
Moving in Stereo: Efficient Structure and Motion Using Lines

Manmohan Chandraker∗ Jongwoo Lim† David Kriegman∗

mkchandraker@cs.ucsd.edu JLim@hra.com kriegman@cs.ucsd.edu

∗ University of California, San Diego † Honda Research Institute, USA Inc.
La Jolla, CA Mountain View, CA

Abstract

We present a fast and robust system for estimating struc-
ture and motion using a stereo pair, with straight lines as
features. Our first set of contributions are efficient algo-
rithms to perform this estimation using a few (two or three)
lines, which are well-suited for use in a hypothesize-and-test
framework. Our second contribution is the design of an
efficient structure from motion system that performs robustly
in complex indoor environments.

By using infinite lines rather than line segments, our
approach avoids the issues arising due to uncertain deter-
mination of end-points. Our cost function stems from a
rank condition on planes backprojected from corresponding
image lines. We propose a framework that imposes orthonor-
mality constraints on the rigid body motion and can perform
estimation using only two or three lines, through efficient
solution of an overdetermined system of polynomials. This is
in contrast to simple approaches which first reconstruct 3D
lines and then align them, but perform poorly in real-world
scenes with narrow baseline stereo.

Experiments using synthetic as well as real data demon-
strate the speed, accuracy and reliability of our system.

1. Introduction

Simultaneous estimation of the structure of a scene and
the motion of a camera rig using only visual input data is a
classic problem in computer vision. Interest points, such as
corners, are the primary features of interest for sparse recon-
struction, since they abound in natural scenes. Consequently,
significant research efforts in recent times have been devoted
to sparse 3D reconstructions from points [14].

However, it is often the case, especially in man-made
scenes like office interiors or urban cityscapes, that not
enough point features can be reliably detected, while an
abundant number of lines are visible. While structure from
motion (SFM) using lines has, in the past, received consider-

(a) (b)

Figure 1. Camera motion estimated using the line-based structure-
from-motion algorithms proposed in this paper, with narrow base-
line stereo and without any bundle adjustment. The scene is an
office environment and the length of the loop is about 50 meters.
The camera starts inside a room, moves outside a door and returns
to the room through the same door. Notice the accuracy in closing
the loop (about 2% accumulated error after 1600 frames) and in re-
covering challenging purely forward motions. (a) An intermediate
snapshot of line tracks and recovered structure and motion at that
stage. (b) Top and side view of recovered motion for entire loop.
Please see the text and the accompanying videos for details.

able attention, not much of it has been towards developing
algorithms usable in a robust real-time system. On the other
hand, important breakthroughs in solving minimal problems
for points, such as [11, 13], have led to the emergence of
efficient point-based reconstruction methods.

This paper proposes algorithms for estimating struc-
ture and motion using lines which are ideal for use in a
hypothesize-and-test framework [4] crucial for designing a
robust, real-time system. In deference to our intended ap-
plication, the visual input for our algorithms stems from a
calibrated stereo pair, rather than a monocular camera. This
has the immediate advantage that only two stereo views (as
opposed to three monocular views) are sufficient to recover
the structure and motion using lines. The cost functions and

1



representations we use in this paper are adapted to exploit
the benefits of stereo input. Our entire system, unoptimized
at the time of writing, captures stereo images, detects straight
lines, tracks them and estimates the structure and motion in
complex scenes at 10 frames per second.

Besides availability in man-made scenes, an advantage of
using lines is accurate localization due to their multi-pixel
support. However, several prior works rely on using finite
line segments for structure and motion estimation, which
has the drawback that the quality of reconstruction is limited
by the accuracy of detecting end-points. In the worst case
scenario, such as a cluttered environment where lines are
often occluded, the end-points might be false corners or
unstable T-junctions. Our approach largely alleviates these
issues by using infinite lines as features and employing a
problem formulation that depends on backprojected planes
rather than reprojected end-points.

Commonly used multifocal tensor based approaches in-
volve extensive book-keeping and use a larger number of
line correspondences to produce a linear estimate, which can
be arbitrarily far from a rigid-body motion in the presence of
noise. In contrast, our solutions use only two or three lines
and can account for orthonormality constraints on the recov-
ered motion. Rather than resorting to a brute force nonlinear
minimization, we reduce the problem to a small polynomial
system of low degree, which can be solved expeditiously.

