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Abstract
Object tracking is one of the most important components

in numerous applications of computer vision. While much
progress has been made in recent years with efforts on shar-
ing code and datasets, it is of great importance to develop
a library and benchmark to gauge the state of the art. In
this work, we review recent advances of online object track-
ing and annotate image sequences with attributes for per-
formance evaluation and analysis. We carry out large s-
cale experiments with different evaluation criteria to under-
stand how these algorithms perform. By analyzing quanti-
tative results, we identify the critical components for a ro-
bust tracker and provide potential future research directions
in this field.

1. Introduction
Object tracking is one of the most important components

in a wide range of applications in computer vision, such
as surveillance, human computer interaction, and medical
imaging [60, 12]. Given the initialized state (e.g., position)
of a target object in the first frame of one video, the goal of
tracking is to estimate the states of the target in the follow-
ing frames. Although object tracking has been studied for
several decades, and much progress has been made in re-
cent years [28, 16, 47, 5, 40, 26, 19], it remains a very chal-
lenging problem. Numerous factors affect the performance
of a tracking algorithm, such as illumination variation, oc-
clusion, as well as background clutters, and there exists no
single tracking approach that can successfully handle all s-
cenarios. Therefore, it is crucial to evaluate the performance
of state-of-the-art trackers to demonstrate their strength and
weakness and help identify future research directions in this
field for designing more robust algorithms.

For comprehensive performance evaluation, it is criti-
cal to collect a representative dataset. There exist sever-
al datasets for visual tracking in the surveillance scenarios,
such as the VIVID [14], CAVIAR [21], and PETS databas-
es. However, the target objects are usually humans or cars
of small size in these surveillance sequences, and the back-
ground is usually static. Although some tracking dataset-

s [47, 5, 33] for generic scenes are annotated with bounding
box, most of them are not. For sequences without labeled
ground truth, it is difficult to evaluate tracking algorithm-
s as the reported results are based on different annotated
object locations. We build a dataset which consists of anno-
tated sequences and attributes, to facilitate tracking evalua-
tion. These attributes are defined by the factors that affect
tracking performance, such as occlusion, fast motion, and
illumination variation.

Recently, more tracking source codes have been made
publicly available, e.g., the OAB [22], IVT [47], MIL [5],
L1 [40], and TLD [31] algorithms, which have been com-
monly used for evaluation. However, the input and output
formats of most trackers are different and thus it is inconve-
nient for large scale performance evaluation. In this work,
we build a code library that includes most publicly available
trackers to facilitate the evaluation task.

One common issue in assessing tracking algorithms is
that the results are reported based on just a few sequences
with different initial conditions or parameters. Thus, the
results do not provide the holistic view of these algorithm-
s. For fair and comprehensive performance evaluation, we
propose to sample the initial conditions for tracking spatial-
ly and temporally given the ground-truth target locations.
While the robustness to initialization is a well-known prob-
lem in the field, it is seldom addressed in the literature. To
the best of our knowledge, this is the first comprehensive
work to address and analyze the initialization problem of
object tracking. We use the precision plots based on loca-
tion error metric and the success plots based on the overlap
metric, to analyze the performance of each algorithm.

The contribution of this work is three-fold:
Dataset. We build a tracking dataset with 50 fully annotat-
ed sequences to facilitate tracking evaluation.
Code library. We integrate most publicly available tracker-
s in our code library with uniform input and output formats
to facilitate large scale performance evaluation. At present,
it includes 29 tracking algorithms.
Robustness evaluation. The initial bounding boxes for
tracking are sampled spatially and temporally to evaluate
the robustness and characteristics of trackers. Each tracker
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is extensively evaluated and more than 660,000 bounding
box results are got for analysis of each tracker.
This work mainly focuses on the online1 tracking of single
target. The code library, annotated dataset and all the track-
ing results will be made available to the public2.

