uniform background Known clothing appearance
Only forward facing poses Known camera parameters Tight clothing

No occlusions Known global body position
Ground plane is flat

Table 1. Commonly made assumptions in pose estimation methods.

and descriptiveness, but also in terms of the number of lim-
iting assumptions.

2.2. Monocular Pose Estimation

The focus of this paper is on the sub-area of fully ar-
ticulated pose estimation from monocular images. Specif-
ically, this problem is, given a single image, output an es-
timate of the body-joint state vector. The image may be a
snapshot or single frame from a video sequence. Monoc-
ular pose estimation is difficult because it requires a map-
ping from a possibly noisy and ambiguous image space to
a low-dimensional, highly structured pose-space represen-
tation. Nevertheless, we know the problem is solvable be-
cause people are quite good at performing this task. Ad-
ditionally, this sub-problem is important for solving human
motion capture for several reasons:

• Can be used as an initialization for pose tracking meth-
ods and for re-initialization to account for drift.

• Does not make assumptions about the patterns, speed
or continuity of motion, making it more amenable to
many real applications.

• Provides a compact, yet detailed description of the
body pose that is useful for analysis and HCI appli-
cations.

• May not require a calibrated environment allowing for
deployment in a wide array of settings.

To place the problem of monocular human pose estima-
tion in the broader arena of computer vision, consider a very
general description of image formation given in Equation 1.

Φ : Wc 7→ Ic (1)

Φ, a general image formation process that projects the
world, Wc, onto an image, Ic, contains many processes that
contribute to how an image is formed such as lighting, per-
spective model, camera sensitivity to light, 3D scene con-
figuration and so forth. When a person is present in the
scene, buried within all the other contributing factors are
the 3D body configuration parameters that specify the per-
son’s pose. Estimating these parameters independently of
all other processes is the goal in human pose estimation.

For this reason, automatic human pose estimation tech-
niques contain some feature extraction component that at-
tempts to filter the input image so that the contribution of
all parameters except those of the human 3D configuration
are removed. Assume that we call the parameters that spec-
ifies a body pose Θ and the feature space of some image
filtering process X . The mapping from configuration space
to some image feature space is defined in Equation 2a.

M(θm×1) 7→ xn×1 (2a)

M−1(xn×1) 7→ θm×1 (2b)

where θm×1 ∈ Θ is an instance in pose space and xn×1 ∈
X is an instance in feature space. Similarly, the inverse
process that maps from some image feature space to human
configuration space is given in Equation 2b. It is this inverse
mapping process that human pose estimation techniques at-
tempt to capture.

Notice that this inverse mapping is difficult to capture
since it is both one-to-many and, depending on the feature
space, many-to-one. Specifically, self-occlusions of various
body parts, and reflectively symmetric poses can result in
instances identical in feature space, but with different pa-
rameters in Θ. Examples of these cases are shown in Figure
4. Similarly, depending on the effectiveness of the feature
space used, differences in clothing, overall body shape and
lighting may produce different instances in feature space,
X , that all have the same underlying generating parameters
in Θ. The challenge for human pose estimation techniques
is to define a reasonable feature space and then estimate this
ill-defined inverse mapping.

Approaches to the pose estimation problem can be
broadly categorized as either model-based or model-free.
Model-based approaches specify an underlying kinematic
model, often a rough approximation of the skeleton, and
use this model in conjunction with image measurements to
estimate the pose that best fits the model and the observed
image features. An illustration showing the human skeleton
and several body models for pose estimation is given in Fig-
ure 5. Conversely, model-free approaches assume no under-
lying kinematic model, but instead aim to learn a data map-
ping that best explains input-output pairs provided as train-
ing data that, hopefully, generalizes well to unseen cases. In
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Figure 4. One-to-many mappings can occur as a result of reflective
ambiguity in feature space (a) or from self-occlusions (b).
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Figure 5. For comparative purposes a human skeleton is displayed
with several body models used for human pose estimation. a) The
human skeleton (www.m-w.com). b) 3D model [12]. c)Kinematic
skeleton model [23]. d)A ’loose-limbed’ model [22]. e)A 2D pup-
pet model [18].

model-free approaches the input may be a collection of im-
age features and the desired output a vector describing the
relative locations of each body part. Both model-based and
model-free approaches have their merits and recent work
from both approaches will be explored.

The rest of this paper will cover the techniques, assump-
tions and performance characteristics of recent research sys-
tems for monocular pose estimation. Section 3 will be de-
voted to model-based approaches and their limitations. Sec-
tion 4 will cover model-free approaches. Comparisons of
the performance, limitations and assumptions common in
each approach will be discussed in Section 5 and recom-
mendations for future avenues of research in monocular
pose estimation will be presented.

3. Model-Based Pose Estimation Techniques
Model-based human pose estimation techniques are

characterized by explicitly specifying a model that relates
constraints between body parts. These constraints are not
limited to the kinematic constraints of jointed, articulated
structures, but also may include appearance constraints,
scale constraints and angular constraints among others.

Generally, in this framework pose estimation proceeds in
an iterative match-update paradigm whereby the body parts
in the model are ’posed’ to match those of a subject in an
input image.

Model-based human pose estimation can proceed in a
top-down or a bottom-up fashion. In a top-down tech-
nique, the body model as a whole is evaluated against
features computed on an image, whereas in a bottom-
up technique candidate body parts are first detected and
then built into a plausible configuration. Most human
pose estimation frameworks proceed in a bottom-up fash-
ion [9, 11, 12, 18, 19, 22] although the distinction can be
blurry and some techniques exhibit properties of both [7].

Examples of both 2D and 3D body models are shown
in Figure 5. The 2D body model is often described as a
cardboard-cutout doll, and the 3D model can be viewed
as analogous to an artists wooden manikin or a childrens
toy push-puppet depending on whether the dependencies
between joints are elastic. More precisely, the 3D model
treats body parts as generalized cylinders, while the parts in
a 2D model are the projection of 3D cylinders on the image
plane yielding generalized rectangles. While all techniques
use a model similar in spirit to the ones shown, they may
differ in the way the parameterization, the enforced con-
straints, the number of degrees of freedom etc. The key
challenge in model-based human pose estimation lies in ef-
ficiently searching for the parameters that minimize the dis-
tance between the model and the image observations since
the parameter space may be very high dimensional and im-
age measurements are often noisy. The following sections
will discuss the details of several model-based approaches
for human pose estimation.

3.1. Puppet Models

’Puppet models’ are 3D or 2D kinematic models that rep-
resent a human body as a collection of individual parts con-
nected at ’joint’ locations. The parts in a puppet model
generally correspond to human body parts and the joints
correspond to joints between the body parts. Each part of
the puppet model contains a specification of how the corre-
sponding body part is expected to look in an image. Sim-
ilarly, the joints in the puppet model specify allowable and
expected pose configuration parameters. The part-based de-
composition of puppet models takes advantage of indepen-
dence between various pose parameters to more succinctly
and efficiently model human pose space. The driving idea
behind techniques for human pose estimation that use ex-
plicitly defined puppet models is to find the configuration of
the model whose body part descriptions best match the im-
age and whose joint parameters fall within reasonable limits
defined by human kinematic constraints. Finding the best
solution under these criteria is a difficult problem. Several
methods for estimating the parameters are described next.