In theory, the use of calibrated stereo cameras also makes
it possible to come up with simpler solutions that first recon-
struct the 3D lines for each stereo pair and then compute a
rotation and translation to align them. However, as we dis-
cuss in Section 3.1 and demonstrate in Section 5, relying on
alignment of noisy 3D lines obtained from narrow baseline
stereo is especially prone to errors in real-life scenarios.

In summary, the main contributions of this paper are:

• Efficient algorithms for stereo-based line SFM that are
tailored for use in a hypothesize-and-test framework
and are more robust than traditional approaches.

• A system to detect straight lines, track them and esti-
mate structure and motion in a RANSAC framework
(with optional nonlinear refinement) at very fast rates.

We begin with a brief overview of relevant prior work
in Section 2. Our algorithms for estimating structure and
motion are described in Section 3, while the system details
such as line detection and tracking are provided in Section 4.
Synthetic and real data experiments are presented in Section
5 and we finish with discussions in Section 6.

2. Related Work
It can be argued that points provide “stronger” constraints

on a reconstruction than lines [5]. For instance, an analog of
the eight-point algorithm for two-view reconstruction using

lines requires three views and thirteen correspondences [9].
Yet, using lines as primary features is sometimes beneficial,
so there has been tremendous interest in the problem.

Multifocal tensors are a common approach to estimate
the structure of a scene from several line correspondences.
A linear algorithm for estimating the trifocal tensor was
presented in [5], while the properties of the quadrifocal ten-
sor are elucidated in [18]. It is apparent from these works
that the book-keeping required to enforce non-linear depen-
dencies within the tensor indices can be substantial [6][8].
Consequently, approaches such as [3] which compute the
quadrifocal tensor between two calibrated stereo pairs, are
too cumbersome for estimating just a 6-dof motion.

An algebraic construct is used to align the Plücker co-
ordinates of two line reconstructions in [1], however, rigid
body constraints can be accounted for only through nonlinear
minimization. Extended Kalman Filter based techniques for
estimating incremental displacements between stereo frames
have also been proposed [21].

For various reasons, it is not reliable to use end-points for
designing a structure and motion algorithm with lines. The is-
sue of representing 3D lines is addressed in detail in [2]. The
method in [20] minimizes a notion of reprojection error in
the image plane which is robust to variable end-points across
views. However, the cost function can be optimized only by
iterative local minimization which requires initialization and
is not amenable to a real-time implementation. Further, a
minimum of six line correspondences in three views are re-
quired, which can be burdensome for a hypothesize-and-test
framework. A similar procedure for 3D reconstruction of
urban environments is presented in [17].

In recent years, there has been significant progress in the
development of visual odometry systems [12], which rely
on real-time solutions to minimal problems for point-based
SFM such as 5-point relative orientation [11, 19, 13]. Similar
to those works, our focus is to develop an efficient solution
with lines that can be used in a RANSAC framework, but
this leads to an over-determined system of polynomials. An
over-constrained system, albeit an easier one, is solved in
[16] for the pose estimation problem.

3. Structure and Motion Using Lines

Unless stated otherwise, 3D points are denoted as ho-
mogeneous column vectors X ∈ R4 and 2D image points
by homogeneous column vectors x ∈ R3. The perspective
camera matrix is represented by a 3× 4 matrix P = K[R|t],
where K is the 3 × 3 upper triangular matrix that encodes
the internal parameters of the camera and (R, t) represents
the exterior orientation. We refer the reader to [7] for the
relevant details of projective geometry and to [15] for an
excellent treatment of 3D line geometry.



3.1. A Simple Solution?

Since we use calibrated stereo cameras, a first approach
to the problem would naturally be to reconstruct the 3D lines
and align them. There are several different ways to achieve
this, one possibility is the following. First, reconstruct the 3D
lines in the frame of each stereo pair - this is easily achieved
by intersecting the planes obtained by backprojection of each
corresponding pair of 2D lines. Next, the rotation that aligns
the 3D lines is computed, for instance, by first aligning the
mean directions of the lines and then computing the residual
in-plane rotation. Finally, the translation can be computed
by aligning the points that lie midway between the 3D lines
in the two rotationally aligned frames.

