
The Memory Game: Creating a human-robot interactive scenario for
ASIMO

Victor Ng-Thow-Hing, Jongwoo Lim, Joel Wormer, Ravi Kiran Sarvadevabhatla,
Carlos Rocha, Kikuo Fujimura, and Yoshiaki Sakagami

Honda Research Institute USA
Mountain View, CA, 94041, USA

{vngthowhing,jlim,jwormer,rsarvadevabhatla,crocha,kfujimura,ysakagami}@hra.com

Abstract— We present a human-robot interactive scenario
consisting of a memory card game between Honda’s humanoid
robot ASIMO and a human player. The game features per-
ception exclusively through ASIMO’s on-board cameras and
both reactive and proactive behaviors specific to different
situational contexts in the memory game. ASIMO is able
to build a dynamic environmental map of relevant objects
in the game such as the table and card layout as well as
understand activities from the player such as pointing at cards,
flipping cards and removing them from the table. Our system
architecture, called the Cognitive Map, treats the memory game
as a multi-agent system, with modules acting independently
and communicating with each other via messages through a
shared blackboard system. The game behavior module can
model game state and contextual information to make decisions
based on different pattern recognition modules. Behavior is
then sent through high-level command interfaces to be resolved
into actual physical actions by the robot via a multi-modal
communication module. The experience gained in modeling this
interactive scenario will allow us to reuse the architecture to
create new scenarios and explore new research directions in
learning how to respond to new interactive situations.

I. INTRODUCTION

Recently, humanoid robotics have begun to demonstrate
an array of impressive motor skills, such as climbing stairs
[1], whole body manipulations of large objects [2], and
dancing [3]. On the perceptual side, continued effort has been
invested in object recognition and geometry reconstruction
to provide robots a model of its environment. The goal
for many autonomous robots is to be able to use many of
these component motor and perceptual skills to accomplish
complex tasks involving interaction with both objects and
humans in the environment. This is especially important
for humanoid robots because of their anthropomorphic body
design and capability to perform many different tasks.

In addition to the motor and perceptual problems, the robot
needs to be able to perform decision-making tasks that allow
it to map pattern recognition modules on the perception side
to the behavior generating components on the motor side.
This involves the need to recognize situational context and
requires a communication subsystem for interaction with
humans. For humanoid robots, speech and gesture are the
main modalities available.

The ability to perform complex tasks requires the support
of an established software architecture to ease integration
and inter-communication of these disparate components. The

successful execution of these tasks requires a system-level
approach rather than focusing on individual components.
Decision-making modules must make use of information or
events from pattern recognition perceptual modules and be
able to select appropriate behavior for the robot. Further-
more, even though components may operate error-free when
tested in isolation, they can suffer unforeseen failures when
operating concurrently with other modules. For example,
any head-related motion may jeopardize the robustness of
computer vision algorithms that assume a static input image.
For researchers, the integration process should be simple and
require minimal modification to existing software. The ar-
chitecture should also encourage components to be reusable,
modular and exchangeable to maximize flexibility and exten-
sibility of the robot’s capabilities. On the performance side,
the architecture should be fault-tolerant so that the failure
of any component module will not require restarting the
entire system. Recently, we have developed a blackboard-
based architecture known as the Cognitive Map [4] to meet
these needs.

In this paper, we present our attempt to utilize our system
architecture and component modules to create a well-define
human-robot interactive scenario that demonstrates situa-
tional context recognition, perception and reconstruction of
the environment and multi-modal communication via speech
and gestures, including deictic gestures that make use of
spatial information obtained from the perceived environment.
This scenario is realized in the form of a memory card game
between Honda’s humanoid robot ASIMO [1] and a human
opponent.

A. Memory Game Problem

The Memory Game features a deck of matching pairs of
cards that are shuffled and placed face down on a table.
Players take alternate turns picking two cards in an attempt
to find and collect matching pairs. If a player successfully
finds a match, he or she can take another turn. If they do not
find a match, the other player starts his or her turn. When all
the cards are gone, whoever has the most pairs of matches
wins. A tie can occur if both players have an equal number
of card pairs. In our scenario, we feature ASIMO playing
against a human player, where the cards can be arranged
anywhere on a table.