3.1.1 Global Optimization in a Discretized Space

Part-based models for general object recognition in images
date back, at least, to work by Fischler and Elschlager that
defined the concept of pictorial structures [8]. Pictorial
structures simultaneously capture individual part appear-
ance as well as body joint configural constraints in a graph-
ical model. This general model framework was extended
by Felzenszwalb and Huttenlocher to efficiently handle the
special case of 2D human pose detection and estimation [7].
A human body model can be represented as a graphical
model where the body-parts are the nodes, and kinematic
constraints are represented as edges between nodes.

If the only constraints included in the model are those of
jointed body-parts, the graphical model that represents a hu-
man body conforms to a tree structure. From this observa-
tion an efficient dynamic programming approach to finding
the globally optimal estimate given part-image matching
functions and model parameters is possible. One caveat to
providing a globally optimal solution with respect to model
agreement in reasonable computational time is that the pa-
rameter space must be discretized. A discretization for the
location of a part may be over all {x, y, ω} triples, rep-
resenting discretization of 2D translational and rotational
space, at some spatial resolution.

Under the assumptions of a tree-structured graphical
model and a discretized parameter space, pose estimation
can be cast as an energy minimization function over the
model configuration, L = (l1, . . . , ln), where li specifies
the location for part i in the model. The energy minimiza-
tion takes the form given in Equation 3.

L∗ = argminL

( ∑
〈vi,vj〉∈E

dij(li, lj) +
∑
vi∈V

mi(I, li)
)
(3)

Here di,j(li, lj) specifies a distance function between the
positions of neighboring parts i and j, which captures kine-
matic constraint parameters. Furthermore, mi(I, li) gives a
measure of how well the image, I , matches the appearance
model of part i in location specified by li.

Now assume that the graphical model that specifies the
human body kinematics is given as a graph G = (V,E)
where vr ∈ V is a specified root node of the model. Further-
more, the children of a node vi that are directly connected
by an edge in the model are specified by Ci. This energy
minimization can be recursively defined over the model as

in Equation 4.

Bj(li) = min
lj

(
dij(li, lj) + mj(I, lj)

)
(4a)

Bj(li) = min
lj

(
dij(li, lj) + mj(I, lj) +

∑
vc∈Cj

BC(lj)
)

(4b)

l∗r = argminlr

(
mr(I, lr) +

∑
vc∈Cr

BC(lr)
)

(4c)

Here, Equation 4a specifies the minimization for the leaf
nodes, Equation 4b for non-leaf, non-root nodes, and Equa-
tion 4c for the root node.

All possible locations over the discretized parameter
space for the root are considered by this recursive relation-
ship. Furthermore, all possible configurations of each part
given its parent part location are considered, however, many
configurations are pruned early in the process yielding an
algorithm quadratic in the spatial discretization. Under cer-
tain conditions the running time can be further reduced to
linear in the spatial discretization. Since this formulation
minimizes the cost of the model match over the entire dis-
cretized space of an image, it has a flavor of a top-down
technique, however, each individual part is treated quasi-
independently in the match function, mi(I, li), giving it
characteristics of a bottom-up approach as well.

A specific instance of this method may define the pup-
pet model to include 10 segments, a head, torso, upper
and lower arms and upper and lower legs, similar to the
model shown in Figure 5 e). The parts, nodes of the graph-
ical model, may be modeled as rectangles with an simple
color appearance model. The constraints between parts,
the edges in the graphical model, may enforce probabilis-
tically learned distributions on pair-wise range of motion
distributions in both rotational and translation dimensions.
The kinematic constraints may allow for slight elastic defor-
mations of the parts in the model to account for imperfect
model specification and image matching functionality. This
method is defined in such a way that many improvements
and extensions in terms of part appearance modeling and
kinematic constraints are easily incorporated.

3.1.2 Bottom-up Formulation

An alternative to optimizing the model fit over a global,
discretized space is to first locate likely image positions of
body parts and then combine the parts into likely configu-
rations according to constraints of the human body. This
general type of approach is known as bottom-up and has
been employed by many researchers for model-based pose
estimation [9, 11, 12, 18, 19, 22]. Proponents of bottom-up
approaches for pose estimation assert that the search space



can be significantly pruned by rejecting unreasonable fea-
tures and configurations early on. In practice, this requires
appropriate, but simple feature detectors that may exhibit
significant noise, as well as grouping primitives that provide
clear rules for valid combinations of parts that can robustly
encode variations in pose space.

The general approach to bottom-up human pose esti-
mation asserts that a human body configuration is recur-
sively made up of several sub-configurations. Given a
set of features, the goal is to recursively combine features
into parts, parts into configurations and configurations into
meta-configurations until a top-level configuration is pro-
duced. Early work caste this as a classification problem,
where a classifier for each level in a configuration hierarchy
was developed to accept valid and reject invalid configura-
tions. If each level of classifier is fairly good at rejecting
invalid configurations, the space of possible poses is signif-
icantly reduced as processing moves up the hierarchy. An
early work that applied a bottom-up process to human pose
estimation is that of Ioffe and Forsyth [11] whose founda-
tions were created in the work on body plans by Forsyth and
Fleck [9].

One way that the method of hierarchically building as-
semblies can be described is as a pyramid of classifiers.
A pyramidal classifier for a simplified, five-segment, hu-
man model is visualized in Figure 6. For each node, i, in
the pyramidal classifier, there is a classifier function, fi,
that assigns values to sub-configurations according to model
constraints. A classifier, fi, accepts a sub-configuration of
parts, L = 〈l1, l2, . . . , lj〉, if it assigns a value greater than
0. At the lowest level, classifiers may operate on image fea-
tures, whereas the top level classifier outputs valid whole-
body configurations. In this framework, the inverse map-
ping function for pose estimation from image space is spec-
ified by the combination of all hierarchical classifiers.

M−1(xn×1) 7→ θm×1 : F (5a)
F = {f1, f2, . . . , fk} (5b)

This framework is quite general and leaves the definition of
the classifiers and features to be tailored to a specific ap-
plication. For the application of human pose estimation a
common definition for the features is based on groups of
parallel line segments, skin tone filters, ridge detection or
even face detection. The kinematic constraints of the human
body are captured by the classifiers, F , and usually enforce
a likelihood over relative scale, orientation and translation
between pairs of parts that is learned from a small number
of labeled training examples. The actual classifiers may be
implemented as simple probability distributions over rela-
tive configuration, or more sophisticated probabilistic oper-
ators like particle filters and inference over Markov chains.

Building on the general framework of puppet-model hu-
man pose detection, there are a number of possible exten-

54 Ioffe and Forsyth

configuration from those that could not. In particular,
if a complete assembly A can be formed by adding
some label-segment pairs to A′ so that C(A) > 0,
then Cl1...lk (A′) > 0. The geometry of our classifiers—
whose positive regions consist of unions of axis-aligned
bounding boxes—makes projection easy.

To obtain a projected classifier, one or more
features—those that involve the segments left out by
projection—must be projected away. For example,
the projected classifier for assemblies consisting of
a torso segment alone is obtained by keeping only
the features that can be computed from the torso
segment.

For convenience of notation, we show how to project
away the feature fK ; to project away several features,
this process can be applied in a sequence to all of them.
The idea that makes projection easy is that, since each
weak classifier splits on a feature, projection will re-
move those of them that split on fK , and will change the
weights of the remaining classifiers in the committee.

The projection of the classifier should classify a point
F in the (K − 1)-dimensional feature subspace as pos-
itive iff

max
F ′

K∑

k=1

wk( f ′
k) > 1/2

where F ′ is a point in the K -dimensional feature space
that projects to F but can have any value for fK . We
can rewrite this expression as

K−1∑

k=1

wk( fk) + max
f ′

K

wK ( f ′
K ) > 1/2.