The attractions of such approaches are that they are sim-
ple and geometrically intuitive. However, the quality of
reconstruction obtained from such methods is critically de-
pendent on the accuracy of reconstructed 3D lines, which
is known to be quite poor for the practically important case
of narrow baseline stereo. Moreover, if some scene lines lie
close to the epipolar plane, then such strategies are liable to
break down.

The algorithms that we describe next perform robustly in
real-world scenes where situations such as above commonly
arise. The need for stereo-based line reconstruction algo-
rithms that look beyond the simple multistep reconstruction
and alignment approach is also empirically borne out by the
experiments in Section 5.

3.2. Geometry of the Problem

We will assume that the stereo pair is calibrated, so the
intrinsic parameter matrices, K, can be assumed to be identity.
The left and right stereo cameras can be parametrized as
P1 = [I|0] and P2 = [R0|t0], where R0 is a known rotation
matrix and t0 is a known translation vector. Then, the camera
matrices in a stereo pair related by a rigid body motion (R, t)
are given by P3 = [R|t] and P4 = [R0R|R0t + t0].

The back-projected plane through the camera center and
containing the 3D line L, imaged as a 2D line l by a camera
P, is given by π = P>l. Suppose l1, l2, l3 and l4 are images
of the same 3D line in the four cameras P1, · · · , P4. See
Figure 2. Then, the four back-projected planes, stacked row-
wise, form a 4 × 4 matrix which is the primary geometric
object of interest for our algorithms:

W =


π>1
π>2
π>3
π>4

 =


l>1 0

l>2 R0 l>2 t0

l>3 R l>3 t
l>4 (R0R) l>4 (R0t + t0)

 (1)

Since the four backprojected planes in Figure 2 intersect
in a straight line, there are two independent points X1 and
X2 that satisfy π>i Xj = 0, for i = 1, 2, 3, 4 and j = 1, 2.
Consequently, the matrix W has a 2D null-space, or has rank
2, when the lines in the 4 images correspond.

P1 = [I|0]P2 = [R0|t0]

P3 = [R|t]

P4 = [R0R|R0t + t0]

π1 = P!1 l1

π2 = P!2 l2

π3 = P!3 l3

π4 = P!4 l4

l1l2

l3

l4

Figure 2. Geometry of image formation. If the 4 image lines in
each of the 4 cameras of the 2 stereo pairs actually correspond,
the back-projected planes joining the respective camera centers to
these straight lines would intersect in a straight line (the 3D line
which was imaged by the 2 stereo pairs).

3.3. Linear Solution

Asserting that W has rank 2 is equivalent to demanding
that each of its 3× 3 sub-determinants have rank 2, which
amounts to four independent constraints. One way to extract
these constraints is to perform two steps of Gauss-Jordan
elimination (using Househölder rotations) on the matrix W>,
to get a system of the form

Wgj =


× 0 0 0
× × 0 0
× × f1(R, t) f2(R, t)
× × f3(R, t) f4(R, t)

 (2)

where fi(R, t) are affine functions of R and t. Since rank of
a matrix is preserved by elementary operations, the matrix
Wgj must also be rank 2 and thus, its third and fourth rows
are linear combinations of the first two. It easily follows that

fi(R, t) = 0 , i = 1, 2, 3, 4 (3)

Thus, for n ≥ 3, a linear estimate for the motion can then
be obtained as a solution to a 4n × 12 system of the form
Av = b, formed by stacking up the linear constraints fi,
where v = [r>1 r>2 r>3 t>]> and r1, r2, r3 are columns of the
rotation matrix.

The drawbacks that such a linear procedure suffers from
in the presence of noise are similar to those of, say, the DLT
algorithm for estimating the fundamental matrix using eight
points. In particular, since orthonormality constraints have
been ignored, the solution can be arbitrarily far from a rigid
body motion.