The choice of modeling the memory game as an interactive



scenario was made due to its relatively simple rules, strate-
gies and goals. The game requires a robust perceptual com-
ponent to detect and recognize the identity of cards. ASIMO
must communicate with the player using speech or gestures,
including asking the player to flip cards on its behalf since
ASIMO’s manipulators are not dexterous enough to turn over
flat cards on a table. ASIMO’s perception is restricted to
the two cameras located in the head. This not only makes
the system more portable to different environments, but it
motivates embodied behaviors such as ASIMO having to
look down at the table to see the cards. The one exception to
the self-contained ASIMO constraint is our use of an external
projector to highlight cards that ASIMO would like to flip
over (Section III-E).

1) Reusability of architecture and modules: Having a
concrete goal of the memory game enabled us to focus
on the desired features needed for our system architecture.
Modules were written in different computer languages and
on different operating systems and needed to communicate
with each other. The nature of interactions dictated the type
of messages that modules must pass to each other. It is
important to make sure the architecture and modules do not
become too specialized to the memory game as we wish to
reuse the system for other types of interactive applications in
the future. This criteria influenced the choice of design and
selection of modules to use. For example, our card detector
was deliberately designed to be unaware of any game-specific
rules.

2) Interaction characteristics: Another goal was to con-
sider robustness in the memory game on several levels. For
example, perceptual robustness is required as cards change
orientation or position on the table and undergo different
illumination changes. Table detection should be robust to
small changes in ASIMO’s head orientation while it executes
body gestures. In the memory game itself, ASIMO needs to
focus on activities of interest, while ignoring unimportant
events. The player should be free to communicate with
ASIMO using natural means such as speech and gestures.

We did not want to create a scripted experience where
ASIMO only reacts as a result of speech or activities from the
user. ASIMO should be able to proactively perform behaviors
while waiting for the player to take his or her turn. This
includes asking players for help if they are taking too long
to pick a card. It also includes expressing the same semantic
message different ways to avoid monotony. For example, if
ASIMO is winning the game, it may choose to say things
in a more gentle manner so as not to upset the player. To
solve these problems, we provide timeout mechanisms for
ASIMO to proactively initiate behaviors, idle motions such
as nodding acknowledgment whenever the player speaks
to ASIMO, and a multi-modal communication module to
generate new phrases and gestures based on requests for
semantic message communication from other modules.

B. Previous Work

Communication between humans and embodied agents
have been explored in virtual reality and human-robot inter-

action. Virtual reality systems featuring synthetic actors have
the advantage of more expressive computer graphics and per-
fect knowledge of the environment [5]. In contrast, human-
robot interaction requires the additional problem of devel-
oping robust sensing and control algorithms. The Kismet
system [6] specialized in facial expressions and movement
for short-term interactions. There have been several robotic
systems designed for long-term interaction with humans.
The HERMES system [7] was operated over a period of
six months in a public museum. It performed tasks such as
pouring water into a glass, explaining museum exhibits and
engaging in dialogs with people. Valerie the Roboceptionist
[8] is a stationary robot designed to interact with visitors over
an extended period of time through social dialog. Although
the robots are active for long periods of time in these systems,
the duration of task interactions were relatively short. For
example, the robot would respond to a query or command
from the user and perform the task, ending the interaction
and subsequently waiting for the next interactive event.
These tasks typically require a small number of states to
characterize them. In contrast, the memory game requires the
modeling of many states or contexts in order for the robot to
determine appropriate behavior, including exceptions where
a player may ask for help or ASIMO proactively engages
the player.

II. SYSTEM OVERVIEW

Details of our system architecture are described in [4].
However, several details are reviewed here for completeness.
The implementation of the memory game can be considered
to be a multi-agent system, where the component modules
act as independent agents that can process information con-
currently with other modules. The agents can communicate
with each other using messages or data streams through a
shared information space using a blackboard architecture [9].
Component modules can be distributed on different machines
and operating systems or co-located on the computer, subject
to computational load constraints. Since communication is
restricted to specific message types, different implementa-
tions of a module can be substituted as long as the same
message types are posted and subscribed to. Modules can be
stopped and restarted (in case of failure) without requiring
other modules to restart. Figure 1 depicts all the components
of our memory game system.

