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ABSTRACT OF THE THESIS

Remeshing with Learned Image Boundaries

by

Iman Mostafavi

Master of Science in Computer Science

University of California, San Diego, 2008

Matthias Zwicker, Chair

Meshes generated from a typical manual segmentation process are often unsuit-

able for simulation purposes due to poor element quality and artifacts. In this thesis we

describe a remeshing approach for converting low quality triangular meshes into spa-

tially realistic, simulation quality meshes. We improve upon the Laplacian Mesh Op-

timization remeshing framework by incorporating topology modification, triangle area

equalization, and feature detection using computer vision techniques.

We train a supervised edge learning algorithm with human produced contours

and corresponding image data. The resulting classifier is used to generate a probabilistic

edge map for the entire image. Salient features in the mesh surface are detected as a

weighted combination of surface curvature and the learned image boundary probability.

We compare the remeshing performance of our algorithm with the original method on

real world data sets, showing that our approach can produce higher quality meshes from

extremely irregular input meshes while simultaneously enhancing spatial realism.

ix



Chapter 1.

Introduction

1.1 Motivation

Triangular meshes are important for many scientific applications, from visualiza-

tion to simulation. Popular simulation techniques utilizing triangular meshes in science

and engineering include finite element and Monte Carlo methods. One critical input re-

quirement for both simulation approaches is a mesh which is well behaved with respect

to the triangle quality. Elements of a finite element mesh should have neither overly

large nor overly small internal angles. Such elements can induce large solution errors

and cause slow convergence of the finite element solver [6]. Unfortunately, meshes

generated from real world data typically exhibit noisy surfaces and poorly conditioned

triangles.

In this work we focus on the case of meshes produced through the triangulation

of manually drawn 2D serial contours of 3D images. This is the predominant method of

segmentation in the biomedical imaging community. Meshes generated from these hand

segmentations often exhibit stair-step artifacts partly due to the deviations in the human

produced contours from one slice to the next. Since tracing is a slow and laborious

process, it is also common practice to expedite the segmentation process by tracing

only a fraction of the imaged slices. This amplifies the artifact problem as it reduces

1
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the number of the sample points from which the mesh is generated along the traced

dimension. Figure 1.1 shows an example of a typical mesh produced by this protocol.

Currently, considerable effort is required to create high quality meshes which can be

used for simulation. Our goal is to develop an approach to allow the conversion of the

low quality triangular meshes produced by the current surface reconstruction pipeline

into spatially realistic, simulation quality meshes.

1.2 Approach

A common solution to the removal of surface noise and artifacts is to smooth the

mesh surface. While smoothing may achieve this goal, it may also remove genuine sur-

face features. Our approach differs from most mesh smoothing and optimization meth-

ods by revisiting the volume image data in order to improve feature preservation, and

potentially enhance spatial realism by restoring surface features lost due to the coarse

sampling of the initial segmentation.

Our remeshing approach builds upon Laplacian Mesh Optimization [7], a simple

and efficient framework for triangle shape optimization and mesh smoothing. Unlike the

original method, we aim to utilize the volume image data from which the input mesh

was segmented to further enhance feature preservation. The real world data sets on

which we demonstrate our algorithm are acquired via electron tomography. However,

our approach is generally applicable to improving mesh quality in scenarios where a 3D

volume image is manually segmented to produce a triangular mesh.

A fundamental way in which our approach differs from the work of Nealen et

al. is that we replace the underlying assumption that the input mesh is the ground truth

surface with the assumption that the input mesh is only a close approximation of the un-

derlying surface geometry and must be further refined. We supplant their global vertex

constraint which penalizes vertices from moving far away from the original surface with

one that allows vertices to follow strong edge features detected in the volume image.

Our method takes slices of the volume image data and the corresponding 2D
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(a) Surface reconstruction

(b) Surface reconstruction with edges visible

(c) Mesh vertices

Figure 1.1: A typical mesh reconstructed from manual segmentation. Stair step artifacts

are shown in (a), while (b) emphasizes the poor mesh quality, and (c) illustrates the

uneven distribution of vertices.
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contours defined on them during a manual segmentation process, and trains a Boosted

Edge Learning classifier [3]. The classifier is tested using all of the slices of the original

volume in order to create a series of 2D edge maps, which are combined to form a 3D

volume edge map. The volume edge map is converted to a gradient vector flow field [17]

which is used to influence the global shape optimization and smoothing framework.

We integrate simplification and subdivision algorithms in order to optimize the

mesh connectivity and achieve the desired output mesh resolution. By default our al-

gorithm produces adaptively sampled meshes, placing more vertices at areas of high

curvature. However, we implement a triangle area equalization technique to optionally

create uniformly sampled meshes for applications which require this type of mesh.

1.3 Contribution

The main contributions of our work are summarized below:

• Powerful combination of remeshing approaches

We combine Laplacian Mesh Optimization [7], a global vertex relocation frame-

work which is effective at triangle shape optimization and feature preserving

smoothing, with simplification and subdivision algorithms. As a result we im-

prove the algorithm’s performance on highly topologically irregular meshes.

With this modification to the approach we can output simulation quality adap-

tive resolution meshes. We further extend the framework to optionally produce

uniformly sampled meshes by applying an iterative local area based remeshing

technique which attempts to equalize triangle areas.