3.4. Efficient Solutions for Orthonormality

In the frequently encountered case of narrow baseline
stereo with nearly parallel camera principal axes, an addi-
tional drawback is that the matrix A is close to rank-deficient,



which makes its inversion unstable. A more practical ap-
proach is to work with a low-rank projection of A, that is,
assume the solution lies in the space spanned by the last
k singular vectors of [A,−b]. While more complex than
the prior methods, the following method has the advantage
of being able to impose orthonormality for general camera
motions.

We express the desired solution as a linear combination
of the singular vectors of A, call them vi:

r1

r2

r3

t
1

 = x1


|
|

v1

|
|

+ · · ·+ xk


|
|

vk

|
|

 (4)

and the problem reduces to determining the coefficients
x1, · · · , xk of the above linear combination, subject to or-
thonormality conditions:

‖r1‖2 = 1 , ‖r2‖2 = 1 , ‖r3‖2 = 1 (5)

r>1 r2 = 0 , r>2 r3 = 0 , r>3 r1 = 0. (6)

Substituting for (R, t) from (4) in (5) and (6), we get six
polynomials of degree 2 in the k variables x1, · · · , xk. This
system of polynomial equations will have no solution in the
general, noisy case and we must instead resort to a principled
“least-squares” approach to extract the solution.

In general, greater numerical precision and speed can
be obtained by reducing the degree of the system and the
number of variables. One way to do so is to drop the scale,
that is, divide each equation in (4) by xk and replace the unit
norm constraints in (5) by equal norm constraints:

‖r1‖2 − ‖r2‖2 = 0 , ‖r2‖2 − ‖r3‖2 = 0. (7)

Now, the five polynomials in (7) and (6) have k − 1 vari-
ables each, call them qi(x1, · · · , xk−1), for i = 1, · · · , 5.
Then, the corresponding reduced least squares problem is
to minimize q(x1, · · · , xk−1) =

∑5
i=1 q

2
i (x1, · · · , xk−1).

The case of fixed scale is a straightforward extension.
For ease of exposition, we will assume k = 4,

but the following can be easily extended for other
number of variables too. Then, each of the five
polynomial equations consists of the ten monomials
[x2

1, x
2
2, x1x2, x1, x2, x1x3, x2x3, x

2
3, x3, 1]. Since rela-

tively low degree polynomials in a single variable can be
solved very fast using methods like Sturm sequences, we
will attempt to solve for a single variable first, say x3. Then,
each of the polynomials qi(x1, x2, x3) can be rewritten as

c1x
2
1 + c2x

2
2 + c3x1x2 + [1]x1 + [1]x2 + [2] = 0 (8)

where we use the notation [n] to denote some polynomial of
degree n in the single variable x3. Our system of polynomi-

als, written out in a matrix format, now has the form
c1 c2 c3 [1] [1] [2]
c′1 c′2 c′3 [1] [1] [2]
c′′1 c′′2 c′′3 [1] [1] [2]
c′′′1 c′′′2 c′′′3 [1] [1] [2]
c′′′′1 c′′′′2 c′′′′3 [1] [1] [2]




x2

1

x2
2

x1x2

x1

x2

1

 =


0
0
0
0
0

 .
(9)

Let the 5 × 6 matrix above be denoted as G. Then,
the i-th component of its null-vector, denoted as u =
[x2

1, x
2
2, x1x2, x1, x2, 1]> can be obtained as

ui = (−1)i−1 det(Ĝi) (10)

where Ĝi stands for the 5× 5 matrix obtained by deleting the
i-th column of G. Thus, the vector u can be obtained, up to
scale, with each of its components a polynomial of degree 4
(x2

1, x
2
2, x1x2), 3 (x1, x2) or 2 (1) in the single variable x3.