2. Related Work
In this section, we review recent algorithms for object

tracking in terms of several main modules: representation
scheme, search mechanism, and model update. In addition,
some methods have been proposed that build on combing
some trackers or mining context information.
Representation Scheme. Object representation is one
of major components in any visual tracker and numerous
schemes have been presented [35]. Since the pioneer-
ing work of Lucas and Kanade [37, 8], holistic templates
(raw intensity values) have been widely used for track-
ing [25, 39, 2]. Subsequently, subspace-based tracking ap-
proaches [11, 47] have been proposed to better account
for appearance changes. Furthermore, Mei and Ling [40]
propose a tracking approach based on sparse representa-
tion to handle the corrupted appearance and recently it has
been further improved [41, 57, 64, 10, 55, 42]. In ad-
dition to template, many other visual features have been
adopted in tracking algorithms, such as color histogram-
s [16], histograms of oriented gradients (HOG) [17, 52],
covariance region descriptor [53, 46, 56] and Haar-like fea-
tures [54, 22]. Recently, the discriminative model has been
widely adopted in tracking [15, 4], where a binary classifier
is learned online to discriminate the target from the back-
ground. Numerous learning methods have been adapted
to the tracking problem, such as SVM [3], structured out-
put SVM [26], ranking SVM [7], boosting [4, 22], semi-
boosting [23] and multi-instance boosting [5]. To make
trackers more robust to pose variation and partial occlusion,
an object can be represented by parts where each one is rep-
resented by descriptors or histograms. In [1] several local
histograms are used to represent the object in a pre-defined
grid structure. Kwon and Lee [32] propose an approach to
automatically update the topology of local patches to handle
large pose changes. To better handle appearance variation-
s, some approaches regarding integration of multiple repre-
sentation schemes have recently been proposed [62, 51, 33].
Search Mechanism. Deterministic or stochastic methods
have been used to search for the target objects. When the
tracking problem is posed within an optimization frame-
work and the objective function is differentiable with re-
spect to the motion parameters, gradient descent methods
can be used to locate the target efficiently [37, 16, 20, 49].
However, the objective functions of the deterministic ap-

1Here, the word online means during tracking only the information of
previous few frames is used for inference at any time instance.

2The website is https://visual-tracking.net

proaches are usually nonlinear and contain many local mini-
ma. To alleviate this problem, dense sampling methods have
been adopted [22, 5, 26] at the expense of high computa-
tional load. On the other hand, stochastic search algorithms
such as particle filters [28, 44] have been used to alleviate
the local minimal problem without high computational load.
Recent methods based on particle filters are developed with
effective observation models [47, 40, 30].
Model Update. It is crucial to update the target represen-
tation or model to account for appearance variations, and
much attention has been paid in recent years to address this
issue. Matthews et al. [39] address the template update
problem for the Lucas-Kanade algorithm [37] where the
template is updated with the combination of the fixed ref-
erence template extracted from the first frame and the result
from the most recent frame. Effective update algorithms
have also been proposed via online mixture model [29], on-
line boosting [22], and incremental subspace update [47].
For discriminative model, recently much attention has been
paid to improve the sample collection part to make the on-
line trained classifier more robust [23, 5, 31, 26]. While
much progress has been made, it is still difficult to get an
adaptive appearance model to avoid drifts.
Context and Fusion of Trackers. Context information is
also very important for tracking. Recently some approach-
es have been proposed by mining auxiliary objects or lo-
cal visual information surrounding the target to assist track-
ing [59, 24, 18]. The context information is especially help-
ful when the target is fully occluded or outside of the image
region [24]. To improve the tracking performance, some
tracker fusion methods have been proposed recently. Sant-
ner et al. [48] propose an approach that combines static,
moderately adaptive and highly adaptive trackers to account
for appearance changes. Multiple trackers are sampled and
selected in a Bayesian framework to better account for ap-
pearance changes [34] or with multiple features [61].

3. Evaluated Algorithms and Datasets
For fair evaluation, we test the tracking algorithms

whose original source or binary codes are publicly available
as all implementations inevitably involve technical details
and specific parameter settings3. Table 1 shows the evalu-
ated tracking algorithms. We also evaluate the trackers in
the VIVID testbed [14] including the mean shift (MS-V),
template matching (TM-V), ratio shift (RS-V) and peak d-
ifference (PD-V) methods.