• Learned edge based feature detection for remeshing

We introduce the use of a supervised edge learning approach in conjunction with

a remeshing algorithm to detect salient surface features and constrain vertex re-

location. We show that this constraint can potentially enhance the spatial realism

of the resulting mesh by enhancing feature preservation.
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1.4 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 will introduce

the related meshing, remeshing, computer vision, and learning algorithms. Chapter 3

covers the entire remeshing process, with specific details about our approach. Chapter 4

discusses implementation details. Chapter 5 presents our results and analysis. Chapter

6 outlines future avenues for improvement.



Chapter 2.

Background and Related Work

2.1 Triangle Quality Measurement

Pebay and Baker [8] demonstrated that there are five major classes of triangle

quality measures, all of them based on the dimensionless ratios of various geometric

parameters of a triangle. A property common to all triangle quality metrics is that they

return a value of approximately one when applied to an equilateral triangle (optimal

quality), and are far from one when applied to a “needle” or “sliver” triangle (poor

quality). In our work we evaluate the quality of triangles using the radius ratio defined

as

qi = 2
r

R
, (2.1)

where R and r are the radii of the circumscribed and inscribed circles for a triangle,

respectively. A value of qi near one indicates a well shaped triangle, while a value far

from one indicates a degenerate triangle. For our results in Chapter 5, we normalize

the triangle quality histograms to lie between zero and one, where zero represents a

degenerate triangle, and one an optimal triangle.

6
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Figure 2.1: Delaunay triangulation of a planar set of points.

2.2 Mesh Generation

Before we investigate remeshing, it is helpful to briefly discuss how meshes are

typically generated. Perhaps the most common class of mesh generation algorithms are

the ones which generate Delaunay triangulations. An interesting property of Delaunay

triangulations is that they maximize the minimum angles of all of the triangles in the

mesh, and therefore tend to avoid “sliver” triangles. Delaunay algorithms are an attrac-

tive choice for mesh generation due to the angle property, and the fact that efficient O(n

log n) implementations exist for generating triangulations.

In 2D, a Delaunay triangulation for a set of points P is a triangulation T (P ) such

that no point P is inside the circumcircle of any triangle in T (P ). This definition extends

to higher dimensions in the Euclidian space, in which a Delaunay triangulation is defined

as a triangulation T (P ) such that no point in P is inside the circum-hypersphere of any

simplex in T (P ).

The meshes used in our experiments were created using the software Nuage [2],

which uses an algorithm based on Delaunay triangulation for creating surfaces from a

series of 2D point contours.
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2.3 Remeshing

2.3.1 Vertex Relocation

The idea of repositioning vertices is a subproblem in the context of remeshing

[1]. Many algorithms circumvent the problem of relocating the original mesh vertices

by resampling the surface [16]. The majority of remeshing algorithms apply a reloca-

tion step one vertex at a time, until some criteria are reached. A more recent approach to

the vertex relocation problem is to compute a unique solution of a sparse linear system,

simultaneously solving for all updated vertex locations. Our vertex relocation frame-

work for both triangle shape optimization and smoothing is based on Laplacian Mesh

Optimization [7], one such method.

The Laplacian Mesh Optimization method relies on the least-squares meshes al-

gorithm [12] to perform inner (triangle shape) and/or outer (surface smoothness) fairing.

Soft positional constraints are applied to all mesh vertices, where the weights depend

on discrete curvature distribution, in order to preserve specific features. The notion

of prescribing positional constraints was used in Schneider and Kobbelt’s [9] work in

geometric fairing for freeform surface design.

2.3.2 Simplification and Subdivision

Simplification algorithms reduce the number of triangles in an input mesh by

a desired amount, while striving to remain a geometrically close approximation of the

higher resolution initial surface. Also known as decimation algorithms, they generally

proceed by classifying all vertices in a mesh and inserting them into a priority queue.

The priority is based on the error to delete a vertex and retriangulate the hole. Each

vertex in the priority queue is deleted, and the resulting hole triangulated using edge

collapse. This process continues until either the priority queue is empty or the desired

level of simplification is achieved. In our framework, we utilize the approach described

in [11].
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Subdivision algorithms refine an initial mesh by subdividing each triangle through

the creation new vertices and new faces. This process produces a mesh which is more

dense than the original one. The major subdivision schemes fall into two categories–

interpolating and approximating. Interpolating schemes are required to match the orig-

inal position of the vertices in the initial mesh, while approximating schemes are not.

We desire to preserve the features in the original mesh as much as possible, therefore

we choose to use an interpolating scheme known as Butterfly subdivision. The Butterfly

scheme was first proposed by Dyn, Gregory, and Levin in [4]. The 8-point Butterfly

scheme we use in our approach was described in [18], and improves on previous similar

methods due to special treatment of vertices with valence other than six.

2.3.3 Area-Based Remeshing

The concept of using triangle areas as one criteria for mesh optimization is not

new. However, using triangle areas alone cannot be used to obtain high quality meshes.

When only triangle areas are optimized, without taking into account the angles, the

resulting mesh can have many long and skinny triangles [14]. Surazhsky observed that

only when a mesh has almost regular connectivity may uniform triangle areas imply

well shaped triangles.

One important property of a mesh containing triangles with closely equal area

is that the spatial distribution of the vertices over the total mesh is uniform. This is a

desirable property for certain types of simulations, such as the Monte Carlo algorithms

used for simulating cellular physiological processes in MCell.

We address the needs of both applications where adaptive and uniform meshes

are required. Our general remeshing approach produces high quality adaptive resolu-

tion meshes, which can then be used as a preconditioned input to the area equalization

method in order to distribute vertices evenly while maintaining good triangle quality.
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2.4 Computer Vision and Learning

Our work draws upon two major techniques described in the computer vision lit-

erature. The learning component of our framework uses Boosted Edge Learning [3], an

algorithm designed for the supervised learning of edges and object boundaries. We train

this algorithm with the user produced traces from which the original mesh is generated,

and then test the algorithm on all slices in the original image volume. The algorithm out-

puts an edge map which becomes especially useful in providing boundary knowledge

for slices which were not traced in the original image data, but skipped over to expedite

the manual segmentation process.