Now, we note that all the components of the vector u are
not independent. In fact, in the noiseless case, they must
satisfy three constraints

[u4u5 = u3u6] : (x1)× (x2) = (x1x2)× (1)

[u2
4 = u1u6] : (x1)× (x1) = (x2

1)× (1) (11)

[u2
5 = u2u6] : (x2)× (x2) = (x2

2)× (1)

Substituting the expressions for u obtained from (10), we
obtain three polynomials of degree 6 in the single variable
x3. Let us call these polynomials pi(x3), i = 1, 2, 3. Then,
we have a system of three univariate polynomials that must
be solved in a “least-squares” sense. We approach this as an
unconstrained optimization problem

min
x3

p2
1(x3) + p2

2(x3) + p2
3(x3). (12)

At the minimum, the first-order derivative of the above ob-
jective function must vanish, so the optimal x3 is a root of
the polynomial

p(x3) = p1(x3)p′1(x3) + p2(x3)p′2(x3) + p3(x3)p′3(x3).
(13)

Note that p(x3) is a degree 11 univariate polynomial, whose
roots can be determined very fast in practice. There can be
up to 11 real roots of p(x3), all of which must be tested as
a candidate solution. Also worth noticing is that the odd
degree of p(x3) guarantees at least one real solution.

Finally, once the candidates for x3 have been obtained,
the corresponding candidates for x1 and x2 are obtained
by substituting the value of x3 in the expression for u and
reading off the values of x1 =

u4

u6
and x2 =

u5

u6
. The rota-

tion and translation can now be recovered, up to a common
scale factor, by substituting in (4). We can fix scale by, for
instance, fixing the determinant of R to 1.



3.5. Solution for Incremental Motion

For our structure from motion application, the input is
a high frame-rate video sequence. So, it is reasonable to
assume that the motion between subsequent frames is very
small. Approximating the incremental displacement along
the manifold of rotation matrices by that along its tangent
space (the so(3) manifold of 3×3 skew-symmetric matrices),
the incremental rotation can be parametrized as R ≈ I+[s]×,
where s ∈ R3. Now, n lines give 8n linear constraints of
the form (3) on the 6 unknowns (s1, s2, s3, t), which can be
estimated using a singular value decomposition (SVD).

3.6. A Note on Number of Lines

It might be noticed by the careful reader, that two lines
are the minimum required to fix the six degrees of freedom
of the motion of the stereo pair. Indeed, all the solutions
proposed in the preceding sections (except, of course, the
linear solution of Section 3.3) can work with just two lines.

For a hypothesize-and-test framework, a solution that re-
lies on the least possible amount of data is indispensable to
minimize computational complexity. However, given the nar-
row baseline configuration we use in practice, it is desirable
to use more than the minimum number of lines to enhance
robustness. While we demonstrate the possibility of using
only two lines in synthetic experiments, the real data exper-
iments that we report use three lines within the RANSAC
implementation. Although using even more lines will in-
crease robustness, the trade-off will be a more expensive
RANSAC procedure.

4. System Details
4.1. Line Detection, Matching and Tracking

The success of any SFM system critically depends on the
quality of feature detection and tracking. To detect lines,
we first construct Sobel edge images and then apply non-
maximal suppression to accurately locate the peak/ridge
location of both strong and weak edges. The following non-
maximal suppression method is used to build the edge map:

Ix = max
dx

σ

(
Sx − (Sx+dx + Sx−dx)/2

max((Sx+dx + Sx−dx)/2, θedge)
; s,m

)
where Sx is the Sobel edge response at a pixel
x = (x, y)>, σ(x; s,m) = 1

1+exp(−(x−m)/s) is a sig-
moid function, θedge is a free parameter and dx ∈
{(1, 0)>, (0, 1)>, (1, 1)>, (1,−1)>} is the testing direction
(Fig. 3 a).

Well-known straight line detection algorithms like Hough
transform or its variants do not perform well in complex
indoor scenes. Instead, motivated by divide-and-conquer
schemes, we divide the edge map into small 8×8-pixel cells

(Fig. 3 b) and detect edge blobs in each cell. To decide if
an edge blob is likely to be a line segment, we build the
convex hull of the points and check its thickness, which is
approximated by its area divided by the distance between
two farthest points in the blob. We maintain the convex hull
and the mean and covariance of the point coordinates for
each line segment. When two line segments are merged,
these pieces of information can be combined without having
to refer to the original points. At the next level, each cell
contains 4 sub-cells of the previous level. In each cell, pairs
of line segments with similar directions are merged if the
thickness of the combined convex hull is within a threshold,
and this process is repeated until the cell covers the entire
image.