The value of

δ = max
f ′

K

wK ( f ′
K )

is readily available and independent of fK . We can see
that, with the feature projected away, we obtain

K−1∑

k=1

wk( fk) > 1/2 − δ,

which has the same form as the original classifier, ex-
cept that the threshold is no longer 1/2. Any number
of features can be projected away in a sequence in this
fashion. An example of the projected classifier is shown
in Fig. 7(bottom).

3.3.4. Building Assemblies Incrementally. Assume
we have a classifier C that accepts assemblies corre-
sponding to people and that we can construct projected
classifiers as we need them. We will now show how to
use them to construct assemblies, using a pyramid of
classifiers.

A pyramid of classifiers (Fig. 8), determined by the
classifier C and a permutation of labels (l1 . . . l9) con-
sists of nodes Nli ...l j corresponding to each of the pro-
jected classifiers Cli ...l j , i ≤ j . Each of the bottom-level
nodes Nli receives the set of all segments in the image
as the input. The top node Nl1...l9 outputs the set of all
complete assemblies A = {(li , si ) . . . (l9, s9)} such that
C(A) > 0, i.e. the set of all assemblies in the image
classified as people. Further, each node Nli ...l j outputs
the set of all sub-assemblies A = {(li , si ) . . . (lj , sj )}
such that Cli ...l j (A) > 0.

The nodes Nli at the bottom level work by selecting
all segments si in the image for which Cli {li , si )} > 0
(the only single-segment feature we use is the ratio of
segment’s width to its length, so we simply select the
segments with appropriate aspect ratios). Each of the
remaining nodes has two parts:

Figure 8. A pyramid of classifiers. Each node outputs sub-
assemblies accepted by the corresponding projected classifier. Each
node except those in the bottom row works by forming assemblies
from the outputs of its two children, and filtering the result using the
corresponding projected classifier. The top node outputs the set of
all complete assemblies that correspond to body configurations.

Figure 6. A hierarchical pyramidal classifier for grouping body
segments into valid configurations. This illustration was taken
from [11].

sions. Whereas the definition of the constraints in both the
global and bottom-up models is very general, the problem
of human pose detection, especially when the input is some-
how limited in domain or pose variation appearance, there
can be limiting, but powerful constraints built into this over-
all framework. For example, the individual part detectors
may be much better tuned to the target instance of human
pose by making use of face detectors, skin detection and
ridge detection [12]. Additionally, in a temporal process
where an individual is viewed for many frames, part detec-
tions can span the temporal dimension as well, filtering for
consistent appearance over time [18]. At the cost of vio-
lating the tree structured constraint model, additional con-
straints may be added between parts that enforce consis-
tency in appearance between left and right limbs, as well as
positional dependencies of kinematically independent body
parts that arise from a more complex analysis of pose [19].
Finally, as the complexity of the dependencies in the pup-
pet models has increased there has been a tendency to make
use of more recent advances in statistical modeling and in-
ference such as Markov chain Monte Carlo [12] and contin-



uous valued particle filters like PAMPAS [22].

3.2. Kinematic Model Constraint Propagation

A categorically different approach to human pose esti-
mation addresses the problem of 3D configural reconstruc-
tion of articulated objects from uncalibrated, monocular im-
ages using only kinematic constraints and the locations of
joints in 2D image space. The method for performing the
3D reconstruction was outlined by Taylor [23]. The recon-
struction is valid for any rigidly connected articulated struc-
ture under the following assumptions:

1. The image formation can be closely approximated by
a scaled orthographic projection model

2. The image coordinates 〈u, v〉 of the joints between
connected segments are given

3. The relative lengths of the segments are known

Under these assumptions a 3D reconstruction up to a global
scale ambiguity may be obtained for an articulated object, a
specific type of which is the human body.

The first assumption, that the image projection model is
scaled orthographic, is valid in many instances where the
local depth of the object of interest is small compared to the
distance between the object and camera. The scaled ortho-
graphic camera model is given in Equation 6.(

u
v

)
= s

(
1 0 0
0 1 0

) X
Y
Z

 (6)

This system is under-constrained and, as a result, there
will be more than one solution for a given set of la-
beled joints in image coordinates. Nevertheless, the fam-
ily of solutions can be related under a global scale pa-
rameter, s, by carefully parameterizing the model. As
a simple example, imagine a single line segment in 3D
space whose endpoints in image space are given by
〈uA, vA〉, 〈uB , vB〉 and whose coordinates in 3D space are
given by 〈XA, YA, ZA〉, 〈XB , YB , ZB〉. The line segment
has a known length of l. Under the scaled orthographic
camera model an equation relating the relative depth of the
endpoints in 3D space to the image coordinates, length and
scale is derived in Equation 7.

l2 = (XA −XB)2 + (YA − YB)2 + (ZA − ZB)2 (7a)
〈uA − uB〉 = s(XA −XB) (7b)
〈vA − vB〉 = s(YA − YB) (7c)
dZ = (ZA − ZB) (7d)

dZ =
√

l2 − ((uA − uB)2 + (vA − vB)2)�s2 (7e)

Furthermore, since it does not make sense to have an
imaginary displacement value along the z-axis the quantity

under the square-root in the derived Equation 7e must be
non-negative. This puts an addition constraint, shown in
Equation 8, on the scale factor s.

s ≥ l√
(uA − uB)2 + (vA − vB)2

(8)

Although in the simplified example of a single segment
it was assumed that the overall length was known it is only
necessary to know the relative lengths of the segments in
an articulated model in general. The overall scale-factor, s,
absorbs the need for an absolute length for each segment.

Using the previously derived equations, constraints on s
and the three assumptions stated earlier, a straightforward
algorithm for recovering 3D coordinates of an articulated
model up to scale becomes apparent. Recovering 3D coor-
dinates is achieved through the following steps:

1. Evaluate Equation 8 for each segment, pi in the model
using the labeled image coordinates and relative seg-
ment length, li, to obtain a lower bound on the scale
factor s.

2. Fix some joint in the model as a reference joint at rel-
ative depth 0.

3. Starting from the reference joint, compute the value of
dZ for all connected segments using Equation 7e and
the lower bound scale-factor s.

4. Propagating the previously computed relative depth
values, dZi, continue in this manner until the relative
depth of all points is known.

For each segment there are two possible placements for a
computed value of dZ. For an 11 segment model this results
in 2048 valid solutions. Given an additional requirement
that for each segment the joint that is closest to the camera is
labeled as such there is a unique solution. A more automatic
way of dealing with this may be to prune the configurations
that do not obey joint-angle constraints of the human body.

Notice that the scale factor was fixed at the lower-bound
value in the algorithmic steps. This heuristic corresponds to
the commonly occurring case where at least one of the seg-
ments is approximately perpendicular to the camera vector.
In practice, the scale parameter may be swept across a range
of values and the resulting model match according to a sep-
arate metric could be computed. An illustration of how a
reconstruction varies with the scale parameter is shown in
Figure 7. Finally, note that for the case of human pose,
knowledge of the relative limb lengths is quite reasonable
as these may be computed from a corpus of biometric data.