We employ the Gradient Vector Flow technique [17] to produce a smooth vector

field from the gradient of the edge map produced by the BEL algorithm. By constraining

the input mesh vertex movement based on this vector field, among other smoothness and

triangle shape constraints in the Laplacian Mesh Optimization framework, we evolve the

mesh in a fashion which enhances spatial realism. Using the GVF as an external force in

the case of snakes and active contours has been shown to produce more desirable results

compared to simply using the gradient of an edge map. Since the GVF field is derived

from a diffusion operation, the vectors tend to be smoother and extend further away

from the object, effectively extending the “capture range” (edges that are further away

from its initialized position can have some effect). Our goal is to utilize this property to

allow the external gradient vector force to inform feature preservation.
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Figure 2.2: Example of a gradient vector flow field computed on the gradient of a U-

shaped curve [17].



Chapter 3.

System Overview

Our remeshing system takes as its input a manifold triangular mesh, along with

optionally, its corresponding 3D volume image, and the 2D serial contours traced by an

expert. As a preprocessing step, the 2D serial contours, along with the original input

3D volume image are used to train the Boosted Edge Learning classifier. The classifier

produces an edge map that is converted to a gradient vector flow volume and used by

the remeshing algorithm to guide the evolution of the mesh surface. The final output

of the algorithm is a new triangular mesh with the desired amount of feature preserving

smoothing, improved triangle shape quality, and enhanced spatial realism. Remeshing

with no image feature constraints is possible simply by not including the gradient vector

flow volume as an input to the remeshing algorithm. In this case we use tangent plane

constraints (described in section 3.3.3) for the smoothing and shape optimization.

3.1 Input Data

The pipeline for our remeshing process begins with the acquisition of some form

of volumetric imaging data. Common imaging modalities include Magnetic Resonance

Imaging (MRI), Positron Emission Tomography (PET), Computerized Axial Tomogra-

phy (CAT), and Electron Tomography (ET). In this work we demonstrate our algorithm

12
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Figure 3.1: System overview.
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on data sets acquired through the Electron Tomography technique, although our method

should be generally applicable to other imaging modalities as well. Electron Tomogra-

phy is a technique for obtaining detailed 3D images of objects in the nanometer scale. A

beam of electrons is passed through a sample at incremental degrees of rotation around

the center of the target sample. The collected information is then used to assemble a 3D

image of the target.

The data sets used in this study were provided by the National Center for Mi-

croscopy and Imaging Research. In particular we perform experiments with two data

sets–a Node of Ranvier, and a spiny dendrite. Nodes of Ranvier are known as the gaps

(about 1 micrometer in diameter) formed between myelin sheath cells along axons or

nerve fibers. Dendrites are the branched projections of a neuron that act to conduct the

electrical stimulation received from other neural cells to the cell body. A dendritic spine

is a small membranous protrusion from the central shaft of a dendrite that is typically

electrophysiologically active and synapses with a single axon. The study of these struc-

tures is an active area of research and critically important to the understanding of their

function in living organisms.

Within the Node of Ranvier data set, the region of interest which has been seg-

mented to create one of our input meshes is a section of an axon. We also evaluate our

remeshing algorithm on a portion of the shaft, and two different spines from the spiny

dendrite data set.

3.2 Preprocessing

The Boosted Edge Learning algorithm is a standalone Windows executable pro-

vided by Dollar et al., which requires a series of 2D images along with corresponding

binary labeled images as training input. Some processing is required to convert the con-

tour files generated by the tracing tool (Xvoxtrace in our case) into binary labeled edge

map images which the BEL algorithm can use.

Upon successful training of the BEL classifier on the traced slices of the original
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(a) Training image

(b) Human labeled contour

Figure 3.2: Example pair of training images for the BEL algorithm.

Figure 3.3: Example output of the BEL algorithm on a different test image.
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image data, the classifier is executed in test mode on all available image slices in the

original volume. The resulting output is a series of 2D edge probabilities, which are

then combined to form a 3D edge map.

Finally, we use the Image Processing Toolkit [5] to generate a gradient vector

flow volume from the edge map volume. This gradient vector flow volume is provided

as an optional additional input to the remeshing algorithm, where it can be utilized as a

constraint in the vertex relocation framework.

3.3 Remeshing Algorithm

The three primary goals of the remeshing algorithm are to improve the triangle

quality, remove noise and artifacts (but not features), and to enhance the spatial realism

of the mesh.

3.3.1 Notation

A mesh is represented as a graph G = (V,E), with vertices V and edges E.

V = [v1x, v1y, v1z, v2x, v2y, v2z, ..., vnx, vny, vnz]T , a vector of length 3n containing the

original geometry, and V ′ denotes the displaced geometry. The Laplacian, or in other

words the result of applying the discrete Laplace operator to an individual vertex vi =

[vix, viy, viz]T is:

δi =
∑
i,j∈E

wij(vj − vi), (3.1)

where the sum of the weights equals one and the choice of the weights

wij =
ωij∑

i,k∈E ωik

(3.2)

defines the nature of δi. Two popular choices for the weights are
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ωij = 1, (3.3)

ωij = cotα + cot β, (3.4)

where (3.3) are the uniform and (3.4) are the cotangent weights. We will refer to the

uniform and cotangent Laplacians as δu and δc respectively.

