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Abstract

We describe a novel and robust minimal solver for per-
forming online visual odometry with a stereo rig. The pro-
posed method can compute the underlying camera motion
given any arbitrary, mixed combination of point and line
correspondences across two stereo views. This facilitates a
hybrid visual odometry pipeline that is enhanced by well-
localized and reliably-tracked line features while retaining
the well-known advantages of point features. Utilizing trifo-
cal tensor geometry and quaternion representation of rota-
tion matrices, we develop a polynomial system from which
camera motion parameters can be robustly extracted in the
presence of noise. We show how the more popular approach
of using direct linear/subspace techniques fail in this regard
and demonstrate improved performance using our formu-
lation with extensive experiments and comparisons against
the 3-point and line-sfm algorithms.

1. Introduction

Real-time estimation of camera motion using only sparse
sets of features from visual input is an active research topic
in the computer vision and robotics communities. The num-
ber of features observed, noise-level (in feature localization
as well as tracking) and their distribution, all have a major
impact on the final motion estimate. Due to their abundance
in natural scenes, salient corners in image data have been
primarily used as interest points in most visual odometry
systems. The development of novel techniques for extract-
ing and matching these features (such as SIFT [18]) and
breakthrough minimal solvers for point correspondences
have led to robust and efficient visual odometry systems
[21, 23]. In practical settings, however, it has been emipiri-
cally observed [5] that leveraging image lines (which might
be obtained, say, from edge detection) instead of points can
lead to improved performance in detection/matching (due
to multipixel support), occlusion handling and dealing with
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Figure 1. (Top) Lines and points tracked in our system. (Below)
Estimated visual odometry superimposed on the floor-plan of an
indoor office environment (Red: 3-point algorithm, green: pro-
posed algorithm using assorted combinations of point and line fea-
tures). The 3-point algorithm estimates a path that goes ‘through
the wall’ towards the end and incorrectly estimates the camera po-
sition beyond the bounds of the room. For details, please refer to
the rest of the paper and accompanying video.

T-junctions. Furthermore, the abundance of edge features in
man-made environments (cityscapes and indoor structures)
can be exploited to reduce tracking failures significantly,
thereby minimizing situations where odometry systems can
get ‘lost’ and also help to reconstruct high-level scene in-
formation. On the other hand, it is also well-known that
the constraints imposed by line correspondences on cam-
era pose are much weaker than those provided by points
[10] and there is considerable ambiguity when dealing with



curved surfaces like cylindrical columns. In [24], an inter-
esting exposition of the complementary noise statistics and
failure modes of line-based and point-based feature track-
ers is provided and a robust tracker is built by fusing both
systems.

Given these conditions, it might be desirable to have a
visual odometry algorithm that can incorporate any combi-
nation of point and line features as available in the image
data and yield a camera motion estimate using the com-
bination set that generates the most accurate solution (see
figure 1). For a real-time and robust implementation, it is
preferable to have a unified framework that, independent of
feature type, computes the 6dof motion from minimal sets
over the available data. This paper presents a novel minimal
solver that accomplishes this and so is ideal for use in such
a hypothesize-and-test setting [8].

Since this work is motivated by an application for au-
tonomous navigation, the visual input and underlying ge-
ometry of our algorithm stem from a calibrated stereo pair.
This simplifies the task of motion recovery and facilitates
scale observability. Given any set of matches containing at
least three points or two lines or two points and one line
across two stereo views, our algorithm can compute the un-
derlying camera motion using the same solver. This ap-
proach is much more elegant than simply integrating the
state-of-art line-based and point-based systems and enables
the evaluation of associated costs in a unified RANSAC set-
ting. Using a pair of calibrated trifocal tensors, we form a
low-degree polynomial system of equations that enforces
the orthonormality constraint by representing rotations by
unit quaternions. This is a different algebraic approach from
point-based minimal solvers of [20], where the orthonor-
mality constraints are explictly enforced. The quaternion
representation has a significant impact on the noise perfor-
mace of our algorithm and is an interesting result when tak-
ing into account the well-documented problem of recover-
ing consistent camera motion from noisy trifocal tensors.
The key contributions of this paper are:

e A novel quaternion-based geometrical formulation and
polynomial solver for any combination of point or line
feature correspondences over two stereo views for ro-
bustly computing camera motion.

e Extensive experiments using synthetic and real data
demonstrating the usefulness of using both point and
line features in visual odometry as opposed to a single
feature type.