In order for this method to succeed a strong assumption
is made; that the image coordinates 〈ui, vi〉 of each joint
center are given. Automatically locating these joint centers



University of Pennsylvania 1GRASP

Reconstruction of Articulated Objects
from Point Correspondences in a Single Uncalibrated Image
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! Objective: To  recover the configuration of an
articulated object from image measurements

! Assumptions:
" Scaled orthographic projection (unknown scale)
" Relative lengths of segments in model  known

! Input: Correspondences between joints in the
model and points in the image

! Output: Characterization of the set of all possible
configurations

! Reconstruction proceeds by analyzing the
foreshortening of each limb in the figure

! The set of all  possible solutions can be
characterized by a single scalar parameter, s,
and a set of binary flags indicating the
direction of each segment

! These reconstructions were obtained from images
downloaded from the web or scanned from
newspaper photographs

! The scalar, s,  was chosen to be the minimum
possible value and the segment directions were
specified by the user.

! Exploiting Additional Constraints: If additional
constraints are imposed on the object, such as
closure or coplanarity, then it is possible to
determine the parameter, s, uniquely.

! Comparison with ground truth data: The results
obtained with this method  were compared with
measurements taken with an OPTOTRAK  system.
Mean and median estimates in the estimated joint
angles were5.27 degs. and 3.81 degs..

! Possible Applications:
" Recovering  the pose of an actor in keyframes of a
video sequence
" Recovering  the configuration of an articulated
robot.

! Contribution:
" A simple but effective approach to estimating the
configuration of articulated objects from commonly
available imagery.
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Figure 7. As the scale parameter increases the foreshortening ef-
fects are magnified. This image was taken from [23].

in an image remains a difficult problem in the vision com-
munity. Nevertheless, some automatic 2D pose estimation
systems, notably that of Mori and Malik [14], have used this
kinematic method to upgrade a 2D solution to one in 3D. Fi-
nally, a related work by Liebowitz and Carlson [13] solves
a very similar problem, but does not contain the scale am-
biguity. However, two uncalibrated camera views are used,
making it out the scope of this work.

4. Model-Free Pose Estimation Techniques

In contrast to human pose estimation techniques that
make use of an explicitly defined, often simplified, kine-
matic model of the human body, model-free techniques
make no such assumption about the form of the generat-
ing parametric process Θ. Instead, model-free techniques
attempt to learn the mapping from image feature space to
pose space, M−1(x) 7→ θ, directly from labeled training
pairs of image feature points and their corresponding pose
parameters. A general schematic of how model-free pose
estimation techniques operate is shown in Figure 8. Al-
though the intermediate feature space, method of learning
the inverse mapping, and dimensionality of the estimated
parameter space may differ, model-free techniques set the
problem up as learning a mapping from an input vector
space to an output vector space.

While model-free pose estimation techniques do not re-
quire a hand-specified kinematic model, they do require
training data with labeled pose parameters. Each training
pair consists of an image of a person and the corresponding
pose parameters. This labeled training data can be obtained
in a number of ways. One possibility is to hand label the
body part positions in the training images, which yields 2D
image coordinates. Another method that yields 3D pose pa-
rameter labels is to simultaneously record motion-capture
data using a commercial motion capture system and video
using a calibrated video camera. A third option is to use
a graphics rendering package that has the capability of an-
imating human models, such as POSER, to generate syn-
thetic frames. In this way, human motion capture data can
be used to animate the human model and synthetically gen-
erated frames corresponding to each pose parameter setting
can be stored.

Time

Pose

Estimation

Procedure

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!"

"

"

"
!

!

!

!

!

!

!

!#

#

#

#

Time

… … …

P
it
ch

R
ol

l

Y
aw

Torso

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!"

"

"

"
!

!

!

!

!

!

!

!#

#

#

#

… … …

Extract

silhouette from

video frame

Calculate

features and

collect in a

feature vector

Pass feature vector into

learned mapping and

output the joint-state

vector

1 2 3

Regression

function

Figure 8. An illustration of the problem formulation and data-flow
through a general model-free pose estimation routine. Features are
extracted from an image, fed into a learned mapping from feature
space to pose space and the resulting pose parameters are output.

Currently, due to computational limits, it appears to be
infeasible to work with a dense sampling of the entire pos-
sible human pose space in the model-free pose estimation
framework. For this reason, researchers in this area make
the argument that the range of likely or often-occurring hu-
man poses is much smaller than that of all possible poses.
Solutions are thus tuned for a specific subset of poses or
range of motion. This argument is valid in many cases,
especially in targeted applications where a specific type of
motion is expected. In this way, a prior on the expected
poses, specified by the set of poses covered by the train-
ing set, is implicit in the pose estimation procedure. With
the ultimate goal of an accurate 3D pose estimation from
a single image, in previous work on model-free pose esti-
mation a variety of image features and learning procedures
for mapping from feature space to pose space have been
proposed. The remainder of this section will describe the
proposed types of image features and learning procedures.

4.1. Image Features for Model-Free Pose Estima-
tion

Since there is no kinematic model to constrain the esti-
mation procedure in model-free approaches they need a fea-
ture vector representation that robustly captures variations
in body shape and pose relevant to the pose estimation task.
For the most part, model-free techniques for human pose
estimation assume that the pixels corresponding to a per-
son are detected and then define some global measure over
the person-pixels. The global nature of the features used in
most systems allows for efficient and consistent feature vec-
tor extraction once a person is localized. Furthermore, they



provide an input vector with a uniform representation and
dimensionality across all input instance, which facilitates
straightforward application of many techniques for learn-
ing a regression from input (feature) space to output (pose)
space. Features based on body contours and silhouettes, as
well as edges and edge gradients have been proposed for
model-free pose estimation tasks. The following section
will describe some possible features in detail and charac-
terize their usefulness with respect to the pose estimation
task.

4.1.1 Contour Features

One popular class of image features used by several re-
searchers [2, 5, 14, 20, 24] in model-free human pose es-
timation are contour features that rely on silhouette extrac-
tion. When placed in the context of the ramifications of
Equation 1 it is easy to see why contour based features are
popular. Assuming that silhouettes can be reliably extracted
from images or video frames the nuisance parameters that
result from variations in environment, clothing, lighting and
other factors disappear. What results then is essentially the
problem of estimating body pose from silhouettes, where
the silhouette shape is largely determined by the body-pose
parameters, Θ, precisely the parameters that are being esti-
mated.

In order to be useful in a model-free pose estimation
framework, a silhouette or contour based feature should
provide a descriptive summary of the silhouette, be insen-
sitive to small variations and noise and be relatively com-
pact. To this end several types of features computed over
binary silhouette images have been proposed. One class of
features that have been used by researchers are image mo-
ments [5, 20, 24]. These include the scale and translation
invariant Alt moments, as well as Hu moments that have the
added property of rotational invariance. The general form
for deriving a given Alt moment, ηpq, is given in Equation
9.

ηpq =
1
n

n∑
i=1

(
uiIi − ū

σu

)p(
viIi − v̄

σv

)q

(9)

Where n is the number of pixels in an image, ui, vi are the
row and column of pixel i, Ii is the intensity of pixel i and
ū, σu are the mean and variance. The Hu moments result
from particular combinations of the Alt moments derived to
be rotationally invariant.