The Laplacians for an entire mesh can be computed using an n × n Laplacian

matrix L with elements

Lij =


−1 i = j

wij (i, j) ∈ E

0 otherwise

. (3.5)

We denoteLu andLc the Laplacian matrices with uniform and cotangent weights.

Vd = [v1d, v2d, ..., vnd]T where d ∈ x, y, z, is an n × 1 vector containing the x, y, or z

coordinates of the n vertices. The x, y, and z Laplacians ∆d = [δ1d, δ2d, ..., δnd]T where

d ∈ x, y, z are computed separately as

∆d = LVd. (3.6)

The uniform Laplacian of a vertex vi points to the centroid of its neighboring

vertices. The cotangent Laplacian is known to be a good approximation of the surface

normal. When scaled by the Voronoi region as described by Meyer et al., we obtain the

discrete mean curvature normal, which is the unit length surface normal ni scaled by the

discrete mean curvature κi.

κini =
1

4A(vi)

∑
i,j∈E

(cotα + cot β)(vj − vi). (3.7)
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Figure 3.4: Uniform (red) and cotangent (green) Laplacian vectors for a vertex vi and

its 1-ring neighborhood, as well as the angles used in Equation 3.4 for one vj .

3.3.2 Background

Sorkine and Cohen-Or demonstrate that solving the (n+m)×n overdetermined

linear system
Lu

Im×m|0
· V ′d =

0

V(1...m)d

(3.8)

in the least square sense using the method of normal equations V ′d = (ATA)−1AT b

can reconstruct a mesh from connectivity information alone using a small subset m

of geometrically constrained anchor vertices. The reconstructed shape is smooth, as the

minimization procedure moves each vertex to the centroid of its 1-ring since the uniform

Laplacian is used.

Nealen et al. then show how least squares optimization can improve triangle

quality in a small mesh region with negligible vertex drift. They modify the linear

constraints in (3.8) by
Lu

Im×m|0
· V ′d =

∆d,c

V(1...m)d

, (3.9)

asking the uniform Laplacian of each deformed vertex position to resemble its unde-

formed cotangent Laplacian as closely as possible. Since the uniform Laplacian has a
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tangential component and the cotangent Laplacian does not, the optimization attempts

to remove the tangential components while preserving the surface details in the normal

direction.

Nealen et al. generalize Equation 3.8 and 3.9 in their Laplacian Mesh Optimiza-

tion approach, where they solve the 2n× n system

WLL

Wp

· V ′d =
WLf

WpVd

. (3.10)

The main modification is that instead of having a subset of vertices as positional

constraints, all vertices appear both as Laplacian and positional constraints. By intro-

ducing the diagonal positional constraint weight matrix Wp and weighting the Lapla-

cian matrix L and right hand side with the diagonal matrix WL, precise control can be

achieved regarding the enforcement of regular triangle shapes and/or surface smooth-

ness on a per vertex level. In general larger weights in Wp enforce positional constraints

which preserve the original geometry, ideal for high curvature regions and sharp fea-

tures. Larger WL weights enforce regular triangle shapes and/or surface smoothness.

Setting f = ∆d,c maximizes detail preserving triangle shape optimization, whereas set-

ting f = 0 performs mesh smoothing.

The choice of weight assignment is critical to the behavior of the mesh optimiza-

tion algorithm. Nealen et al. demonstrated good feature preservation in general when

using the cumulative density function (cdf) of the mean curvature κ of the mesh vertices

to map from κi to wi ∈ [0, s], resulting in Wp = Wcdf . The logic behind using the cdf

based positional weights is that if a mesh with a large amount of low curvature vertices

is input to the algorithm, those vertices should be assigned a larger weight than if a sim-

ple linear ramp is used for weight assignment (which does not take relative frequency of

mean curvature into account). The linear weighting scheme would in this case allow too

much freedom for the low curvature vertices and may result in excessive loss of detail.

An additional trick Nealen et al. employ aims to improve the quality of the worst

triangle in the mesh, which is an important criterion for a simulation quality mesh. To

(heuristically) maximize the quality of the worst triangles, the positional weights Wp
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are modulated by another diagonal matrix Wt where the entry for wt,i for vertex vi is

set to the minimal triangle quality t of its adjacent triangles. In essence this allows a

vertex attached to triangles with a small t (poor quality) to have more freedom than

without the modulation. The intuition for this modification is that such a vertex may

more easily be relocated to a position which results in overall improved triangle quality

for its neighborhood.

3.3.3 Additional Constraints

Nealen et al. use the notion of adding additional constraints to the system in

order to reduce the geometric error caused by vertex displacement during remeshing.

They couple the additional n constraints (one for each vertex) of the form

ni · v′i = ni · vi, (3.11)

resulting in a 7n × 3n system. The constraints penalize displacement perpendicular to

the tangent plane defined by the original vertex position vi and the local surface normal

ni, assuming a first order approximation of the surface around vi. Although adding the

constraints involves significant extra computational overhead, it was shown to reduce

geometric error as they defined it (excessive displacement of vertex positions in the final

mesh).

In our work we replace the tangent plane constraint with the constraint in Equa-

tion 3.12 when a gradient vector flow volume is available. By using the gradient flow

vector gi at each vertex vi instead of the normal, we constrain the vertices to move per-

pendicular to the direction from the vertex to the closest edge feature in the mesh. In the

case that the edges detected by the boundary learning algorithm are completely in agree-

ment with the initial input mesh, this constraint becomes equivalent to Equation 3.11.