2. Related Work

The three-point method [9, 21] is currently the most pop-
ular algorithm for performing visual odometry (from fea-
ture points) with stereo cameras. Since the polynomial con-
straint for deriving the motion parameters is set up using

the triangle law of cosines, this approach works only for
a configuration of three points in general position and is
therefore used in a RANSAC [8] framework for establishing
support. Other methods, which address monocular schemes
too, solve polynomial equation systems that are established
from geometrical constraints robustified by enforcing alge-
braic conditions (like rotation matrix orthonormality). Sev-
eral flavors of such algorithms [3, 20, 29] exist and these
vary in mathematical structure, assumptions on available
camera calibration and even in the minimal number of cor-
respondences required for a feasible solution. Research in
this area has also resulted in the development of numerically
efficient and stable methods for solving the corresponding
polynomial systems and popular techniques include Groeb-
ner basis [27], polynomial eigen-value problem (PEP) [15]
and the hidden-variable [16]. While all this points to sig-
nificant research effort in the direction of developing mini-
mal solver based systems for point feature based odometry,
not much has been done in developing robust, real-time for-
mulations for lines and even less has been done for hybrid
systems.

Traditionally, line features have been employed in struc-
ture from motion algorithms using the multifocal tensor
framework [2, 17]. The trifocal tensor is a 3x3x3 cube op-
erator that expresses the (projective) geometric constraints
between three views independent of scene structure. How-
ever, it can be computed given at least 13 line or 7 point cor-
respondences. In general, the trifocal tensor has 27 parame-
ters (26 upto a scale), but only 18 degrees of freedom (upto
projective ambiguity). The remaining 9 constraints must be
enforced to obtain a consistent solution. [28] introduces a
cubic polynomial system for extracting the tensor from 6
points only and a method to uncover the underlying camera
matrices is presented in [10]. The latter also introduces, for
the first time, a closed-form linear solution from a combina-
tion of point or line features. For a calibrated setting, these
matrices can be decomposed to obtain the camera orienta-
tion and perform visual odometry. The four-view extension
of this concept, called the quadrifocal tensor, was investi-
gated in [26]. From a purely geometrical standpoint, the
work described in [6] is the most similar to our approach (al-
beit it does not address the problem of a minimal solver for
mixed combinations of features), as it exploits the known
orientation between the stereo pair in the quadrifocal tensor
to enforce constraints between image intensities of adjacent
stereo pairs. It is evident from all these works, however, that
enforcing non-linear dependencies within the tensor indices
requires substantial book-keeping [11, 13] and is ultimately
too cumbersome for estimating a 6-dof motion. Another
approach, which is algebraically similar in methodology to
our work and that of [20] for point-feature based odome-
try is described in [4], which constructs a small low-degree
polynomial system and explicitly enforces orthonormality



constraints.

A unified representation for points, lines and planes by
repesenting linear features as Gaussian density functions
was presented in [25]. However, as mentioned by the au-
thors themselves, this representation falls short of being di-
rectly applicable for a motion-and-structure recovery frame-
work due to unresolved issues in defining join operations
and performing inverse projections. Some attempt has been
made towards integrating point and line features for the per-
spective pose estimation problem [1, 7]. A factorization
based multi-frame SfM algorithm also utilizing point and
line features is presented in [22]. The proposed method,
however, is restricted to cases where translation is very
small and involves iterative recomputations of rotation and
translation parameters. To the best of our knowledge, there-
fore, no unified, closed-form formulation for dealing with
point and line features exists and for multifocal approaches,
there is room for improvement in terms of noise perfor-
mance.