The numerical values of these moments computed over
a silhouette image can then be collected in a feature vector
that is used as input to the inverse mapping process. These
moments provide global descriptions of shape such as area,
inertial moments, principle axes and so forth. Alt moments
have been used more often than Hu moments because, for
the domain of human pose estimation, rotational invariance
can actually have a negative effect on accuracy since images
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Fig. 1. Different 3D poses can have very similar image observations, causing
the regression from image silhouettes to 3D pose to be inherently multi-valued.
The legs are the arms are reversed in the first two images, for example.

problems with shadows are avoided; (ii) they are insensitive
to irrelevant surface attributes like clothing colour and texture;
(iii) they encode a great deal of useful information about 3D
pose without the need of any labelling information 1.
Two factors limit the performance attainable from sil-

houettes: (i) Artifacts such as shadow attachment and poor
background segmentation tend to distort their local form.
This often causes problems when global descriptors such as
shape moments are used (as in [4,8]), as every local error
pollutes each component of the descriptor: to be robust, shape
descriptors need to have good locality. (ii) Silhouettes make
several discrete and continuous degrees of freedom invisible
or poorly visible (see fig. 1). It is difficult to tell frontal
views from back ones, whether a person seen from the side is
stepping with the left leg or the right one, and what are the
exact poses of arms or hands that fall within (are “occluded”
by) the torso’s silhouette. Including interior edge information
within the silhouette [22] is likely to provide a useful degree of
disambiguation in such cases, but is difficult to disambiguate
from, e.g. markings on clothing.
Shape Context Distributions: To improve resistance to seg-
mentation errors and occlusions, we need a robust silhouette
representation. The first requirement for robustness is locality.
Histogramming edge information is a good way to encode
local shape robustly [17,6], so we begin by computing local
descriptors at regularly spaced points on the edge of the
silhouette. We use shape contexts (histograms of local edge
pixels into log-polar bins [6]) to encode silhouette shape quasi-
locally over a range of scales, computing the contexts in local
regions defined by diameter roughly equal to the size of a limb.
In our application we assume that the vertical is preserved,
so to improve discrimination, we do not normalize contexts
with respect to their dominant local orientations as originally
proposed in [6]. The silhouette shape is thus encoded as a

1We do not believe that any representation (Fourier coefficients, etc.)
based on treating the silhouette shape as a continuous parametrized curve is
appropriate for this application: silhouettes frequently change topology (e.g.
when a hand’s silhouette touches the torso’s one), so parametric curve-based
encodings necessarily have discontinuities w.r.t. shape.
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Fig. 2. (Left) The first two principal components of the distribution of
all shape context vectors from a training data sequence, with the k-means
centres superimposed. The average-over-human-silhouettes like form arises
because (besides finer distinctions) the context vectors encode approximate
spatial position on the silhouette: a context at the bottom left of the silhouette
receives votes only in its upper right bins, etc. (Centre) The same projection
for the edge-points of a single silhouette (shown on the right).

distribution (in fact, as a noisy multibranched curve, but we
treat it as a distribution) in the 60-D shape context space. (In
our implementation, shape contexts contain 12 angular × 5 ra-
dial bins, giving rise to 60 dimensional histograms.) Matching
silhouettes is therefore reduced to matching these distributions
in shape context space. To implement this, a second level of
histogramming is performed: we reduce the distributions of
all points on each silhouette to 100-D histograms by vector
quantizing the shape context space. Silhouette comparison is
thus finally reduced to a comparison of 100-D histograms.
The 100 centre codebook is learned once and for all by
running k-means on the combined set of context vectors
of all of the training silhouettes. See fig. 2. (Other centre
selection methods give similar results.) For a given silhouette,
a 100-D histogram z is built by allowing each of its context
vectors to vote softly into the few centre-classes nearest to
it, and accumulating scores of all context vectors. This soft
voting reduces the effects of spatial quantization, allowing
us to compare histograms using simple Euclidean distance,
rather than, say, Earth Movers Distance [21]. (We have also
tested the normalized cellwise distance ‖√p1−√p2‖2, with
very similar results.) The histogram-of-shape-contexts scheme
gives us a reasonable degree of robustness to occlusions and
local silhouette segmentation failures, and indeed captures a
significant amount of pose information (see fig. 3).

B. Body Pose as Joint Angles
We recover 3D body pose (including orientation w.r.t. the

camera) as a real 55-D vector x, including 3 joint angles for
each of the 18 major body joints. The subject’s overall azimuth
(compass heading angle) θ can wrap around through 360◦. To
maintain continuity, we actually regress (a, b) = (cos θ, sin θ)
rather than θ, using atan2(b, a) to recover θ from the not-
necessarily-normalized vector returned by regression. So we
have 3×18+1 = 55 parameters.
We stress that our framework is inherently ‘model-free’ and

is independent of the choice of this pose representation. The
system itself has no explicit body model or rendering model,

Figure 9. A graphical depiction of the shape variation captured by
shape context descriptors computed over a set of human poses.
The image on the left is a projection of the feature vectors on the
first two principle components. The middle image is the average
shape-context feature and the right image is a typical silhouette.
This figure was taken from [2]

of people are predominately in the upright orientation. Fi-
nally, since image moments are global descriptors of shape,
inaccuracies in silhouette extraction such as shadow attach-
ment and other sources of noise can skew the entire descrip-
tor.

To counter the effects of local inaccuracies in silhouette
extraction, while still providing a reasonable description of
overall shape, shape contexts [4] have been proposed for hu-
man pose estimation by several researchers [2, 14]. Given
a set of feature points detected on the contours of a shape,
a shape context for a given point is a histogram of the rel-
ative positions of all other points with respect to it. The
histogram generally contains equally spaced angular bins
and log-sampled distance bins. A graphical depiction of a
shape context feature for human pose estimation is shown
in Figure 9.

Shape context features for pose estimation have been
used directly as in the work by Mori and Malik [14] in a
classic retrieval scenario explained in Section 4.2.1. In con-
trast, Agarwal and Triggs [2] advocate a second level of
histogramming on top of shape context extraction. In this
second level of histogramming some number of clusters that
describe the shape-contexts computed over the training set
are learned. The shape context for a silhouette image is
then projected onto these centers using a soft-voting tech-
nique. This allows the histograms to be compared using the
Euclidean distance metric and reduces the dimensionality
of the input feature vectors. In either case, shape-contexts
provide a reasonable description of silhouette shape while
maintaining some invariance to local deformations.



4.1.2 Edge and Gradient Features

There are, however, several drawbacks to contour-based
features. Firstly, they discard internal edge information that
can be vital in determining the pose of self-occluding body
parts, as well as dealing with reflective symmetries in poses.
In addition, the assumption of accurate silhouette extrac-
tion puts restrictions on the operating environment. Video
stream methods that use contour features must assume a
fixed camera and a slowly changing background that can be
modeled with current background-modeling techniques. In
the case of still images with no temporal stream, the use of
contour features assumes that the human detection problem
has been solved.

For these reasons some researchers have proposed edge
and gradient based features for human pose estimation
[1, 21]. Shakhnarovich et al. [21] make the observation that
internal edges can be a significant cue for pose and propose
histograms of edge directions as an input feature. Edges are
computed using the Sobel operator and histograms are com-
puted over a sliding window of various sizes. This work still
assumes background segmentation, and due to the imperfect
nature of edge detection a large number of training exam-
ples are necessary to account for variations in the texture of
clothing.

Histograms of image gradients, a very similar feature
type, are proposed by Agarwal and Triggs [1]. However,
an additional step of learning a non-negative matrix factor-
ization (NMF) basis for regularly sampled image patches on
training images with no background texture is added. Since
an NMF basis provides a sparse, purely additive represen-
tation it effectively filters out background clutter from test
image that contain background elements. This allows for si-
multaneous detection and pose estimation to some degree.