To establish stereo correspondence, we use dense stereo
matching with shrunk frames and a sum-of-absolute-
differences measure. Lines are tracked from one frame to
the next using multi-level Lucas-Kanade optical flow [10].

Low-level image processing, including image rectifica-
tion, Sobel edge computation and non-maximal suppression
is implemented using the NVidia CUDA framework and runs
very fast on a GPU. Our line segment detection is on CPU
and runs fast, but since it is inherently parallel, a further
speed-up can be obtained by implementing it on GPU. The
stereo matching and multi-level optical flow computation are
also implemented in CUDA.

(a) (b)

(e) (f)

Figure 3. Line detection and tracking. (a) after non-maximal sup-
pression. (b) line segments in initial cells (level-0). (c) detected
lines after merging cells and filtering short line segments (shown
with line id’s). (d) tracked (green) and newly detected (red) line
segments after 15 frames.

4.2. Efficiently Computing Determinants

A critical step of the algorithm in Section 3.4 is to com-
pute the determinants of the 5 × 5 sub-matrices of G. It is
important to carefully design the computation of these de-
terminants, since the number of arithmetic operations can
explode very quickly, which might adversely affect the nu-
merical behavior of the algorithm.



(a) Rotation error (b) Translation error

Figure 4. Rotation and translation errors with small camera motion,
for simple solution (red curve), polynomial solution (black curve)
and the incremental solution (blue curve), each using two lines.

As an illustration, to compute the polynomial correspond-
ing to u1 in (10), consider the matrix G′1, which is Ĝ1 with the
column order reversed. Then, det(G′1

>) = det(Ĝ1). Each
of the lower 4× 4 sub-determinants of G′1

> is a polynomial
of degree 2. It now requires relatively little book-keeping
to determine the coefficients of x4

3, · · · , x0
3 in u1 by appro-

priately convolving the coefficients of degree 2 polynomials
in the first row of G′1

> with those from its lower 4× 4 sub-
determinants. The symbolic interactions of the coefficients
are pre-computed and only need to be evaluated for values
of v1, · · · ,v4. Similar steps can be taken to compute the
coefficients of various powers of x3 in u2, · · · , u6.

5. Experiments

We report experimental results for synthetic and real data,
comparing the results obtained using the simple solution
(Section 3.1), the efficient polynomial system based solution
(Section 3.4) and the incremental solution (Section 3.5).

5.1. Synthetic Data

Our synthetic data experiments are designed to quantify
the performance of the various algorithms discussed in this
paper across various noise levels, for small and large camera
motions. The stereo baseline is fixed at 0.1 units, while lines
are randomly generated in the cube [−1, 1]3. The first stereo
pair is randomly generated and the second one is displaced
with a random motion that depends on the type of experiment.
Zero mean, Gaussian noise of varying standard deviations is
added to the coordinates of the image lines in each view. All
the experiments are based on 1000 trials.

For the first set of experiments, the motion is kept small.
The performances of the simple solver, the incremental
solver and the polynomial system based solver, each us-
ing the minimum two lines, are shown in Figure 4. Similar
to [11], the lower quartile of error distributions are used for
all the algorithms, since their targeted use is in a RANSAC
framework where finding a fraction of good hypotheses is
more important than consistency. It can be seen that the

(a) Rotation error (b) Translation error

Figure 5. Rotation and translation errors with small camera motion,
for simple solution (red curve), polynomial solution (black curve)
and incremental solution (blue curve), each using three lines.

(a) Rotation error (b) Translation error

Figure 6. Rotation and translation errors with large camera motion,
for the simple solution (red curve) and the polynomial solution
(black curve), each using three lines.

incremental and polynomial solver yield lower errors than
the simple solver, although all three solvers perform well.

In the second set of experiments, again for small camera
motion, the performances of each of the solvers are evaluated
using three lines. As discussed in Section 3, while sampling
three lines is still relatively inexpensive in RANSAC, the
added robustness can be valuable in a real-world application.
As Figure 5 shows, the incremental solver gives much lower
error rates than the other two solvers in this case.