3. Using Assorted Features

Notation. Unless otherwise stated, a 3D point
in space is represented by a homogeneous 4-vector
X =[X; X3 X3 X4]T € R* and its projection on the
image plane of camera ¢ by a homogeneous 3-vector
x! = [z} 2} xé]T € R3. Similarly, any line and its pro-
jection on the image plane are denoted by the parameters
L=[L;LyLgLy]" and 1i = [1i 1 3] "respectively. A
projective camera is given by a 3x4 matrix K [R  t], with
K being the 3 x 3 internal calibration matrix and the 3x3 ro-
tation R and 3x 1 translation vector t representing the ex-
terior camera orientation. In the remainder of this paper,
without loss of generality, we assume normalized camera
coordinates and therefore, K is set to be the identity matrix
I. The trifocal tensor 7= {T;};_, , 3, with each 3x3 sub-
matrix denoted by T} is the geometric object of interest in
this work. The [...], notation denotes the skew-symmetric
matrix for forming a vector cross-product and the colon op-
erator “:’ is used to reference rows or columns of matrices
(for instance, A(:, 1) is the 3" column, A(:,[i : j, k]) ref-
erences columns 4 to j and column k) .

3.1. Review of the trifocal relations

Consider a canonical three camera configuration given
byP; =[I 0],P>=[A aJand P35 = [B b]. As
described in [12], the trifocal tensor for these three views,
T={T,} is given by

T; = A'b"—aBi’" (1)

Al = A(;,i),Bi = B(;, ). Let us assume that we have
determined a line correspondence 11 < 12 < 13 and a point
correspondence x! < x2 < x3 across Py, Py, P3 respec-
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Figure 2. (a) Stereo geometry for two views and the point-line-line
configuration (b) point-point-point and (c) line-line-line configura-
tion in terms of point-line-line configuration

tively. The relationships between these features and the ten-
sor can be expressed by the following equations:

Ih=12TT3 )

In the general case, a single point triplet generates four
and a line-line-line correspondence provides two linearly
independent constaints over the tensor parameters. Geo-
metrically, both these configurations are best understood
in terms of a hypothetical point-line-line correspondence
x! & 12 & 13 (see figure 2(a)). The constraint expressed
by this arrangement is simply the incidence relationship be-
tween x! and the line transferred from 12 via the homogra-
phy induced by 12. For a line triplet therefore, each of any
two points (figure 2(c)) on the line in the first image estab-
lishes a point-line-line configuration giving two equations,
while for a case of three matching points figure2(b)), we
have four possible permutations obtained by choosing any
two linearly independent lines spanned by the points in the
P and P3.

], = 03xs, 3)

3.2. Calibrated tensors and linear solution

We represent a binocular stereo rig (see figure 2(a)) in
its canonical form, with the left and right camera matri-
cesP; =[I 0]and P2 = [Ro to] respectively. Here,
(Ro,to) encodes the rigid geometry of the rig, and is fixed
and known a-priori. After undergoing arbitrary rotation R
and translation t , the corresponding cameras in the same
coordinate system can be written as:

P; = [R t 4)
P, = [R()R R0t+t0] 5

These forms can be recursively applied to every pair of
stereo views before and after motion, and the goal of our
visual odometry algorithm is to estimate (R,t). These rep-
resentations can be simplified further by taking into con-
sideration that for a rectified stereo pair (without loss of
generality, as any stereo pair can be rectified), Rg = I



andto = [t 0 0 }T, where t,, is given by the base-
line. The geometric framework of our algorithm is com-
posed of two trifocal tensors; 7% = {TIL} arising out of
image correspondences between cameras P,,P2,P3 and
TR = {TR} from correspondences between P1,P2,Py.
These tensors, using equations [1-5], are given as

TF = Rit" —teR'T (6)

1

TR = RI(Rot+to) —to(RoR)' ()

Since the stereo configuration is fixed and known, it
is only required to estimate the twelve parameters of the
underlying motion to fix 7% and 7®. From correspon-
dence sets of the form {1 <12 & 13,1 © 12 < 1} or
{x! & x? & x3x! ©x? < x*} in equations (2) and
(3), one can write a concatenated linear system in terms of
the twelve unknowns. Furthermore, an image line can be
parameterized by taking any two arbitary points lying on it.
We can thus form