However, in the cases where the detected image feature edges are not in agreement with

the initial segmentation, the deformed vertex normals will be optimized to match the

image gradient. This should produce a surface with normals which are in agreement

with the image where reliable features are detected.
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gi · v′i = gi · vi (3.12)

3.3.4 Feature Based Positional Weight

We introduce an additional per vertex weight matrix Wg which scales the overall

positional constraint weights. We assign a per vertex weight value based on the magni-

tude of the gradient flow vector. A greater magnitude implies a strong edge is already

very close to the vertex, so its positional weight is adjusted accordingly to prevent it

from moving too much. A small gradient magnitude at a vertex means that no strong

feature edges have been detected in the vicinity of the vertex and it is permitted to move

more freely for the benefit of the smoothing and shape optimization. This image feature

based constraint is included to enhance the feature preserving smoothing capabilities of

the remeshing algorithm.

3.3.5 Triangle Area Equalization

One of the goals of our remeshing framework is being able to produce meshes

with uniform sampling. Equivalently, we can solve an optimization where we attempt

to equalize the areas of the triangles in the mesh. Our approach is based on a local

technique applied for 2D triangle area equalization on parameterized mesh patches [14].

Surazhsky et al. use an iterative method where each vertex’s one ring neighborhood is

analyzed, and a new vertex position p = (x, y) is found which equalizes the areas of the

triangles in the one ring as much as possible. Denote the area of triangle p, pi, pi+1:

Ai(x, y) =
1

2

∣∣∣∣∣∣ xi yi 1

xi+1 yi+1 1

∣∣∣∣∣∣ (3.13)

It then follows that:

(x, y) = argmin
x,y

k∑
1

(
Ai(x, y)− A

k

)2

(3.14)
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where A is the total area of the one ring neighborhood around the vertex. We extend

this formulation to 3D and apply it directly to the mesh vertices, rather than to a 2D

parameterization of the mesh.

3.3.6 Algorithm Overview
Input: original mesh, (optional) gradient vector flow volume

Output: new mesh

for n = 1, 2, ...simplify − smooth− optimize− iterations do
simplify

compute Laplacian matrices Lu and Lc

compute mean curvature normals

generate cdf and apply mapping of curvature to weights

compute and apply triangle modulation weights

if GVF file provided then
apply GVF based weights

set GVF constraints
else

use tangent plane constraints

end

setup and solve for final vertex positions

end

//Optional subdivision to increase mesh resolution if desired

for s = 1, 2, ...subdivision− iterations do
subdivide

end

//Optional triangle area equalization to produce uniform sampling

for s = 1, 2, ...area− equalize− iterations do
area-equalize

end



Chapter 4.

System Implementation

Our algorithm has been implemented in a prototype tool as a class which extends

the functionality of the Visualization ToolKit (VTK) [10]. Helper scripts for contour and

image data file conversion to the format usable by the Boosted Edge Learning classifier

are written in MATLAB, and the utility we implement to generate a gradient vector flow

volume from the BEL classifier’s output is based primarily on the functionality in the

Insight Segmentation and Registration ToolKit (ITK) [5].

4.1 Boosted Edge Learning

The Boosted Edge Learning classifier is provided as an executable for Windows

by Dollar et al. Initially demonstrated in the context of natural images, we apply this

algorithm to the Electron Microscopy data because it performs significantly better than

any alternative edge detection methods, such as the classic Canny edge detector, or

simple gradient magnitude thresholding of our images. The BEL executable takes as its

input n pairs of uncompressed .TIF files, where each pair is an input image (grayscale

or color), and a companion binary image in which the pixels are labeled positive or

negative examples by their pixel intensities. Values greater than one represent positive

examples, and zero values represent non-boundary pixels.

23
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Our contour data comes from the NCMIR tool Xvoxtrace and exists as propri-

etary format .trace files. Within the trace files, the closed contours are represented as

a varying number of equally spaced points in the shape of the object’s cross section.

A MATLAB script was developed to parse the .trace files and output an uncompressed

.TIF binary image for each contour slice such that a smooth curve passes through the

points.

Training is performed on all of the slices for which human produced contours are

available. After training, the entire data set is provided as input to the classifier in test

mode, producing a series of 2D edge map images where probable edges are represented

as pixel values greater than one. The stack of edge map images are combined using the

tool MRIcro to produce a 3D Analyze formatted volume.

4.2 VTK

The Visualization ToolKit is an open source software system for 3D computer

graphics, image processing, and visualization. It consists of a C++ class library which

supports a wide variety of visualization algorithms and modeling techniques. VTK con-

tains file loaders for a variety of file formats, and its own OpenGL based viewer which

makes rapidly prototyping an interactive application fairly easy and efficient. The object

oriented, pipelined architecture makes it straightforward to perform a series of complex

operations on data with any of the built in classes. Developing a new class, which is

what we have done in order to create our remeshing algorithm, is the primary way to

expand or customize the library’s functionality.

In our case, we derive a new class from the vtkPolyDataAlgorithm class, and im-

plement our algorithm inside it according to VTK specifications. In VTK, a vtkPolyData

object is a concrete implementation of vtkDataSet, and represents a geometric structure

consisting of vertices, lines, polygons, and/or triangle strips. VTK provides convenient

and efficient methods for traversal and manipulation of geometric data such as triangu-

lar meshes, which is why we choose to implement our algorithm within its framework.



25

Most operations in VTK are performed by instantiating a “filter” class and connecting

the appropriate input(s) and output(s) to the filter. Most filters have one input and one

output, as is true in our remeshing filter implementation.