In the next set of experiments, the camera motion is al-
lowed to be large. The incremental solver cannot be used
in this case, while the polynomial solver performs slightly
better than the simple solver (Figure 6).

5.2. Real Data

While all the solvers achieve reasonable error rates for
the synthetic data experiments, the utility of the algorithms
proposed in this paper is evident in real-world situations,
where noise is large and stereo baseline can be quite narrow
compared to scene depth.

Our system is extensively tested in indoor office envi-
ronments where it is intended to be deployed. The image
sequences for our experiments are acquired using a stereo
pair with baseline 7.4 cm, with a 640 × 360-pixel resolu-
tion and a 110◦ × 80◦ wide field-of-view for each camera.
All the experiments are conducted in a RANSAC frame-



(a) (b) (c) (d) (e)

Figure 7. Structure and motion estimation for a turntable sequence. (a) The last frame overlaid with lines. Solid lines are left camera, dotted
lines are correspondences in the right camera. Red lines indicate inliers of the estimated motion. (b) raw result of 3-line simple solver in
RANSAC. (c) result of 3-line simple solver after (within-frame) refinement using inliers from RANSAC. (d) raw result of 3-line incremental
solver in RANSAC. (e) result of 3-line incremental solver after RANSAC and within-frame refinement.

(a) (b) (c) (d)

Figure 8. Structure and motion estimation for an indoor office sequence. (a) The last frame overlaid with lines. Red lines indicate inliers of
the estimated motion, dotted lines are stereo correspondences. (b) Raw result from 3-line incremental solver after RANSAC. (c) Camera
motion recovered from incremental solver after refinement. (d) Camera motion recovered from 3-line simple solver after nonlinear refinement
using inliers and filtering out several bad estimates.

work. The RANSAC estimate can be optionally refined by
a within-frame, nonlinear local refinement procedure using
all the inliers. (Note that this is not bundle adjustment, as no
information is aggregated over multiple frames.)

The first dataset is obtained by imaging a set of boxes
rotating on a turntable. This is an interesting dataset because
there are very few straight lines for estimation, with some
outliers in the form of background lines that do not move
with the turntable. The ground truth rotation of the turntable
is slightly more than 360◦. Note that the stereo baseline here
is wide relative to the scene depth.

The results obtained using the various algorithms dis-
cussed in the paper are shown in Figures 7 and 9. First, it
can be seen that the output of the simple solution is jerky
and does not yield a complete circle, even after nonlinear
refinement (Fig. 7 b, c). On the other hand, the incremental
solver as well as the polynomial system solver yield fairly
good reconstructions without any refinement (Fig. 7d), but

almost perfect results with nonlinear refinement (Fig. 7e,
Fig. 9a). These results are obtained at about 15 fps.

The next dataset involves a loop traversal in an office
environment. This scene is challenging, since there are
significant portions of purely forward motion and there are
several false edges due to glass surfaces or short-lived tracks
due to varying illumination. Most importantly, the stereo
baseline is very narrow compared to the depth of scene lines
(several meters). The results on one such sequence are shown
in Figure 1, here, we describe the results on another sequence
obtained in the same space.

The simple solution completely breaks down for this situ-
ation, which is expected as explicit reconstruction produces
noisy 3D lines and aligning them results in bad motion esti-
mates. By pruning away a large number of failed frames, it
is possible to discern the trajectory, but the resulting shape
is still inaccurate (Figure 8b). In comparison, the results ob-
tained with the incremental solver closely mimic the ground



(a) (b)

Figure 9. Top and side views of recovered camera trajectories for
(a) turntable sequence (b) another corridor sequence acquired in
the same work area.

truth, with no failure cases (Figure 8b,c). Note the accuracy
of loop closure and the correctly recovered trajectory even
in the forward motion segments of the traversal. The length
of the loop is about 60 meters, with a 20 meter forward mo-
tion overlap. There are about 1750 frames in the sequence
and the total error is about 1 meter. The entire system from
acquisition to motion estimation runs at about 10 frames
per second. RANSAC estimation of structure and motion
forms only 5% of the time spent for each frame. A similar
result using the polynomial solver for another loop traversal
is shown in Figure 9b. Note that these results are obtained
without any inter-frame bundle adjustment. 1