Ay =0 ®)

.
Yy =[ri1 T21 731 T2 Teg T32 113 123 133t b2 t3 1] (9)

where 7jj is the (i, )" element of the rotation matrix R

and translation t = [ &1 ¢z 13 }T. Note that this lin-
ear system will be inhomogeneous due to the form of
equation (7). We now geometrically derive the minimum
number of feature correspondences (over the four views)
required to solve equation (8). Let us consider x! <«
x2? &< x3 first. With Py and P fixed, a corresponding
3D point X is defined from the first two views. Thus,
x3 =P3X provides only two linearly independent equa-
tions for the unknown (R,t). Theoretically, therefore,
{x! & x? & x3;x! & x? < x*} must generate 4 lin-
early independent equations. However, P35 and P4 form
a stereo pair and the following holds for any rectified stereo
pair ¢ and j: ' _

rha) — xhal =0 (10)
Thus, on concatenating point correspondence constraints
from 7% and 7R, only 3 linearly independent equations
are obtained. Arguing similarly but noting that equation
(10) is not invoked for general points on matching lines, it
can be shown that a line quartet provides 4 linearly indepen-
dent equations. These dependencies can also be seen by per-
forming row operations on A matrix. Hence, given n point-
and m line-correpondence sets, matrix A has 3n-+4m inde-
pendent rows. A linear solution, therefore, can be obtained
for {4 points} or {3 lines} or {3 points+1 line} (overcon-
strained) or {2 points+2 lines} (overconstrained). In the
presence of noise, it is recommended to use more than the
minimum number of equations per correspondence. How-
ever, with noisy features, this approach is also not recom-
mended because R will not be obtained as an orthonormal
rotation matrix. One could refine the solution further by

minimizing the Frobenius norm with respect to an orthonor-
mal matrix, but better techniques are presented in sections
3.3 and 3.4.

3.3. Subspace solution

This approach is similar to the works described in [20,
15, 16]. Using nonlinear techniques, it is possible solve for
y in (8) from a combination of only {3 points} or {2 points
+ 1 line} or {2 lines + 1 point}, each of which provides 9,
10 or 11 linearly independent equations. A {2 line} solution
can also be obtained (8 equations), but is unstable in the
presence of noise. We therefore ignore this condition and
solve nonlinearly given at least 3 correspondences (the {3
lines} case has a linear solution). With this formulation, the
least number of constraints we might expect is 9 equations
from {3 points} (for 12 unknowns), and so, the solution can
be given by a (12-9 =) 3 dimensional subspace. However,
as the system of equations is non-homogeneous, we write,

y =yp tayi+8y2+7ys (11)
yp is the so-called ‘particular solution’ of a non-
homogeneous linear system that can be computed from the
psuedo-inverse of A and y, y2 and y3 are the eigenvectors
corresponding to the smallest eigenvalues from a singular
value decomposition on A. To solve for «, 3 and y and si-
multaneously ensure orthonormality for the rotation part the
six polynomial constraints expressing unit norm for each
row of R and orthogonality between any two rows can be
applied. The resulting polynomial system of equations may
then be solved by a variety of techniques such as Groebner
basis [14] or polynomial eigenvalue problem (PEP) [16].
While better than the linear approach, the subspace of A is
still very unstable in the presence of noise. This instability
can be traced back to the underlying noisy tensor constraints
that do not faithfully encode a camera representing rigid
motion. This problem of robustly extracting camera ma-
trices from the trifocal tensor has been reported elsewhere
in [10] and a work-around is described that requires esti-
mating epipoles and applying additional constraints on the
camera matrices. We describe a method in section 3.4, our
main contribution, that yields a much more robust solution
without requiring any additional information or imposing
further constraints. In section 4, we provide further exper-
imential evidence that justifies why the next method might
be preferred over the subspace solution.

3.4. Quaternion-based direct solution

A rotation matrix R can be parameterized in terms of the
unit quaternion q= a + bi + ¢j + dk:

a?+ b - —d? 2(bc — ad) 2(ac + bd)
R= 2(ad + be) a? -+ —d? 2(cd — ab)
2(bd — ac) 2(ab + cd) a? —b? -+ d?