Messages are typically used to denote events in the system
and are accompanied by information about the properties
of the related object (if applicable). For example, the card
recognizer reports messages: card-flip, card-appear, card-
remove, card-touch to notify modules of the respective activ-
ities involving cards on the table. Each event is accompanied
by a data object (called a CMobject) that describes its
properties. CMobjects can also represent commands not
involving any physical objects such as Say-text and Do-Task
messages for text-to-speech and task commands respectively.

In general, modules should have a clearly defined role in
the system. For the memory game, modules usually fall into
one of three categories: pattern recognition, decision-making,



Cognitive Map
(Blackboard system)

Game Behavior

Card Recognition

Table Detection

Table Touch 
Detection

Environment Map
Tiimer

Task Matrix

Text to Speech

Natural Language 
Processing

Multi-modal Communication

Projector

Speech Recognition

Behavior-based Modules

Decision-making modules
Pattern-recognition Modules

messages with CMobjects

Fig. 1. Cognitive-map multi-agent architecture for the Memory Game

Fig. 2. Left: Environment map, Right: Projector highlighting of card
(enhanced for easier visibility)

and behavior-based. Pattern recognition modules typically
consist of modules which take sensor input and produce
perceptual features in the scene, such as card location and
identity. Pattern recognition modules can also work with
temporal streams of information to detect activities such
as card removals or card flips. Decision-making modules
accept events posted from the pattern recognition modules
and consider internal state of the robot and game to generate
appropriate behavior. Behavior modules can produce perceiv-
able robot activity such as speech utterances, gestures, or
other complex motor tasks. Figure 1 illustrates the different
categories of the modules used in the memory game. In-
formation exchange can happen in both directions between
any modules in the system. In Section IV, we describe the
communication flow for several situations that can occur
during the game. The next section describes each module
used in the system in more detail.

III. MODULES

An interactive scenario like the memory game requires
a variety of different component functionalities that when
assembled together enables complex behavior of the robot
with its environment.

A. Environment Map

The Environment Map collects object pose information
and robot configurational state to perform the necessary
coordinate transformations to bring both the robot and its
environment in the same frame of reference. A visual dis-
play allows monitoring of ASIMO’s current estimate of its
environment. The positional information is used for finding
the physical locations of objects that are required to complete
deictic gestures such as pointing at cards.

Incoming coordinate information can be either 2-D (such
as table-top or stage coordinates) or 3-D (pose of the table).
For example, the table’s pose is reported in camera coordi-
nates which is in turn transformed into the world reference
system because we know the position of the camera on the
robot. Cards are reported as 2-D coordinates relative to the
table-top and are transformed into world coordinates since
we know the table’s position and orientation in the world.
The left side of Figure 2 illustrates the robot and the detected
table and cards in the environment map.

B. Table Detection

Since the memory game is played on a table, robustly
detecting and tracking the game table is very important for
uninterrupted play. We use a single camera to detect and
track a table. Due to large radial distortion of the wide field-
of-view lens in our camera, it is quite a challenging task to
extract accurate information about the table, cards and the
player’s actions.

As shown in the first row of Figure 3, we use color and
edge information to build a response map (Figure 3 b) from
a raw image frame. Once the biggest blob is detected, its
border pixels are mapped to normalized image coordinates
after compensating for the radial distortion of the lens [10]
(Figure 3 c). The convex hull of the border points are then



(a) (b) (c) (d) (e) (f)

Fig. 3. Steps for table detection: a) table view from camera, b) table blob detection, c) table border points, d) table convex hull, e) table edges, f) table
homography transform

computed (Figure 3 d) to generate table edge candidates.
For the n convex hull points, we consider n × k lines that
passes one point and its k neighbors, compute the support
for each line by the table border points, and pick local-
maximum lines. If four lines are detected correctly (Figure 3
f), then we compute the homography H [11] which maps
[−w/2 : w/2] × [−l/2 : l/2] to the area surrounded by the
four lines where w and l correspond to the width and length
of the table. By applying this homography H , we can create
a virtual top-view image of the table (Figure 3 f).

Once the table is detected, we can efficiently test whether
the table is in the same detected position in subsequent
frames. We spread a few test points on each edge of the
table, and test whether the points are lying on the boundary
between the table blob and the background. If sufficiently
many points are on the table edge, we use the previous
homography. Otherwise, we re-detect the table. This method
gives us robustness over occlusions occurring when the
player’s hand touches or flips cards on the table.