In recent years, many benchmark datasets have been de-
veloped for various vision problems, such as the Berkeley
segmentation [38], FERET face recognition [45] and opti-
cal flow dataset [9]. There exist some datasets for the track-
ing in the surveillance scenario, such as the VIVID [14] and

3Some source codes [36, 58] are obtained from direct contact, and some
methods are implemented on our own [44, 16].



Method Representation Search MU Code FPS
CPF [44] L, IH PF N C 109
LOT [43] L, color PF Y M 0.70
IVT [47] H, PCA, GM PF Y MC 33.4

ASLA [30] L, SR, GM PF Y MC 8.5
SCM [65] L, SR, GM+DM PF Y MC 0.51

L1APG [10] H, SR, GM PF Y MC 2.0
MTT [64] H, SR, GM PF Y M 1.0
VTD [33] H, SPCA, GM MCMC Y MC-E 5.7
VTS [34] L, SPCA, GM MCMC Y MC-E 5.7
LSK [36] L, SR, GM LOS Y M-E 5.5

ORIA [58] H, T, GM LOS Y M 9.0
DFT [49] L, T LOS Y M 13.2
KMS [16] H, IH LOS N C 3,159
SMS [13] H, IH LOS N C 19.2
VR-V [15] H, color LOS Y MC 109

Frag [1] L, IH DS N C 6.3
OAB [22] H, Haar, DM DS Y C 22.4

SemiT [23] H, Haar, DM DS Y C 11.2
BSBT [50] H, Haar, DM DS Y C 7.0

MIL [5] H, Haar, DM DS Y C 38.1
CT [63] H, Haar, DM DS Y MC 64.4

TLD [31] L, BP, DM DS Y MC 28.1
Struck [26] H, Haar, DM DS Y C 20.2
CSK [27] H, T, DM DS Y M 362
CXT [18] H, BP, DM DS Y C 15.3

Table 1. Evaluated tracking algorithms (MU: model update, FP-
S: frames per second). For representation schemes, L: local, H:
holistic, T: template, IH: intensity histogram, BP: binary pattern,
PCA: principal component analysis, SPCA: sparse PCA, SR: s-
parse representation, DM: discriminative model, GM: generative
model. For search mechanism, PF: particle filter, MCMC: Markov
Chain Monte Carlo, LOS: local optimum search, DS: dense sam-
pling search. For the model update, N: No, Y: Yes. In the Code
column, M: Matlab, C:C/C++, MC: Mixture of Matlab and C/C++,
suffix E: executable binary code.

CAVIAR [21] datasets. For generic visual tracking, more
sequences have been used for evaluation [47, 5]. Howev-
er, most released sequences do not have the annotations or
ground truth, and the quantitative evaluation results may be
generated with different initial conditions. To facilitate fair
performance evaluation, we collect and annotate most com-
monly used tracking sequences. Figure 1 shows the first
frame of each sequence where the target object is initialized
with a bounding box.

(a) (b)
Figure 2. Attribute distribution. In the attribute distribution of oc-
clusion subset, the dominate attribute is marked as red.
Attributes of tracking sequence. Evaluating trackers is
difficult because many factors affect the tracking perfor-
mance. For better evaluating and analyzing the strength
and weakness of tracking approaches we propose to anno-

tate the sequences with the following 11 attributes: illumi-
nation variation (IV): the illumination in the target region
is changed; scale variation (SV): the ratio of the bounding
boxes of the first frame and the current frame is not less
than ts (≥ 1) or not more than 1/ts (ts=2 in this work);
occlusion (OCC): the target is partially or fully occluded;
deformation (DEF): non-rigid object deformation; motion
blur (MB): the target region is blurred due to the motion
of target or camera; fast motion (FM): the motion comput-
ed from the ground truth is larger than tm pixels (tm=20 in
this work); in-plane rotation (IPR): the target rotates in the
image plane; out-of-plane rotation (OPR): the target rotates
out of the image plane; out-of-view (OV): one portion of
the target leaves the view of camera; background clutters
(BC): the background near the target has the similar color
or texture as the target; low resolution (LR): the number of
pixels inside the ground-truth bounding box is less than tr
(tr=400 in this work).