Rewriting equation (8) using this parameterization, we get
the following system of equations:
Ay =0 (12)

y = [aQ b2 2 d% ab ac ad be bd cd t, tztgl]T

We will first solve for the quaternion parameters. To this
end, using the equations in (12), (¢1, to, t3) are expressed in
terms of the other parameters by performing the following
steps:

Solve A'(:,[11:13])Cy = A'(:,[1:10,14])  (13)
Ay =A'(:[1:10,14]) — A’(;,[11 : 13])Cy (14)

Ay =0 (15)
Ye = [aQ b ? d? abacadbcbdcdl]T
The translation part is given by [ t1 ta t3 ]T = —Ciyy
and we now have to only solve the polynomial system (15).
At this point, we also introduce the quaternion constraint
a? 4+ b% 4+ c® + d? = 1 to ensure that in the presence of
noise, a consistent rotation is obtained. To solve for y¢, we
adopt the method of elimination by writing the monomials
(b, ¢%,d?, be, bd, cd) in terms of (a?, ab, ac,ad, 1) :

2
- o
22 ab
be | = Cq a;:l (16)
a
bd
cd 1

where,
Ai(5,[2:4,8:10])Cq = A¢(:,[1,5: 7,11]) (17)

There must be sufficient correspondences so that equation
(17) is not underconstrained. A¢(:,[2: 4,8 : 10]) subma-
trix must have at least rank 6, implying atleast 6 linearly
independent rows. Since one independent constraint is al-
ready provided by quaternion unit norm condition, 5 or
more independent rows must come from the point or line
correspondences in A}. However, we note that the manipu-
lation in (14) introduces dependencies in A and therefore,
minimal configuration sets are {3 points} or {2 lines} or {2
points + 1 line}. The {2 lines} configuration tends to be
less stable in the presence of noise, and therefore, we em-
ploy {3 lines} and include {2 lines + 1 point} sets. From a
systems point of view, this also lets use a uniform set size of
3 features for any combination in a RANSAC setting. The
minimal 3 feature criterion ensures that it will be always
possible to solve equations (13) and (17). In the presence of
noise, it is recommended to use more than just the linearly

independent rows provided by each correspondence. Now,
the equations in (16) can be rewritten as

b2 no[p [
AL

be [T 10 0 [ 2] (1%)
bd RIEIECREE

cd no[po[

[i] represents an i*" degree polynomial in a. We note that
not all terms in the LHS of equation (18) are independent
and they should infact, satisfy the following conditions:

(be)® = (b°)(c®)  (be)(bd) = (b°)(cd)

(bd)? = (b*)(d®)  (be)(cd) = (c*)(bd)

(cd)® = (c*)(d®)  (bd)(cd) = (d?)(be)
Applying these to the RHS in (18), we obtain the following
final system of constraints:

3] 3] (3] [4]
R

3 B B 4 || a|° (19)
8] 3] 3] [4] 1

3] 3] 8 [4]

Since by hypothesis, there exists a solution to

[b ¢ d 1}T, any 4x4 submatrix in (19) must
have a determinant equal to 0. This gives a 13-degree
polynomial in a.

(k1™ + koa® + k3a® + kga® + ksa® + k¢)a® = 0 (20)

Leta=a?:

k1a® 4+ koo + kza® + kya® + ksa+ ks =0 (21)

This 5-degree polynomial can be easily solved and the real-
values a’s retained. Thus, the rotation matrix R can be
composed after (b, c,d) are obtained from the null-vector
]' =

of the 4x4 submatrix and translation [ t1 to t3
—Cyyt.