If we know the geometry of the table, we can reconstruct
its 3-D orientation and position from the estimated homog-
raphy. When the head moves and if the motion trajectory
is known, it can be combined with the previously estimated
homography to generate an estimated current homography
without detecting the table from the image. This option is
useful when some parts of the table are out of the field of
view.

C. Card Recognition

The card recognizer uses blob segmentation and direct
template matching to segment and identify cards. Training
images are stored as image patches. For each frame of
incoming video, holes in the image blob corresponding to the
table are detected as potential cards from the homography-
corrected mask obtained from the table detector (Section III-
B). If the area in pixels of a hole is too large compared
to the training card patches, it is split into multiple pieces
using K-means clustering. For each card blob, the center
and 2-D orientation is estimated by taking the mean of
the pixel coordinates and the eigenvectors of the covariance
matrix respectively. Using this center and rotation, the image
patch from the homography-corrected image is cropped and
compared to the training patches.

When the person interacts with cards, there are significant

occlusions by the player. To handle this occlusion, only the
holes completely surrounded by the table blob are considered
as valid card blobs. The other holes are considered as
occluded regions. The cards in the occluded regions are not
updated until the occluding blob disappears. If a card is
removed, the region it was in before will be in the table
blob, so we can detect the card has been removed during the
occlusion. If a card was not touched, it will remain in the
same position after the occlusion.

D. Table Touch Detection

ASIMO has a stereo camera pair that we use for detecting
the presence of the player’s hands over the table. Generally,
stereo works poorly in the table region or other textureless
regions. However, we have very good estimates of 3-D
position and orientation of the table from the homography
from Section III-B, so we can default to the table plane
when encountering ambiguous stereo matching pairs. We set
a volume-of-interest (VOI) on the detected table (marked as
black and white dots in Figure 4 a), and only consider 3-D
blobs in the volume. The resulting depth map we get from
the stereo contains only the body parts or other objects on
the table. With this information we can detect whether the
player is touching a card or his hand is hovering over the
table by measuring the distance from the table plane to the 3-
D blobs in the VOI. Figure 4 (c) and (d) shows touch regions
as red and proximity regions as green.

E. Projector

When ASIMO points to a region of the table containing
many cards, it may be difficult to tell which card it is
pointing at. We contemplated having ASIMO hold a laser
pointer, but the limited degrees of freedom in its arm did not
provide enough precision control. Consequently to reduce
ambiguity, we installed a ceiling-mounted video projector.
The projector’s display is controlled by a module that in-
teracts with the Cognitive Map. All modules are able to
interact with the projector by sending drawing commands,
which will be displayed on top of the table. During the
game, the projector is used to highlight selected cards with an
animated pattern, complementing ASIMO’s pointing gesture
and verbal indications (see Figure 2, right).

The projector system requires an initial calibration step
to manually adjust the corners of a projected grid to match



(a) (b)

(c) (d)

Fig. 4. Detecting hand-table touch and proximity events: (a) volume of
interest (VOI) bounded by black and white dots, (b) cropped depth map
in VOI, (c) hands touching table and (d) corresponding touch regions (red)
and proximity regions (green).

the corners of the table using the computer’s mouse. This
ensures that the projection viewport is aligned and scaled
to the projection surface. This method allows the projector
system to be used on a variety of different rectangular tables.

F. Speech Recognition/Natural Language Processing

Recognizing speech utterances is important for realistic
and satisfying human-robot interaction. The memory game
consists of several scenarios where a player can be ex-
pected to speak. For instance, the player could seek help
in determining the location of a particular card. In order
to recognize the words and phrases used, game-specific
grammars can be defined and employed. Robustness of
recognition can be achieved by re-defining the grammar to
contain only relevant phrases that are expected in different
contexts of the game. In order to assign semantics to the
spoken utterances, messages containing the utterances from
the speech-recognition module are sent and processed by
the Natural Language Processing(NLP) module. This module
maps all the variations of an utterance to a unique set of
semantic directives. These directives are passed to the game
behavior modules for processing and high-level decision
making. Further examples of how this process works are
described in Section IV.