4.2. Learning a Mapping from Feature Space to
Pose Space

Given a feature space derived from an input image the
primary task for model-free pose estimation techniques is
to provide a reasonable, accurate, smooth and generaliz-
able mapping from the feature vectors, xn×1 ∈ X , to the
pose parameter vectors, θm×1 ∈ Θ. Assuming that there
is a set of training pairs available with known pose parame-
ters, this problem can be cast in a number of machine learn-
ing paradigms. Current approaches to this problem can be
classified as either data-driven or regression learning tech-
niques. Given the special nature of this problem, however,
a number of additional heuristics can be employed in con-
junction with these methods to improve performance. In the
following sections details of several data-driven and regres-
sion based techniques for pose estimation are described.

4.2.1 Data-Driven Techniques

Data driven techniques for parameter estimation problems
rely on a large set of training examples where each exam-
ple is a pair, 〈x, θ〉, consisting of the computed input im-
age feature vector, x, and the known output pose parameter
vector, θ. In the simplest form, data-driven parameter esti-
mation for a novel test example whose image feature vector
is xtest proceeds by linearly searching the training set to
find the training pair whose input image feature represen-
tation is most similar to xtest. The stored output pose pa-
rameters of the best match are then returned as the estimate.
Of course, this nearest-neighbor approach assumes that the
training set provides a very dense covering of the parameter
space. Even for a moderately large pose parameter space
this requires a prohibitive number of training examples. For
this reason, in practice most data-driven techniques for pa-
rameter estimation make a slightly weaker assumption: the
training set covers the parameter space densely enough that
a reasonably smooth interpolation between examples ex-
ists. Nevertheless, this set can still be very large. The key
challenges that data-driven parameter estimation techniques
face are to define a useful similarity function on the in-
put feature vector space for estimating the output parameter
vector space, to accurately interpolate between the matches
found in the training set for a given xtest, and to efficiently
search for the similar examples in the training set.

An example of the nearest-neighbor technique for pa-
rameter estimation is presented by Howe [10]. This work
uses global features computed on silhouettes as the input
representation and 3D pose data gathered from a motion
capture system as the parameter space. The parameter es-
timation procedure proceeds as a simple linear comparison
of the input representation of a test example, xtest, with all
the entries in the training database. The training database is
populated so that all entries are sufficiently different in pose
space, where different is defined as a sufficiently large dif-
ference in the positions of the end points (hands and feet) in
parameter space. This approach does not use any regression
or weighted neighborhood techniques to refine the estimate,
but simply returns the candidate that matches best in feature
space.

Another approach to data-driven parameter estimation
for human pose estimation is to first find the best candidate
in the training dataset and then warp the training candidate
to more closely match the test example to account for small
differences in the two poses. In addition to the coverage
requirement of the training set, for this method to work the
input feature space must be amenable to warping in a mean-
ingful way with respect to the pose parameter space. One
feature type that displays this quality is the shape context
[4] described earlier in Section 4.1.1. Shape contexts have
been used in this match-warp paradigm for human pose es-
timation by Mori and Malik [14, 15].



In order to implement the match-warp procedure for hu-
man pose estimation the training examples must be labeled
such that (1)the pose parameters are defined with respect to
the feature points and (2)the boundary points used for the
shape context are assigned to a specific body part. Given
this type of labeled information the pose estimation process
proceeds as follows:

1. Find the training candidate whose shape-context repre-
sentation best matches with that of xtest by comparing
with all training examples

2. Warp the best match to xtest in feature space on a part-
by-part basis using a 2D kinematic chain representa-
tion

3. Recover the 3D pose parameters using the method out-
lined by Taylor [23]

The second step of warping the best match candidate to
xtest using a kinematic chain representation is essentially
a local search over parameter space that uses the human
body’s kinematic constraints as a heuristic. Searching in
this way can help alleviate the problem of a large training
set since fewer examples are required for an accurate esti-
mate. This method can proceed using a global feature rep-
resentation [14] or by decomposing the search for matching
candidates on a part-by-part basis [15] taking advantage of
the independent motion of body parts to reduce the size of
the training set required to cover pose space.

A third option for tackling this problem is to leverage the
advances in locality sensitive hashing techniques for infor-
mation retrieval operations. A recent work using this repre-
sentation is that of Shakhnarovich et al. [21] that develops
the idea of efficient parameter-sensitive hashing for pose
estimation. Since there are ambiguities resulting from re-
flection and occlusion in feature space with respect to the
pose parameters, a locality-sensitive hashing functions that
enforces similarity between both the feature and parameter
spaces in the inverse mapping, M−1(xn×1) 7→ θm×1, will
result in a more accurate pose estimate.

This is achieved by defining a probabilistic set of 1-bit
hash functions, h ∈ H , computed over the training set
so that for each pair of training examples, 〈x1, θ1〉 and
〈x2, θ2〉, a hash function hx1 = hx2 iff dθ(θ1, θ2) < R,
where dθ is a distance function defined over parameter
space and R is a threshold for similarity. After defining
a set of hash functions with this property over the training
set, each h ∈ H is computed for a test example xtest. The
union of all training examples with at least one similar bit
in the hash functions, H , is given as the support-set: a set of
estimates that may be close to the query example. Parame-
ter estimation could then proceed in multiple ways such as
taking the training example with the most similar hash bits
as the estimate (MAP), using the support-set to define the

k-nearest neighbors for xtest and running gradient descent
(Bayes-optimal), or by fitting a linear model to the local
support-set and evaluating xtest with respect to this model.

4.2.2 Regression Learning Techniques

Whereas data-driven techniques rely on a direct connection
with the underlying training data to lookup examples sim-
ilar to a test example, regression-learning techniques first
learn an approximate, smooth regression mapping from in-
put image feature space to parameter space and then use
the learned mapping to generalize to new test cases. One
of the key challenges for data-driven techniques is to ade-
quately cover a pose space and allow for near-realtime pa-
rameter estimation since in many cases a significant portion
of the training set is searched on each query. In contrast,
regression-learning techniques perform most of the com-
putation offline while learning the mapping. Subsequent
queries for new test examples are handled very quickly. The
challenge facing regression learning techniques for pose es-
timation is to provide an accurate regression mapping that
captures the intricacies found in the training set while gen-
eralizing to a wider selection of test cases. The underlying
manifold representing the mapping from input to pose space
may be highly non-linear making the regression learning
task very challenging. In practice, regression based pose
estimation techniques restrict the class of poses to a subset
of possible poses or organize the training data into smaller,
more homogenous poses to make the regression problem
tractable.

An early regression learning technique for human pose
estimation is the specialized-mappings architecture [20].
This approach uses the heuristic of first partitioning the
training set into similar clusters according to a measurement
in pose space. Then, a simpler approximation for the map-
ping exists for each cluster than the entire space taken as
a whole. The general steps for pose estimation using the
specialized mappings architecture are as follows:

Assume xn×1 are feature vectors and θ are joint posi-
tions that specify pose.

1. The set θ is partitioned into k subsets using EM-based
unsupervised clustering techniques

2. The inverse mapping function M−1(x) 7→ θ that maps
from input x to output θ is approximated by a non-
linear (multi-layer) perceptron for each of the k clus-
ters.

3. Input features from a novel test image xtest are pre-
sented to each of the perceptron-based mapping func-
tions, M−1

I:I=1..k resulting in k pose estimates.

4. A rendering function from pose space to image feature
(silhouette) space is used to generate images resulting



from each of the k pose estimates. The best matching
projection is chosen as the pose estimate.