The multiple solutions are not a problem as the mo-
tion parameters with the largest support will be picked in
a RANSAC setting. Compared to the standard 3-point al-
gorithm, one can employ more than just the minimal num-
ber of feature correspondences to obtain better motion hy-
potheses in the presence of noise (using more features, as
we will see, outperforms the 3-point algorithm). This can
potentially lead to more number of trials due to an increased
probability of adding an outlier feature in the minimal set.
However, in practice, we found that larger feature sets gen-
erate better hypotheses and this usually offsets any negative
influences of the chance outliers (see Section 4). Further-
more, once the best solution and corresponding inliers have
been found, they can all be plugged into equation (12) to
recompute a more consistent solution.
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Figure 3. Rotation and translation errors comparing performance
of linear (red) subspace (green) and quaternion (blue) based for-
mulations of the trifocal minimal solver using arbitrary feature
combinations.
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Figure 4. Rotation and translation errors comparing performance
of the 3-point algorithm (red) against trifocal-quaternion solver us-

ing 3 (green), 4 (blue) and 5 (black) points.

4. Experiments

In this section, we report experimental results for syn-
thetic and real data. Synthetic data experiments are per-
formed to compare the results obtained using the different
versions of our trifocal formulations - trifocal linear (Sec-
tion 3.2), trifocal subspace (Section 3.3) and trifocal quater-
nion - n (Section 3.4). The n suffix indicates the number
of feature correspondences used in the solver (with n = 3
being the minimal case). We also perform comparisons
against the popularly used three point algorithm [9] and the
line-only based motion estimation setup described in [4],
which we refer to in the experiments as ‘LinesSfM’. We
believe that a mechanism to incorporate more than just the
minimal set in a closed-form for generating a single hypoth-
esis is one of the advantages of our method, when compared
to these algorithms. This is demonstrated in the various ex-
periments below by setting n = 4 or 5. Since the devel-
opment of a mixed-feature solver was motivated by prac-
tical difficulties in sparsely textured or badly illuminated
indoor environments, we also performed some real exper-
iments that exhibit such pathological behavior to evaluate
our algorithms against state of the art.

4.1. Synthetic Data

We quantify the performance of the different algorithms
discussed in the paper across various noise levels. Cam-
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Figure 5. Rotation and translation errors comparing performance
of the lines Sfm algorithm (red) against trifocal-quaternion solver
using 3 (green), 4 (blue) and 5 (back) lines.
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Figure 6. Number of RANSAC trials before an acceptable solution
was found for trifocal quaternion-3 (red), -4(green) and -5(blue).

era geometry is created by fixing the baseline to 7.5 cm
(similar to one of our actual stereo cameras) and generating
a random stereo pair. The second stereo pair is displaced
with a random motion. 3D scene geometry and image cor-
respondences are also created by randomly generating 3D
points and lines in space, and projecting them onto the four
cameras. Zero mean, Gaussian noise with varying standard
deviations is added to the coordinates of image lines and
points in each view. Furthermore, similar to [4, 20], we
use only the lower quartile of error distributions for all al-
gorithms as the targeted use is in a RANSAC framework
where finding a fraction of good hypotheses is more im-
portant than consistency. All the experiments are based on
1000 trials.

Figure 3 shows the rotation and translation errors for
the various flavors of our trifocal formulation, given dif-
ferent minimal sets. Random permutations of points and
lines were generated for each trial. As alluded to earlier,
the linear approach has the worst performance, while the
quaternion-based polynomial system works the best. We
next compare performance using only points against the
standard three-point algorithm (figure 4) and using only
lines (figure 5) against LinesSfm. Since the latter algo-
rithm works best only for small motions, we generated
random motion such that it does not break this method.
For the points-only case, the quaternion-3 method shows
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Figure 7. Sequence for two loops around a parking structure (red:
3 point algorithm, green: trifocal quaternion-5)

slightly inferior error behavior compared to the three point
algorithm, but the quaternion-4 and quaternion-5 methods
outperform. Using only lines, all versions of the trifocal
method do significantly better. Since we are proposing a
scheme that can incorporate more than the minimal set, an
evaluation of its impact on the number of RANSAC trials
is presented in figure 6. For this test, a random set of 30
points and 15 lines was generated and RANSAC trials by
selecting random combinations of features were carried out
until a threshold reprojection error (in all four images) was
reached. ANOVA tests between the three groups at each
noise level found no significant difference, but these results
might differ for real data. Note that, for the sake of fairness,
we only use the particular class of features the benchmark
methods have been designed to work in figures 4 and 5,
though we argue that incorporating mixed feature combina-
tions adds an additional dimension to the odometry pipeline
with potential for greater accuracy. It makes more sense to
demonstrate this behavior with real data, as line and point
features have different error statistics with significant im-
pact on performance, and are difficult to replicate in simu-
lated experiments. We do so in the next section.