G. Text-to-Speech

The Text-to-Speech module uses a customized commercial
engine to produce ASIMO’s boyish English-speaking voice.
The speech engine is capable of changing intonation when
posing questions and offers some speed control as well as the
ability to interrupt speech in progress (barge-in capability).
This module services say messages sent from other modules
like Multi-modal Communication (Section III-H) to convert
text to an audible voice (see accompanying video).

H. Multi-modal Communication (MC)

Human beings tend to use different modalities such as
speech and body gestures in their interactions with each

other. To this end, we developed a multi-modal communi-
cation (MC) module capable of communicating using body
gestures and speech simultaneously to improve ASIMO’s
expressive ability. This is especially important as ASIMO
lacks an expressive face. Since the content and style of a
message are specified separately, we can avoid repetitive,
identical behaviors when ASIMO wishes to communicate
information with the same semantic content.

In order to allow the MC module to be reuseable in differ-
ent application scenarios, care was made to avoid building
in application-specific knowledge within the module. The
module must act on information solely from directives it
receives from other modules, as well as any shared infor-
mation accessible in the Cognitive Map. The MC module
takes as input high-level communication directives from
other modules such as Indicate(card10) or Offer(help) and
converts the directives into physical gestures and speech.
Directives can be accompanied by style tags so an appli-
cation module can give hints to the MC module on how
to deliver the contents of the communication directive. For
example, ASIMO may choose to use polite phrasing, or
short curt sentences to convey friendliness or impatience.
For cases where an application wants complete control over
how communication is delivered, there is a special Verbatim
directive which allows a module to specify the exact words
and gestures to use.

I. Task Matrix

The Task Matrix module, described in detail in [12], col-
lects different motor programs that can execute motor tasks
ranging from pointing to an object, playing pre-generated
motion trajectories or navigation with motion planning
around obstacles. It allows other modules to launch motor
tasks using a high-level command interface. For example, the
MC module can send the command Point(target=Card12) to
the Task Matrix. The corresponding pointing motor program
automatically resolves the 3-D position of Card12 and selects
which arm to use based on proximity of the hand to the
card. Other tasks include playing pre-generated motions like
a victory celebration sequence, parametrized by duration,
Victory(duration=5 secs). In the accompanying video, these
described behaviors can be observed.

J. Timer

The timer module produces a message echoing service
that allows modules to schedule coarse-grained (minimum
resolution 1 second) timeout events that can be used to
trigger proactive behaviors. A module can specify when they
want the message to be sent back to them (timeout interval)
as well as the message type and contents. The timer module
manages all timeout requests and at the appropriate time
posts the messages to the Cognitive Map for the modules
to receive. Since the timer module is implemented within
the Cognitive Map framework, the timeout messages can be
recognized by other modules different from the originator of
the timeout request.



K. Game Behavior

The Game Behavior module is responsible for maintaining
the game state during the entire scenario. It can be though
of as a more specific instance of an interaction module that
encapsulates the application-specific details of an interactive
scenario. It also includes functions for handling game strat-
egy and related interaction scenarios such as asking for help,
or proactively warning players of potential bad moves (see
Section IV).

Finite state machines are used to handle the recognition
of the game situational context as well as decide which
behaviors to perform based on perceived events from other
modules in the system. The finite state machine is a col-
lection of transition sequences defined by a current state,
an event message that triggers a transition to a new state,
additional optional Boolean conditions or guards that must
be true for the transition to occur, and a set of functions
that are executed upon transition. This arrangement allows
for a wide variety of interesting behaviors and flexibility in
describing when they should be chosen. A good review of
finite state machines in the context of creating games can be
found in [13].

In addition to the transition sequences, local game state
information is also maintained. In particular, a tableau is
maintained of the current state of cards on a table, card
memory keeps track of ASIMO’s current knowledge of the
identity of cards (those whose identification is revealed in
the past), and turn-based ply information that monitors the
current cards revealed for each player during a turn in the
memory game. Various events such as card flips initiate
updates to ASIMO’s internal card memory.

During the construction of the memory game, we were
able to build up the complexity of ASIMO’s interactive
behavior by simply adding new sequences to the finite state
machine. The sequences are defined in the Lua scripting
language [14] which can be run-time interpreted to allow
for quick evaluation of newly added interactions. Since all
the application-specific state transitions and game-related
functions of the finite state machine are implemented in
the Lua scripting language, new interactive scenarios can
be modeled simply by replacing this single script definition
file without needing to re-compile the generic portion of the
game behavior module that implements the execution of the
finite state machine.