It is important to note that dividing the pose space into sev-
eral clusters necessities an extra, and possibly expensive,
step of rendering probable pose estimates and performing
distance calculations in image feature space to evaluate the
multiple estimate candidates. Furthermore, there are sev-
eral disjoint steps in this process resulting in many tunable
parameters.

The specialized mapping architecture advocates dividing
the pose space into a finite, discrete number of subsets to al-
low for an approximate mapping to be found. As the num-
ber of subsets becomes infinite, the continuum of hypothe-
ses approximate a function in pose space. This is the con-
cept used by Tian, Li and Sclaroff [24] in their work that
uses Gaussian process latent variable model (GPLVM) to
approximate this functional mapping in pose space for hu-
man pose estimation. To make the GPLVM learning process
tractable, the notion of an active-set is used. An active-set
is simply a representative subset of the training data. The
GPLVM is set up as an optimization process over radial-
basis kernel parameters, and active-set member selection.
Once the learning process has converged, the pose param-
eters for a new example, xtest, are estimated by first find-
ing the example in the active-set most like xtest in terms
of the similarity in feature space. Then, optimization over
Equation 10 is performed using the chosen example from
the active-set to initialize.

θ∗ = argminx,θ(Lθ̃(x, θ) + wiCALT ) (10a)

CALT = ‖Φ(θ)− stest‖2 (10b)

Here, Lθ̃(x, θ) contains the learned parameters from the
GPLVM process, CALT is a distance function in silhou-
ette space measuring the closeness of the current parame-
ter estimate to the input silhouette image and wi specifies
an importance weighting on the model fit, Lθ̃(x, θ), versus
the silhouette match, CALT . This approach presents a more
unified model for regression based human pose estimation.

While the GPLVM approach makes few assumptions
about the underlying model, it still requires a post-
estimation rendering and matching step for estimation re-
finement. A recently proposed approach for regression
based human pose estimation frames the problem as a very
general mapping problem that can be solved by various ma-
chine learning techniques [2, 1]. The formulation relies on
the assumption that a mapping from feature space, X , to
pose space, Θ, can be approximated functionally as a linear
combination of basis vectors as in Equation 11.

θm×1 =
p∑

k=1

akφk(xn×1) + ε (11)

Here, ak are weight vectors for the basis functions, φk,
evaluated over the feature vectors, φk(xn×1). Note that
the weight vectors can be collected in a matrix Am×p =
(a1 a2 . . . ap) and similarly the basis functions can be col-
lected in a function f(z) = 〈φ1(x) φ2(x) . . . φp(x)〉 yield-
ing the simplified linear combination notation in Equation
12.

θm = A · f + b (12)

Using this general setup, the process of training a model
can be posed as optimizing over Equation 13.

A := argminA{‖AF −X‖2 + R(A)} (13)

Here the feature vectors, xi, have been gathered into feature
matrix X , the basis functions have been gathered into ma-
trix F , and R(A) is a regularization term on weights A to
penalize over-fitting.

Ridge-regression, also known as damped least squares,
and relevance vector machines (RVMs) [25] have been used
to optimize over this formulation. In the case of RVMs, the
optimization process enforces sparsity in the solution that
is useful for the pose estimation task. The choice of the
basis has been shown to have little effect on the quality of
the learned mapping. Implementations using a linear ba-
sis, where basis vectors translate to individual features, and
a kernel basis, where basis vectors translate to training ex-
amples, have shown comparable results. The strength of
this approach is in the simplicity of the problem formula-
tion and subsequent estimation for new examples. Estimat-
ing the pose for a new example, xtest, is a simple matter
of evaluating the chosen basis functions, φi(xtest), over the
input feature vector and weighting them according to the
learned weights, ai.

5. Discussion and Current Limitations
Several methods for estimating human pose from a sin-

gle image using both model-based and model-free ap-
proaches have been presented. Although the underlying
goal is similar, the various methods employed by each tech-
nique span a large range of design decisions, assumptions
and potential operating environments. For comparative pur-
poses, information pertaining to the scope, features and lim-
itations of many recent methods for both model-based and
model-free techniques is provided in Table 2.

One notably lacking category in Table 2 is a compar-
ison of estimation accuracy. The omission of this statis-
tic hints at one of the major difficulties facing the human
pose-estimation research community: a common evaluation
dataset and the appropriate metrics have not been defined
and widely adopted. With little exception, researchers cre-
ate their own datasets, and while some are made available,
they are generally not used for comparison purposes in the



Category Paper Dimensionality DOF Limiting Assumptions
Model-based Felzenszwalb [7] 2D full-body(24) Known appearance, no occlusions

Forsyth [9] 2D unspecified known appearance, no occlusions
Ioffe [11] 2D full-body Gen. rectangles, all parts visible
Lee [12] 3D full-body(31) Frontal poses, canonical parts
Ramanan [18] 2D full-body(24) Gen. rectangles, constant appearance
Ren [19] 2D full-body part symmetry and appearance constraint
Sigal [22] 3D full-body part detection solved
Taylor [23] 3D full-body(25) known 2D joint centers

Model-free Agarwal [1] 3D upper-body known body type, frontal pose
Agarwal [2] 3D full-body(54) background sub., small pose space
Brand [5] 3D full-body back-sub, small pose space
Howe [10] 3D full-body back-sub, dense training covering
Mori [14] 2D7→3D full-body back-sub
Mori [15] 2D7→3D full-body back-sub
Rosales [20] 2D full-body back-sub
Shakhnarovich [21] 3D upper-body frontal poses, known body type
Tian [24] 2D full-bosy back-sub

Table 2. Comparison of several pose estimation techniques.

community. This problem is compacted by the parallel is-
sue of the use of various, incompatible parameterizations
of the pose estimate model. This problem is beginning to
be addressed by the community in the form of the Work-
shop on Evaluation of Articulated Human Motion and Pose
Estimation the second of which is held in June 2007. In
conjunction with this effort a standard dataset, HumanEva,
with video and ground truth pose data has been released.
This standard dataset is an important step since obtaining
ground-truth pose data from commercial MoCap systems
still remains a time-consuming and costly venture that may
not be available to many researchers.

Another trend that is apparent from Table 2 is that model-
free techniques more often supply 3D pose estimates and
work with more degrees of freedom than many of the
model-based techniques. Model-free techniques also gen-
erally run much faster on novel test input images than the
model-based techniques. This discrepancy in efficiency on
test cases follows directly from the inverse nature of the
two classes of approaches. The model-free techniques gen-
erally devote significant processing power during the of-
fline learning phase. Once learned, this model-free map-
ping function can be computed relatively quickly for test
examples and usually yields a very small number of poten-
tial solutions. In contrast, the model-based techniques gen-
erally use some form of graphical model that is either hand
specified, or described by simple distributions that can be
learned from very few training examples. These models are
very powerful and can represent a large, high-dimensional
pose space, however, finding a solution for a test exam-
ple often involves an expensive optimization procedure, or
search, over this large space. Looking at this from the op-

posite perspective, model-based approaches, in theory, can
succinctly handle a large range of poses, while current tech-
niques for model-free pose estimation require exponentially
large training datasets to adequately cover the same space.

The overall challenge for model-based human pose es-
timation techniques is in dealing efficiently and effectively
with a high-dimension search space with multiple minima.
This manifests itself in two obvious ways; one is the need
for more discriminative and accurate body-part detectors
and the other relates to probabilistic inferences methods
needed to search the large parameter space and scale these
methods to 3D pose estimation.