The attribute distribution in our dataset is shown in Fig-
ure 2(a). Some attributes occur more frequently, e.g., OPR
and IPR, than others. It also shows that one sequence is
often annotated with several attributes. Aside from summa-
rizing the performance on the whole dataset, we also con-
struct several subsets corresponding to attributes to report
specific challenging conditions. For example, the OCC sub-
set contains 29 sequences which can be used to analyze the
performance of trackers to handle occlusion. The attribute
distributions in OCC subset is shown in Figure 2(b) and oth-
ers are available in the supplemental material.

4. Evaluation Methodology
In this work, we use the precision and success rate for

quantitative analysis. In addition, we evaluate the robust-
ness of tracking algorithms in two aspects.
Precision plot. One widely adopted evaluation metric is the
center location error, which is defined as the Euclidean dis-
tance between the center locations of the tracked target and
the manually labeled ground truth. Then the average center
location error over all the frames of one sequence is used to
summarize the overall performance for that sequence. How-
ever, when the tracker loses the target, the output bounding
box can be random so that sometimes the average error val-
ue may not measure the tracking performance correctly [6].
Recently the precision plot [6, 27] has been adopted to sum-
marize the tracking performance. It shows the percentage
of frames for which the estimated object location is within
some threshold distance of the ground truth. Therefore, we
use the precision plot in this work. To summarize a preci-
sion plot, we choose the threshold 20 and report the preci-
sion at this point in the curve [6].
Success plot. Another evaluation metric is the bounding
box overlap. Given the tracked bounding box rt and the
ground truth bounding box ra, the overlap score is defined



Figure 1. Tracking sequences for evaluation. The first frame with the bounding box of the target object is shown for each sequence. The
sequences are ordered based on our ranking results (See supplementary material): the ones on the top left are more difficult for tracking
than the ones on the bottom right. Note that we annotated two targets for the jogging sequence.

as S =
| rt

⋂
ra |

| rt
⋃
ra |

, where
⋂

and
⋃

represent the intersec-

tion and union of two regions, respectively, and | · | denotes
the number of pixels in the region. To measure the perfor-
mance, one overlap threshold to (e.g., to = 0.5) is adopt-
ed to judge if the tracking result on one frame is success
(S > to) or not, and the percentage of successful frames
(success rate) of one sequence is used as a summary. How-
ever, sometimes this value does not measure the tracking
performance accurately due to the fixed threshold. There-
fore, we vary the threshold from 0 to 1 to generate a success
plot. This plot is, in spirit, similar to the receiver operating
characteristic or precision recall curves. Furthermore, the
area under curve (AUC) is a better criterion than the value
at one threshold for performance summarization. There-
fore, we adopt the AUC scores to summarize and rank the
performance of trackers.
Robustness Evaluation. The conventional scheme is to e-
valuate one tracker on the entire sequence with initialization
from the ground truth position in the first frame, which we
refer as one-pass evaluation (OPE). However, if one tracker
is initialized in different frames or different locations in the
first frame, its performance on this sequence almost always
varies. Therefore, we propose two ways to analyze whether
a tracker is sensitive to initialization perturbation by sam-
pling initialization temporally (i.e., start at different frames)
and spatially (i.e., start by different bounding boxes), which
are referred as temporal robustness evaluation (TRE) and
spatial robustness evaluation (SRE) respectively.

The proposed evaluation criteria in fact model the real-
world tracking applications as a tracker is often initialized
by an object detector which is likely to introduce initializa-
tion errors in terms of position and scale. In addition, an
object detector may be used to re-initialize a tracker at d-

ifferent time instances. More thorough understanding and
analysis of a tracking algorithm can be carried out with the
robustness evaluation scheme.
Temporal Robustness Evaluation. Given one initial frame
together with the ground-truth bounding box of target, one
tracker is initialized and runs to the end of the sequence, i.e.,
one segment of the entire sequence. The tracker is evaluat-
ed on each segment, and the overall statistics are tallied.
Spatial Robustness Evaluation. We sample the initial
bounding box in the first frame by shifting or scaling the
ground truth. Here, we use 8 spatial shifts including 4 cen-
ter shifts and 4 corner shifts, and 4 scale variations (supple-
ment). The amount for shift is 10% of target size, and the
scale ratio varys among 0.8, 0.9, 1.1 and 1.2 to the ground
truth. Thus, we evaluate each tracker 12 times for SRE.