4.3 Core Application Pipeline

The core application pipeline consists of several interconnected filters. The first

stage includes the vtkVRMLImporter filter, which loads our VRML formatted input

mesh from disk. The output of the file loader filter is connected to a vtkGeometryFilter

in order to ensure that our input mesh contains only triangles. The GeometryFilter’s

output is then connected directly to our remeshing class, vtkLaplacianMeshOptimize.

Optionally, the output of our smoothing and shape optimization filter is passed as in-

put to one ore more of the following filters: the vtkAreaEqualize filter, which performs

triangle area equalization, vtkDecimatePro for simplification, or vtkButterflySubdivi-

sionFilter for subdivision. The output of the last filter in this chain is connected to the

vtkMeshQuality filter, which performs several triangle quality measures and prints the

results. The output of our filters can also be mapped to a vtkActor, which represents

an object (geometry and properties) in a rendered scene. If this option is selected the

output mesh is visualized using a simple graphical user interface. We export the mesh

to a VRML or PLY formatted file by passing the PolyData object which represents the

mesh to the relevant file exporter filter.

4.4 Gradient Vector Flow

We call upon the itkImageFileReader filter to load our gradient vector flow vol-

ume, which is the second optional input to the algorithm besides the initial input triangu-

lar mesh. The gradient vector flow image is a volume image with the same dimensions

as the initial scalar volume, however at each voxel coordinate there exists a 3D vector

instead of a scalar value.
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The generation of the GVF volume consists of several steps. First, an itk image

filter which reads normal grayscale Analyze formatted volume images is used to load

the 3D edge map produced as the output of the BEL algorithm. The output of the Ana-

lyze volume loader is attached to the itkGradientRecursiveGaussianImageFilter, which

computes the gradient of the edge map using a simple finite difference method. The

output of this filter is a 3D vector field, which is then connected as input to the itkGradi-

entVectorFlowImageFilter. This filter generates the resulting desired smooth flow field

by applying generalized diffusion equations to the gradient of the edge map.

4.5 vtkLaplacianMeshOptimize

This class encapsulates the smoothing and shape optimization portion of our

remeshing algorithm. The workhorse of the smoothing and triangle shape optimization

functionality is the TAUCS [15] library for solving sparse linear systems of equations.

TAUCS allows us to store and carry out the matrix operations in a compressed format,

minimizing compute time and system memory requirements. By setting up the appro-

priate matrices as described in Chapter 3, we can solve for the new vertex positions in

this filter.

4.6 vtkDecimatePro

Decimation occurs through a series of edge collapse operations such that the

edges which minimally increase the geometric distance of the simplified mesh to the

input mesh are removed first. The decimation criterion is based on the vertex distance

to plane for simple vertices inside the mesh, or distance to edge for boundary vertices.

In the simple vertex case, if the vertex is within the specified distance to the average

plane it may be deleted, otherwise it is retained. In the boundary case, the algorithm

determines the distance to the line defined by the two vertices creating the boundary

edge. If the distance to the line is less than a specified amount, the vertex can be deleted.
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4.7 vtkButterflySubdivisionFilter

This filter implements the 8-point butterfly subdivision scheme described in [18].

Each input triangle is divided into four triangles. Determining where and how to split

the triangles depends on the local topology.

4.8 vtkAreaEqualize

This class implements Equation 3.14 and iteratively performs the area equaliza-

tion on each vertex of the input mesh.



Chapter 5.

Results and Discussion

We evaluate our remeshing algorithm on several real world data sets–the axon

from the Node of Ranvier, as well as the shaft and two different spines from a spiny

dendrite. Our experiments are designed to explore the parameter space of our remeshing

algorithm and to discover the values which yield the best results. We remesh the input

meshes with varying degrees of smoothing, gradient weights, and blur kernel sizes for

the gradient vector flow volume. We choose a metric for determining the correlation

of a mesh with the edge map produced by the BEL algorithm. The purpose of this

metric is to verify that our learned image boundaries constraint increases the remeshed

result’s correlation with the learned edges in the volume data as compared to traditional

Laplacian Mesh Optimization, our control method. We also analyze triangle quality

statistics for selected meshes to quantitatively measure mesh improvement.

A higher correlation with the edge map implies that the remeshed result is being

faithful to the salient edge features learned from the training data. We compute this cor-

relation energy by simply taking 2D cross sections of the remeshed results, convolving

them with a small Gaussian kernel, and taking the product of the blurred mesh cross

section with the corresponding slice of the learned edge map. The sum over the entire

product image is a single number which reveals the correlation between a cross sec-

tion of the mesh and the edge map. We calculate this measure over all slices for all of

28
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the experimental meshes, and compare the mean correlation energy over the mesh for

different remeshing parameters.

Table 5.1: Parameters varied during remeshing experiments.

Smoothing Topology Optimize Image Boundaries Gradient Weights
Low Off None N/A
Low On None N/A
Medium On None N/A
High On None N/A
Low On Small Kernel Smoothed Low
Low On Small Kernel Smoothed Medium
Low On Small Kernel Smoothed High
Medium On Small Kernel Smoothed Low
Medium On Small Kernel Smoothed Medium
Medium On Small Kernel Smoothed High
High On Small Kernel Smoothed Low
High On Small Kernel Smoothed Medium
High On Small Kernel Smoothed High
Low On Large Kernel Smoothed Low
Low On Large Kernel Smoothed Medium
Low On Large Kernel Smoothed High
Medium On Large Kernel Smoothed Low
Medium On Large Kernel Smoothed Medium
Medium On Large Kernel Smoothed High
High On Large Kernel Smoothed Low
High On Large Kernel Smoothed Medium
High On Large Kernel Smoothed High

Our tests show that using high smoothing and gradient weights, while minimally

blurring the learned edge map, emphasize the benefits of remeshing with learned image

boundaries. As a result, our axon and dendritic shaft results shown here are remeshed

with high weights on the gradient vector flow field, and high smoothing. This behavior

can be described by the notion that the greater the amount of smoothing, the more the

mesh will diverge from the edge map as small features are removed. Therefore, by in-

creasing the weight of the gradient vector flow field, the detected features in the edge

map will be more strongly preserved. Increasing the smoothing weights while enabling
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large gradient weights further magnifies the beneficial effect of the learning based fea-

ture preservation.