The prevailing wisdom in the model-based pose estima-
tion community has been that low-level body-part detectors
can be very noisy since the constraints defined by the body-
model will significantly prune the false positives. This is
true to some extent, but current part detectors are perhaps
too noisy and ill-behaved over the image space, resulting
in many probable, but incorrect solutions to the pose es-
timation problem. Additionally, if the search space is not
sufficiently pruned in the body-part detection step, the opti-
mization over the probabilistic kinematic model is very ex-
pensive. Several recent works have attempted to address
this problem by introducing more specific and discrimina-
tive part detectors such as specialized face detectors, shoul-
der contour detectors etc [12], however, for many body parts
this is a very difficult task since out of context they can
be very hard to distinguish as in Figure 10. Orthogonally,
recent techniques for continuous-valued probabilistic infer-
ence such as PAMPAS have enabled the large state space to
be handled more effectively [22]. Nevertheless, there is still
significant room for improvement in terms of both body-



Figure 5: Hand-segmented limbs used
for training.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

num. of candidates

nu
m

. o
f d

et
ec

tio
ns

combined
contour
shading
shape
focus

Figure 6: Evaluating half-limb cues: we fix the num-
ber of top candidates generated for each image and
show the average number of half-limb detections for
individual cues and the linear classifier combining
all the cues. Among the top 8 candidates, in average
there are 4.08 true positive detections.
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Figure 7: Evaluating half-limb detection:
the percentage of images which have at least
k half-limbs being detected. 89% of the
images have at least 3 half-limbs being de-
tected among the top 8 candidates.

4.2.1 Finding Torsos with Segmentations

We use the same Normalized Cuts segmentations to gen-
erate candidate torsos. Unlike half-limbs, a torso typically
consists of more than one segment. Given a segmentation,
we look for all combinations of segments which meet the
scale constraint, i.e., contained in a bounding box of suit-
able scale. We then classify these candidates with a similar
set of cues: contour, shape, and focus. The contour cue and
the focus cue are exactly the same as in the detection of
half-limbs. We again use a simple rectangle model for torso
shape. The shading cue is dropped in this case, as we do not
expect the torsos to have a characteristic shading pattern.
Putting Head and Torso Together: The segmentation-

based torso detector works well in finding the trunk of seg-
ments comprising the torso. However, we also need the ori-
entation of a torso to determine the shoulder and hip posi-
tions. There are a variety of poses in the baseball player
images, including some players lying parallel to the ground
plane. The orientation is difficult to estimate by torso itself.
For this we need to put head and torso together.
For each candidate torso and each orientation, we find

the best matching head. A candidate head consists of one
or a pair of segments. The same set of cues, contour, shape
and focus, are used to evaluate the score of a candidate head.
The shape model of the head is simply a disk, whose scale is
determined by the candidate torso. One obvious extension
is to add an off-the-shelf frontal face detector as further ev-
idence for the presence of a head. We have not done it here,
however, since it won’t be too useful on our dataset – most
players are either not looking at the camera or their faces
are obscured by their caps.
The torso score, the head score, and another simple score

for their relative positions (a Gaussian model learned from
hand-labeled data) are then multiplied into a score for the

head/torso combination, which specifies an orientation of
the torso and the joint positions of shoulders and hips.
We conducted experiments using 62 images of baseball

players from our set of sports news photographs. Ground
truth positions of the torso joints were marked by hand, a
recovered torso is deemed to be correct if all 4 torso joints
are within 60 pixels of true positions. The results of run-
ning the segmentation-based torso detector are shown on
Figure 8 (solid green line). For reference, the mean head
diameter in the images is about 50 pixels.
Comparing with Exemplar-based Approach: As fur-

ther evaluation of the segmentation-based torso detector, we
compare it with an earlier exemplar-based approach. The
exemplar-based torso detector is based on the work in [8].
We hand-label torso joint positions in a set of training im-
ages to be used as exemplars. Exemplars are represented as
collections of edges, obtained using the texture-suppressing
edge detector in [6]. We use the technique of representative
shape contexts to match test images to stored exemplars.
The shape contexts used in experiments have a rather large
spatial extent, with a radius of approximately 1

3 of the height
of a person. Information from the configuration of the entire
body is being used in these descriptors.
For the exemplar-based torso detector, a leave-one-out

testing strategy was employed. For each test image, we
used the other 61 images as the exemplars for matching.
Results for this exemplar-based torso detector are shown on
Figure 8 (black line). It illustrates that with this set of exem-
plars we are unable to cope with the variation in appearance
among the different players.

5. Assembling Body Parts
Using the candidate limbs and torsos from the procedures
described above, we would like to generate a shortlist of

5

Figure 10. Taken out of context body parts can be very hard to
distinguish, even for people. This image was taken from [16]

part detection and inference mechanisms.
In contrast, the main challenge facing model-free hu-

man pose estimation techniques is in representing a large
portion of the allowable human pose space. While many
model-free techniques provide estimates in 3D, they often
limit the range of allowable input poses by either focusing
only on the upper body [1, 21] or limiting the poses to those
of frames of a motion sequence, such as walking, that ex-
hibits only a small amount of variation [2, 20]. One reason
for this limitation results from the global nature of the im-
age features used to learn the mapping. With a global rep-
resentation, independent motions of body parts lead to an
exponential blow-up in the number of examples needed for
adequate coverage of pose space.

A related challenge for model-free methods is in han-
dling multiple body types. The shape of the body can be
viewed as an additional parameter space affecting pose and
it is not handled by most techniques. Finally, with the ex-
ception of a recent work by Agarwal and Triggs [1], the
image features used are computed over contours, or images
without background clutter. In order to be applicable to gen-
eral scenarios this clean background assumption needs to be
relaxed.

One possible improvement that may address the limita-
tion on poses handled by model-free systems is to intro-
duce factored pose spaces as a processing step. This could

possibly be done in a number of ways. One way to factor
the pose space may be to use a body-localized decomposi-
tion of the features so that only features from the right arm
are used to learn the mapping to right arm parameters and
so forth. This bears some resemblance to the bottom-up
methodology found in the model-based community. It may
throw away information about dependencies found in mo-
tion sequences, but could potentially handle a much larger
pose-space than globally calculated features.

A second way to address this problem may be to partition
the training poses into similar clusters prior to the learning
phase. This approach has been explored to some degree
by, [20, 24], but there is room for improvement in terms
of automatically learning these clusters for a wide number
of poses and in efficiently choosing the appropriate cluster
for a novel test example. Finally, improvements in the ro-
bustness of image features with respect to texture variation
and background clutter may be gained by using new feature
types that account for these variations. The histogram of
gradients (HOG) features have proven useful for the human
detection task and there is limited evidence that they will be
useful for pose estimation in cluttered environments as well
[1].

While there is much room for improvement, current
model-free human pose estimation techniques seem to offer
more promise for a monocular pose estimation, especially
in reasonably restricted settings. This may come as a sur-
prise as the prevailing knowledge among many researchers
in this area has been that kinematic models are necessary for
human pose estimation. Improvements in machine learning
techniques for very high dimensional problems have had a
large impact on changing this view. Additionally, the in-
creasing storage and memory capacities of computers en-
able model-free approaches to handle large training sets. Fi-
nally, most model-free methods rely on labeled training data
from commercial MoCap systems, which is still sparse but
has become increasingly accessible over the past decade.
Nevertheless, model-based methods are certainly useful for
computer vision based motion capture in general. A unified
system that uses a model-free approach for (re)initialization
and a model-based approach for frame-to-frame tracking
may prove superior.
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