5. Evaluation Results
For each tracker, the default parameters with the source

code are used in all evaluations. Table 1 lists the average
FPS of each tracker in OPE running a PC with Intel i7 3770
CPU (3.4GHz). More detailed speed statistics, such as min-
imum and maximum, are available in the supplement.

For OPE, each tracker is tested on more than 29,000
frames. For SRE, each tracker is evaluated 12 times on each
sequence, where more than 350,000 bounding box results
are generated. For TRE, each sequence is partitioned into
20 segments and thus each tracker is performed on around
310,000 frames. To the best of our knowledge, this is the
largest scale performance evaluation of visual tracking. We
report the most important findings in this manuscript and
more details and figures can be found in the supplement.
5.1. Overall Performance

The overall performance for all the trackers is summa-
rized by the success and precision plots as shown in Fig-



Figure 3. Plots of OPE, SRE, and TRE. The performance score for each tracker is shown in the legend. For each figure, the top 10 trackers
are presented for clarity and complete plots are in the supplementary material (best viewed on high-resolution display).

ure 3 where only the top 10 algorithms are presented for
clarity and the complete plots are displayed in the supple-
mentary material. For success plots, we use AUC scores to
summarize and rank the trackers, while for precision plots
we use the results at error threshold of 20 for ranking. In
the precision plots, the rankings of some trackers are slight-
ly different from the rankings in the success plots in that
they are based on different metrics which measure different
characteristics of trackers. Because the AUC score of suc-
cess plot measures the overall performance which is more
accurate than the score at one threshold of precision plot,
in the following we mainly analyze the rankings based on
success plots but use the precision plots as auxiliary.

The average TRE performance is higher than that of OPE
in that the number of frames decreases from the first to last
segment of TRE. As the trackers tend to perform well in
shorter sequences, the average of all the results in TRE tend
to be higher. On the other hand, the average performance
of SRE is lower than that of OPE. The initialization errors
tend to cause trackers to update with imprecise appearance
information, thereby causing gradual drifts.

In the success plots, the top ranked tracker SCM in OPE
outperforms Struck by 2.6% but is 1.9% below Struck in
SRE. The results also show that OPE is not the best perfor-
mance indicator as the OPE is one trial of SRE or TRE. The
ranking of TLD in TRE is lower than OPE and SRE. This
is because TLD performs well in long sequences with a re-
detection module while there are numerous short segments

in TRE. The success plots of Struck in TRE and SRE show
that the success rate of Struck is higher than SCM and AL-
SA when the overlap threshold is small, but less than SCM
and ALSA when the overlap threshold is large. This is be-
cause Struck only estimates the location of target and does
not handle scale variation.

Sparse representations are used in SCM, ASLA, LSK,
MTT and L1APG. These trackers perform well in SRE and
TRE, which suggests sparse representations are effective
models to account for appearance change (e.g., occlusion).
We note that SCM, ASLA and LSK outperform MTT and
L1APG. The results suggest that local sparse representa-
tions are more effective than the ones with holistic sparse
templates. The AUC score of ASLA deceases less than
the other top 5 trackers from OPE to SRE and the rank-
ing of ASLA also increases. It indicates the alignment-
pooling technique adopted by ASLA is more robust to mis-
alignments and background clutters.

Among the top 10 trackers, CSK has the highest speed
where the proposed circulant structure plays a key role.
The VTD and VTS methods adopt mixture models to im-
prove the tracking performance. Compared with other high-
er ranked trackers, the performance bottleneck of them can
be attributed to their adopted representation based on sparse
principal component analysis, where the holistic templates
are used. Due to the space limitation, the plots of SRE are
presented for analysis in the following sections, and more
results are included in the supplement.



Figure 4. Plots for OCC, SV, and FM subsets. The value appears in the title is the number of sequences in that subset. Only the top 10
trackers are presented for clarity and complete plots are in the supplementary material (best viewed on high-resolution display).

5.2. Attribute-based Performance Analysis

By annotating the attributes of each sequence, we con-
struct subsets with different dominant attributes which facil-
itates analyzing the performance of trackers for each chal-
lenging factor. Due to space limitations, we only illustrate
and analyze the success plots and precision plots of SRE for
attributes OCC, SV, and FM as shown in Figure 4, and more
results are presented in the supplementary material.