IV. INTERACTION CASE STUDIES

ASIMO’s style of play during the memory game focuses
on offering a friendly, interactive experience for the human
opponent. With this in mind, we illustrate how different
modules interact with each other during the course of the
memory game. Three different scenarios that can occur
during the game will be described: ASIMO pointing at cards,
ASIMO offering help, and ASIMO proactively warning a
player if they are about to make a mistake.

A. Pointing at cards

Since ASIMO does not have hands dexterous enough to
pick up flat cards on a table, it must utilize its speech and
gesture modalities to indicate to its human opponent which
card to select on its behalf. In particular, once ASIMO
decides which card to select, it verbally informs the user
it wants to select the card while pointing at the card and
highlighting it with the projector module.

The Game Behavior module recognizes through its state
machine that it is ASIMO’s turn. ASIMO then refers to
its local game state memory to identify any potential un-
revealed card matches on the table. In the event there are
no matches, it selects an unknown card. If the card reveals
a known match, ASIMO will promptly select the matching
card. Otherwise, it deliberately chooses a known card so
as to minimize the risk of revealing new information to
its opponent. The sophistication of game strategy can be
adjusted for different levels of players.

When ASIMO decides to select a card, it sends a high-
level directive, Indicate(cardID) along with the CMobject for
cardID containing the object’s properties to the MC module.
The MC module recognizes the Indicate directive and de-
termines that a pointing gesture and projector highlighting
are appropriate, as well as a speech utterance like: ”I choose
this card.”. In this example, since the MC module can access
the object’s type through the sent CMobject, it can use
this information to indicate that it is a card. Alternatively,
ASIMO can choose to say something like, ”I choose this
one” or ”This.” depending on style flags as well as other
state information it can access from the Cognitive Map. For
pointing, a Point(cardID) is sent to the Task Matrix which
resolves the 3-D position of cardID from the Environment
Map and runs the motor program to generate a pointing
trajectory at the 3-D location. The MC module also sends
a Project(cardID) to the Projector module which computes
the 2-D location of the card on the table to highlight the
card. Finally, a Say(”I choose this card”) message is sent to
the Text-To-Speech module to generate speech on ASIMO’s
audio speakers. See Figure 5.

B. Offering help

Several game-related conversations can occur in the course
of the game. For example, if ASIMO notices the player
is taking a long time to perform his or her turn, it may
proactively prompt the player if he or she needs help.
If the player answers ”No”, ASIMO may apologetically
say, ”Sorry, just asking.” . However, if the player says
”Yes”, ASIMO examines the state of the player’s turn to
determine how to proceed. If one card has already been
exposed, ASIMO automatically can check its card memory
to determine the location of the other card. If ASIMO does
not know, ASIMO politely declines saying, ”I have no idea
myself.” If it does know, it proceeds to indicate two cards
with the MC module as described above, with one being the
correct card. The rationale behind this behavior is that we did
not want ASIMO to give the answer outright, but to reduce
the probability the opponent will select the wrong card.



To accomplish this, when the game module enters states
corresponding to the player’s turn, it initiates a message to
the Timer module to timeout after a predetermined number
of seconds. At the end of the timeout period, the Timer
module sends a message back to the Game Behavior module,
prompting the state machine to enter a dialog offering
help. The Offer(help) directive is sent to the Multi-modal
communication module causing ASIMO to produce an open
arm gesture while saying a phrase like: ”Do you need help?”.
Meanwhile, the game behavior module is now awaiting a
response from the user. The Speech Recognition module
listens for utterances which upon receiving, it sends to the
Natural Language Processing module which can convert the
response to a Reject directive (if negative) or an Acknowl-
edge directive (if positive). In the latter case, the NLP module
can append style tags like ”simple” or ”lengthy” to indicate if
the player responded in a curt or lengthy manner to provide
hints to another module on how to appropriately respond.
These directives are sent back to the Game Behavior module.
Finally, if the answer is positive and ASIMO is capable of
offering assistance, Indicate or Verbatim directives are sent
back to the Multi-modal module to point out card choices
for the user (Figure 5).