6. Discussions
In this paper, we have reported developments in the con-

struction of a robust, real-time stereo-based system for per-
forming structure and motion estimation using infinite lines.
One of our primary contributions is a set of fast algorithms
that require only two or three lines, are more robust than
simple approaches requiring explicit 3D reconstruction and
are well-suited for use in a RANSAC framework. Our ex-
periments demonstrate that the system, although not fully
optimized yet, performs robustly at high frame rates in chal-
lenging indoor environments.

While bundle adjustment was not used for any of the
sequences in this paper to better illustrate the properties of
our algorithms, it can conceivably lead to further improve-
ments in the motion estimates. To conclude, we note that
the success of any real-time system depends on pragmatic
design considerations, which we will describe in detail in an
extended version of the paper.

Acknowledgments

The authors would like to thank Marc Pollefeys, Jan-
Michael Frahm and Brian Clipp for several helpful discus-
sions. Part of this work was completed when the first author
was an intern at Honda Research Institute, Mountain View.

1Videos at http://vision.ucsd.edu/˜manu/linesfm .

References
[1] A. Bartoli and P. Sturm. The 3D line motion matrix and align-

ment of line reconstructions. IJCV, 57(3):159–178, 2004.
[2] A. Bartoli and P. Sturm. Structure-from-motion using lines:

Representation, triangulation and bundle adjustment. CVIU,
100(3):416–441, 2005.

[3] A. Comport, E. Malis, and P. Rives. Accurate quadrifocal
tracking for robust 3D visual odometry. In ICRA, pages 40–45,
2007.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image anal-
ysis and automated cartography. Comm. ACM, 24:381–195,
1981.

[5] R. I. Hartley. Lines and points in three views and the trifocal
tensor. IJCV, 22(2):125–140, 1997.

[6] R. I. Hartley. Computation of the trifocal tensor. In ECCV,
pages 20–35, 1998.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

[8] A. Heyden. Geometry and Algebra of Multiple Projective
Transformations. PhD thesis, Lund University, 1995.

[9] Y. Liu and T. S. Huang. A linear algorithm for motion estima-
tion using straight line correspondences. CVGIP, 44(1):33–57,
1988.

[10] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Image
Understanding Workshop, pages 121–130, 1981.

[11] D. Nistér. An efficient solution to the five-point relative pose
problem. PAMI, 26(6):756–770, 2004.

[12] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In
CVPR, pages 652–659, 2004.

[13] D. Nistér and H. Stewénius. A minimal solution to the gener-
alized 3-point pose problem. JMIV, 27(1):67–79, 2007.

[14] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mor-
dohai, B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Mer-
rell, C. Salmi, S. N. Sinha, B. Talton, L. Wang, Q. Yang,
H. Stewénius, R. Yang, G. Welch, and H. Towles. Detailed
real-time urban 3D reconstruction from video. IJCV, 78(2-
3):143–167, 2008.

[15] H. Pottmann and J. Wallner. Computational Line Geometry.
Springer, 2001.

[16] L. Quan and Z. Lan. Linear N-point camera pose determina-
tion. PAMI, 21(8):774–780, 1999.

[17] G. Schindler, P. Krishnamurthy, and F. Dellaert. Line-based
structure from motion for urban environments. In 3DPVT,
pages 846–853, 2006.

[18] A. Shashua and L. Wolf. On the structure and properties of
the quadrifocal tensor. In ECCV, pages 710–724, 2000.

[19] H. Stewénius, C. Engels, , and D. Nistér. Recent developments
on direct relative orientation. ISPRS, 60:2006, 284-294.

[20] C. J. Taylor and D. J. Kriegman. Structure and motion using
line segments in multiple images. PAMI, 17(11):1995, 1021-
1032.

[21] Z. Zhang and O. D. Faugeras. Estimation of displace-
ments from two 3-D frames obtained from stereo. PAMI,
14(12):1141–1156, 1992.