The original axon mesh is shown in Figure 5.1 for comparison to the remeshed

results. Our reference remeshing result for the axon is shown in Figure 5.2. This mesh

represents the output of our implementation of Laplacian Mesh Optimization, upon

which we add topology optimization, the learned image boundary constraints, and area

based remeshing. We discover that even with high levels of smoothing, ultimately the

poor topology of the input mesh does not permit the traditional LMO algorithm to pro-

duce good results.
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Figure 5.1: Original axon mesh.

Figure 5.3 illustrates the significantly improved remeshing performance we achieve

when combining LMO with topology optimization. The histogram of triangle qualities

reveals that most of the triangles in the mesh are now nearly equilateral, and the worst

triangle in the mesh (often the bottleneck for finite element simulations) is significantly

closer to optimal shape compared to the result achieved by the previous method.

Figure 5.4 introduces the results of using learned image boundaries as an ad-
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Figure 5.2: Smoothed axon mesh.
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Figure 5.3: Smoothed axon with topology optimization.
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ditional constraint on the remeshing process. Overall mesh quality is slightly reduced

due to the extra constraints placed on the optimization. However, we observe increased

surface feature details. We highlight one particular visible feature in Figure 5.5, a size-

able bump visible on the remeshed surface only when using the learned image boundary

constraints. We investigate the this feature on a 2D slice in Figure 5.6 and verify that it

is indeed a desired feature and not noise introduced by our algorithm.
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Figure 5.4: Smoothed axon with topology optimization and learned image boundaries.

The learned image boundaries constraint reduces overall mesh triangle quality slightly

in order to enforce increased feature preservation.

We perform a slice by slice comparison of our correlation metric between the

original axon mesh, the remeshed axon using Laplacian Mesh Optimization with only

topology optimization, and the remeshed axon using LMO with topology optimization

and our learned image boundaries constraint. Figure 5.7 shows that the remeshed axon

using learned image boundaries has higher overall correlation to the edge features than

without. While the original mesh has the highest correlation with edge features, it

achieves this by having a greater surface area which is largely noisy. We show that
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(a) Remeshed without learned image boundaries

(b) Remeshed with learned image boundaries

Figure 5.5: Remeshed axon showing increased surface detail preservation when using

learned image boundaries. Highlighted feature shown in Figure 5.6.
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(a) Original image (b) Learned image boundaries

(c) Remeshed without LIB (d) Remeshed with LIB

Figure 5.6: The highlighted feature preserved by our remeshing method is verified to be

a genuine feature by inspecting the original volume at slice 105.
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we can reduce the noise and artifacts, improve the triangle quality, as well as preserve

the most salient features better than the control method. Note that our Node of Ranvier

image was acquired by imaging one half of the entire structure, then mirroring the vol-

ume to complete an entire image. As a result, the increased noise and distortion along

the central slices in the volume (slices 110-130) produce an interesting effect in our plot.

Even along the central slice areas, however, we see some benefit to using our method.
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Figure 5.7: Correlation of axon meshes with learned image boundaries across all 2D

slices. Note that slices 110-130 in the image volume are more blurry and distorted than

other slices due to the imaging of this specific sample.

Figure 5.8 is our reference simulation quality mesh, a uniformly sampled remeshed

version of the axon created by Sosinsky et al. for their studies of the Node of Ranvier

in 2005 [13]. Using approximately the same number of vertices (22,120), we apply our

area based remeshing algorithm to produce a comparable mesh, Figure 5.9. From a

mesh quality standpoint, our result has removed the stair stepping artifacts, and exhibits

preferable triangle quality according to the radius ratio metric. Note that the reference

mesh is clipped at the left and right ends (not visible), while our result is a completely
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closed surface. Figure 5.8 therefore appears more densely sampled than our remeshed

result due to the fact that the same number of vertices are distributed over a smaller

surface area.
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Figure 5.8: Reference axon simulation quality mesh [13].

Our triangle area equalization result in Figure 5.9 is shown here after only two

iterations. Continued application of the equalization algorithm would increase the level

of triangle area uniformity until the desired results are achieved.

Figures 5.10, 5.11, and 5.12 show the replication of our learned image boundary

comparison results on a shaft from the spiny dendrite data set. Figures 5.13 and 5.14

visually demonstrate our remeshing results on two spines from the spiny dendrite data

set.

5.1 Computational Cost

The sparse matrix routines used for the mesh smoothing and triangle shape op-

timization make up the majority of the remeshing algorithm’s run time. On our P4
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Mean Triangle Quality = 0.9755
Standard Deviation = 0.0345

Worst Triangle = 0.2476
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Figure 5.9: Area equalized remeshed axon.

3.4GHz test machine we can factorize the system matrix in approximately 20 seconds

for a mesh with approximately 50,000 triangles.