C. Proactive warning of touched cards

Another proactive behavior we built into the memory game
is having ASIMO warn or tease a player if they are about
to flip an incorrect card. If it is the player’s turn and the
second card is about to be picked, ASIMO can detect the
initial card touch event prior to flipping and determine if the
card is the correct one to pick. If a pending mismatch is
about to occur, ASIMO playfully says, ”Are you sure about
that card?”, prompting the human player to be filled with
self-doubt (Figure 5).

The touch event is created from composite information
from the table detector and card recognition modules. The
table detector module detects a generic table touch event,
communicating position information to the card recognizer
which can resolve the position information to a specific card.
The card recognizer subsequently posts a message to the
game behavior module indicating a card touch has occurred
along with the corresponding CMobject for the card. The
game behavior module uses the submitted card information
to verify if the pending card is the correct one and if not,
sends a warning by issuing a Verbatim directive to the MC
module. The game behavior state machine then returns back
to the state awaiting the player’s second move.

V. DISCUSSION

A. Pattern recognition

The pattern recognition modules in our system range from
the stand-alone table detector to more complex modules that
combine information from several other perceptual mod-
ules. For example, identification of touched cards requires
combining table detector information with card detectors.
Patterns are not restricted to the spatial domain. Time-series
information is an important characteristic of many activity

detectors and is utilized in the memory game for identifying
arrival, flipping and removal of cards.

B. Uncertainty

When dealing with real-world environments and sensors,
handling of uncertainty becomes an issue. In our scenario,
most of the uncertainty in perception is handled by individual
pattern recognition modules. However, uncertainty at higher
levels, related to interpretation of events is also handled
by the Game Behavior module. For example, a player may
simply flip a card over, or remove a card, examine it, and
place it back on the table. The finite state machine can use its
knowledge of the current game state to interpret the proper
meaning of the sequence of events observed.

Nevertheless, our implementation of the memory game can
still suffer from critical failure conditions. If a critical event
is missed by any of the pattern recognition modules, the
robot may be left waiting indefinitely for the missed event
to occur. This problem can be handled by extending the
finite state machine to include timeout events that trigger
subsequent action to reassess the game state. Alternatively,
using probabilistic methods to analyze time series events and
sequence actions like dynamic Bayesian networks [15], [16]
can be used to robustly estimate the current game state. We
also experienced robustness issues with the speech recognizer
while testing the memory game with children due to the
higher pitch in their voices. This was due to the fact that our
speech recognizer was designed with adult voice acoustic
models. Creating a new voice model from children’s voice
data should help alleviate the problem.

C. Limitations

There can be unwanted interactions between modules that
may jeopardize the performance of modules, especially when
dealing with moving robots. For example, if ASIMO has
excessive head motion, most pattern recognition modules
may fail because they either incorrectly detect removal of
objects as the field of view changes or the resulting motion
blur degrades the images to be processed. We intend to use
the Cognitive Map architecture to allow the Task Matrix
to send warning messages to modules of impending head
motion to allow perception modules to go into standby during
head motion so as to not post faulty information to other
modules.

As with any large distributed system, the failure of critical
components can still halt the application. For example, any
errors in the Game Behavior module will obviously not
allow the game to proceed. Although one could restart the
problematic module, if the error is systematic, there is no
easy way to solve the problem beyond standard debugging.

Another problem with finite state machine decision-
making is that the occurrence of events in a live system
can outpace the handling of those events. In our testing, we
often rapidly played out the game and ASIMO’s reactions
sometimes lagged with the current action of the game. For
example, if a player already picked two cards, it does not
make sense for ASIMO to prompt for the second card to be



Fig. 5. Interactive scenarios: Pointing at cards (left), Offering help (middle), Proactively warning of touched cards (right)

picked after the incident has already occurred. The solution
involves ASIMO examining the message queue prior to
processing responses so that it can decide to skip notifications
if it notices the player has already performed the event.