When an object moves fast, dense sampling based track-
ers (e.g., Struck, TLD and CXT) perform much better than
others. One reason is that the search ranges are large and
the discriminative models are able to discriminate the tar-
gets from the background clutters. However, the stochastic
search based trackers with high overall performance (e.g.,
SCM and ASLA) do not perform well in this subset due
to the poor dynamic models. If these parameters are set to
large values, more particles are required to make the tracker
stable. These trackers can be further improved with dynam-
ic models with more effective particle filters.

On the OCC subset, the Struck, SCM, TLD, LSK and
ASLA methods outperform others. The results suggest
that structured learning and local sparse representations are
effective in dealing with occlusions. On the SV subset,
ASLA, SCM and Struck perform best. The results show that
trackers with affine motion models (e.g., ASLA and SCM)
often handle scale variation better than others that are de-
signed to account for only translational motion with a few

exceptions such as Struck.

5.3. Initialization with Different Scale
It has been known that trackers are often sensitive to ini-

tialization variations. Figure 5 and Figure 6 show the sum-
marized tracking performance with initialization at differ-
ent scales. When computing the overlap score, we rescale
the tracking results so that the performance summary could
be comparable with the original scale, i.e., the plots of OPE
in Figure 3. Figure 6 illustrates the average performance
of all trackers for each scale which shows the performance
often decreases significantly when the scale factor is large
(e.g., ×1.2) as many background pixels are inevitably in-
cluded in the initial representations. The performance of
TLD, CXT, DFT and LOT decreases with the increase of
initialization scale. This indicates these trackers are more
sensitive to background clutters. Some trackers perform
better when the scale factor is smaller, such as L1APG, MT-
T, LOT and CPF. One reason for this in the case of L1APG
and MTT is that the templates have to be warped to fit the
size of the usually smaller canonical template so that if the
initial template is small, more appearance details will be
kept in the model. On the other hand, some trackers per-
form well or even better when the initial bounding box is
enlarged, such as Struck, OAB, SemiT, and BSBT. This in-
dicates that the Haar-like features are somewhat robust to
background clutters due to the summation operations when
computing features. Overall, Struck is less sensitive to scale



Figure 5. SRE of the trackers initialized with different bounding box sizes. The value on top of each figure is the scale factor. For each
figure, the top 10 trackers are presented for clarity and complete plots are in the supplementary material.

Figure 6. Performance summary for the trackers initialized with different size of bounding box. AVG (the last one) illustrates the average
performance over all trackers for each scale.

variation than other well-performing methods.

6. Concluding Remarks
In this paper, we carry out large scale experiments to

evaluate the performance of recent online tracking algo-
rithms. Based on our evaluation results and observations,
we highlight some tracking components which are essen-
tial for improving tracking performance. First, background
information is critical for effective tracking. It can be ex-
ploited by using advanced learning techniques to encode
the background information in the discriminative model im-
plicitly (e.g., Struck), or serving as the tracking contex-
t explicitly (e.g., CXT). Second, local models are impor-
tant for tracking as shown in the performance improvement
of local sparse representation (e.g., ASLA and SCM) com-
pared with the holistic sparse representation (e.g., MTT and
L1APG). They are particularly useful when the appearance
of target is partially changed, such as partial occlusion or
deformation. Third, motion model or dynamic model is cru-
cial for object tracking, especially when the motion of target
is large or abrupt. However, most of our evaluated tracker-
s do not focus on this component. Good location predic-
tion based on the dynamic model could reduce the search
range and thus improve the tracking efficiency and robust-
ness. Improving these components will further advance the
state of the art of online object tracking.

The evaluation results show that significant progress in

the field of object tracking has been made in the last decade.
We propose and demonstrate evaluation metrics for in-depth
analysis of tracking algorithms from several perspectives.
This large scale performance evaluation facilitates better
understanding of the state-of-the-art online object tracking
approaches, and provides a platform for gauging new algo-
rithms. Our ongoing work focuses on extending the dataset
and code library to include more fully annotated sequences
and trackers.
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