The batch offline edge learning algorithm used for generation of the probabilistic

edge map takes several hours to train on one data set, and several minutes to convert

into a gradient vector flow volume. This entire process however, can be completely

automated.
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(a) Original mesh

(b) Remeshed without learned image boundaries

(c) Remeshed with learned image boundaries

Figure 5.10: Remeshed dendritic shaft showing increased surface detail preservation

when using learned image boundaries.
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(a) Original image (b) Learned image boundaries

(c) Remeshed without LIB (d) Remeshed with LIB

Figure 5.11: Comparison of dendritic shaft mesh cross sections (c) and (d) with image

data (a) and learned edge map (b) on slice 109 of the spiny dendrite data set.
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Figure 5.12: Correlation of dendritic spine meshes with learned image boundaries across

all 2D slices. The correlation of the remeshed dendritic shaft mesh with the learned

image boundaries (red) is shown to be equal to or higher than without learned image

boundaries (blue) across most slices.
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Figure 5.13: Set one of original (top) and remeshed dendritic spine meshes (bottom).
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Figure 5.14: Set two of original (top) and remeshed dendritic spine meshes (bottom).



Chapter 6.

Conclusion and Future Work

We have demonstrated a flexible remeshing algorithm which combines global

vertex relocation with local topology optimization and area based remeshing to produce

either adaptive or uniformly sampled simulation quality meshes from highly irregular

input. In addition, we integrated an edge learning framework to perform feature detec-

tion and enhance the feature preservation capability of the remeshing algorithm. We

conclude that remeshing with learned image boundaries becomes increasingly useful

when high amounts of smoothing must be performed on a mesh, assuming that the edge

detection algorithm can learn some salient edge features from the training data.

Improving feature detection remains an open avenue for future work. Good

feature detection allows for the smoothing of noise without removal of desired image

features. As the state of the art in learning based feature detection improves, better

algorithms can be substituted into our remeshing approach to increase the quality of our

results. While in our approach we use an offline batch learning process, we foresee a

movement towards online learning approaches which can train on-the-fly, learning the

salient image features at the time of manual segmentation.
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Appendix A

LIBRemesh Manual Page

A1 NAME

LIBRemesh - Learned Image Boundaries Remeshing tool

A2 SYNOPSIS

LIBRemesh [ option | filename ]...

A3 DESCRIPTION

Optimizes the triangle quality of an input mesh by

performing smoothing, triangle shape optimization,

area equalization, and/or topology optimization.

Optionally constrains the remeshing procedure using

a gradient vector flow field derived from a 3D

probabilistic edge map. Performs mesh visualization

and mesh statistics reporting.
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A4 OPTIONS

-a Area equalization enabled

-b Disable curvature based weighting

-d [0.0-1.0] Simplify mesh by percentage (default: 0.0)

-g [filename] Specify gradient vector flow volume

-m [filename] Specify input mesh

-n Disable smoothing and triangle shape optimization

-p Print triangle areas

-q Print triangle qualities using radius ratio metric

-s [1.0-10.0] Smoothing weight (default: 2.0)

-t [1.0-10.0] Triangle modulation weight (default: 1.0)

-v Visualize output mesh

-w [0.0-10.0] Gradient vector flow weight (default: 1.0)

-x Subdivide mesh

A5 EXAMPLES

A5.1 One iteration of smoothing and shape optimization using de-

fault parameters

LIBRemesh -m mesh.wrl

A5.2 One iteration of smoothing and shape optimization using de-

fault parameters and using learned image boundaries

LIBRemesh -m mesh.wrl -g gvf.img
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A5.3 One iteration of smoothing and shape optimization with 20

percent decimation, using learned image boundaries, moder-

ate smoothing and increased weight for gradient vector flow

LIBRemesh -m mesh.wrl -d 0.2 -g gvf.img -s 4.0 -w 1.25

A5.4 One iteration of smoothing and shape optimization with 20

percent decimation, followed by area equalization, a second

iteration of smoothing (with reduced weight), and a second

iteration of area equalization

LIBRemesh -m mesh.wrl -d 0.2 -s 2.0

LIBRemesh -a -m output.wrl

LIBRemesh -m output.wrl -s 1.0

LIBRemesh -a -m output.wrl



References

[1] Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. Recent advances

in remeshing of surfaces. Research report, AIM@SHAPE Network of Excellence,

2005.

[2] Jean-Daniel Boissonnat and Bernhard Geiger. Three-dimensional reconstruction

of complex shapes based on the delaunay triangulation, 1992.

[3] Piotr Dollar, Zhuowen Tu, and Serge Belongie. Supervised learning of edges and

object boundaries. In CVPR ’06: Proceedings of the 2006 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition, pages 1964–1971,

Washington, DC, USA, 2006. IEEE Computer Society.

[4] Nira Dyn, David Levine, and John A. Gregory. A butterfly subdivision scheme

for surface interpolation with tension control. ACM Trans. Graph., 9(2):160–169,

1990.

[5] Luis Ibanez, Will Schroeder, Lydia Ng, and Josh Cates. The ITK Software Guide.

Kitware, Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, sec-

ond edition, 2005.

[6] Ashraf Mohamed and Christos Davatzikos. Finite element mesh generation and

remeshing from segmented medical images. Biomedical Imaging: Nano to Macro,

2004. IEEE International Symposium on, pages 420–423 Vol. 1, 15-18 April 2004.

[7] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh

47



48

optimization. In GRAPHITE ’06: Proceedings of the 4th international conference

on Computer graphics and interactive techniques in Australasia and Southeast

Asia, pages 381–389, New York, NY, USA, 2006. ACM.
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