D. Reusability

The Cognitive Map architecture facilitates reuse of many
modules created for the memory game for other interactive
scenarios. Since modules operate as independent agents and
communicate with each other only via messages, a new inter-
active application can be created by changing or replacing
a few key modules while keeping the rest of the system
intact. Most modules should be designed to offer generic
services while isolating application-specific details to a single
module. Generic communication behavior embodied in the
Task Matrix, Text-to-Speech, and Multi-Modal communica-
tion modules can be reused without modification as they are
designed with no application-specific knowledge. Since the
card recognizer detects generic activities such as flipping and
removing, it can be reused for different card-related games.
The Game Behavior module (Section III-K) is an instance of
an interaction module that encapsulates all the application-
specific details of the memory game. Different card games
can be developed by changing the rules and game states in
this module. Messages sent from this module can contain
application details used to parametrize the behavior of a
generic module. For example, the Game Behavior module
can send a message to the speech recognizer to configure
grammar files that describe game-specific vocabulary. This
incremental strategy for building new applications by reusing
modules allows faster development times by focusing efforts
on only new functionality.

VI. CONCLUSION

The architectural framework we have developed based
on the Cognitive Map and related modules enables us to
model the memory game as a continuous, complex scenario
involving two-way communication between ASIMO and its
human opponent. Our design decisions to make most mod-
ules application-independent allow us to reuse modules to
rapidly create novel interactive applications in the future. The
memory game has been tested informally with approximately
20 different players, but in order to quantify what aspects
of multi-modal communication are effective, detailed user
interaction studies should be conducted. Many interactive

sequences in the Game Behavior module can be modeled
with a combination of events, state machines and behavior
actions. We would like to use the same representation as a
learning template to attempt to dynamically build new state
machines from observed events and responses. By going
through the process of attempting to reach a clear, focused
goal of ASIMO playing the memory game, we can now
proceed to the next step of learning sequences of interaction
in novel situations of similar complexity.

REFERENCES

[1] Honda Motor Co., Ltd., “Asimo year 2000 model,”
http://world.honda.com/ASIMO/technoloogy/spec.html, 2000.

[2] M. Stilman, K. Nishiwaki, and S. Kagami, “Learning object models for
whole body manipulation,” in IEEE-RAS 7th International Conference
on Humanoid Robots (Humanoids 2007), 2007.

[3] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi, “Leg motion
primitives for a dancing humanoid robot,” in IEEE 2004 International
Conference on Robotics and Automation, 2004.

[4] V. Ng-Thow-Hing, E. Drumwright, K. Hauser, Q. Wu, and J. Wormer,
“Expanding task functionality in established humanoid robots,” in
IEEE-RAS 7th International Conference on Humanoid Robots, 2007.

[5] L. Zhang, M. Gillies, and J. Barnden, “Emma: an automated intelligent
actor in e-drama,” in ACM International Conference on Intelligent
User Interfaces 2008 (IUI 2008), 2008, pp. 409–412.

[6] C. Breazeal and B. Scassellati, “How to build robots that make
friends and influence people,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’99), 1999.

[7] R. Bischoff and V. Graefe, “Demonstrating the humanoid robot hermes
at an exhibition: A long-term dependability test,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS ’02);
Workshop on Robots at Exhibitions., 2002.

[8] R. Gockley, A. Bruce, J. Folizzi, M. Michalowski, A. Mundell,
S. Rosenthal, B. Sellner, R. Simmons, K. Snipes, A. Schultz, and
J. Wang, “Designing robots for long-term social interaction,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’05), 2005, pp. 2199–2204.

[9] B. Hayes-Roth, “A blackboard architecture for control.” Artificial
Intelligence, vol. 26, pp. 251–321, 1985.

[10] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall, 2002.

[11] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[12] E. Drumwright and V. Ng-Thow-Hing, “The task matrix: An extensible
framework for creating versatile humanoid robots,” in Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2006, Orlando,
FL, USA.

[13] J. Smed and H. Hakonen, Algorithms and Networking for Computer
Games. John Wiley & Sons Inc., 2006.

[14] R. Ierusalimschy, Programming in Lua. Lua.org, 2006.
[15] K. Murphy, “Dynamic bayesian networks: Representation, inference

and learning,” Ph.D. dissertation, UC Berkeley, 2002.
[16] B. Laxton, J. Lim, and D. Kriegman, “Leveraging temporal, contextual

and ordering constraints for recognizing complex activities in video,”
in Computer Vision and Pattern Recognition (CVPR 2007), 2007.