4.2. Real Data'

We have implemented a visual odometry system that
uses the standard 3-point algorithm and the proposed
trifocal-quaternion algorithm. It takes a stereo video stream
as input, performs stereo rectification, point and lines fea-
ture detection and tracking, and compues the motion using
the tracked features. Here, we briefly describe some of the
implementation details. For point features, we follow the
steps outlined in for KLT feature tracking [19]. For line
features, short edgels are formed from the edge maps after
non-maximal suppression, and then the edgels that are close
to one another and lie on a same line are linked together to

Videos are available at http://www.vivekpradeep.alturl.com and track-
ing data can be downloaded from http://vision.ucsd.edu/~jwlim/

(a) Estimated camera paths (red : 3-point (b) Low textured corridor
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Figure 8. Performance in low-textured, corridor sequence

make a longer line. Line tracking is done by tracking indi-
vidual edges in a line, then taking votes for the candidate
lines in the previous frame. For feature detection and track-
ing, NVidia’s CUDA framework is used for faster process-
ing speed. The current system runs at ~9 fps on a laptop
(Intel Core2Duo 2.5 GHz and NVidia GeForce 8600M GT)
with both line and point features, and ~20 fps with only
point features on the same machine.

We compare performance in two very challenging envi-
ronments. Given our simulation data, we contrast trifocal
quaternion-5 against the 3-point algorithm. In figure 7, the
sequence is collected around a parking structure. This is a
large, open space and several frames have either very lit-
tle texture or point features are clustered on one side. The
3-point algorithm performs noticably worse, exhibiting a
severe break (see near top of figure) and veering off from
the loop. About 2036 frames were captured for this se-
quence. In figure 8(a), we show the result in a corridor
sequence, where lack of sufficient texture in some frames
(figure 8(b)), leads to very few points being tracked. The
actual motion simply consists of a walk along with corri-
dor, entrance into an elevator and a return. As is obvious
from the estimated trajectory, the use of points and lines in
the trifocal quaternion algorithm leads to much better per-
formance. The 3-point algorithm drifts significantly into
the wall. The bottom plot in 8(a) shows a sideways view
of the results. Since the stereo camera was fixed and trans-
ported on a platform, the motion was more or less confined



along a plane parallel to the ground. Ideally, the estimated
camera path should lie on the thin horizontal line from this
perspective. The 3-point algorithm begins to drift from this
very quickly, while the effect is minimized for the trifocal
quaternion-5 algorithm. In figure 8(c), a plot of the num-
ber of features available to both algorithms and RANSAC
inliers found per frame is shown. This clearly shows the ad-
vantage of exploiting both feature types in such situations.
Please refer to the accompanying video for further details.

5. Conclusion and Future Work

We have presented a robust algorithm for estimating
camera motion for a stereo pair using combinations of point
and line features. As shown by our experiments, using
such assorted feature sets leads to better motion estimates
than state of the art visual odometry algorithms in real
world scenarios. This helps in handling low-textured re-
gions, where the conventional method of point-based odom-
etry will fail. The quaternion based solution yields signif-
icantly better motion estimates than the conventional lin-
ear/subspace methods in the presence of noise and provides
a robust mechanism for extracting camera matrices from
noisy trifocal tensors. Furthermore, our formulation allows
one to use more than the minimal set in a RANSAC set-
ting, leading to significantly better results with no severe
penalties on real-time performance. To show the quality and
stability of our proposed algorithm, all the presented results
have been generated without any bundle adjustment or inter-
frame non-linear refinement. Visual odometry, however,
can be substantially improved by applying such techniques
and more robust feature tracking like SIFT. We plan to carry
out further validation and implement aforementioned meth-
ods in an extended version of this paper.
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