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Figure 1: Renderings using measured BRDFs.

Abstract

Knowledge of material reflectance properties is of central con-
cern in computer graphics. Traditionally, BRDFs have been es-
timated with low dimensional parametric models while more re-
cently data-driven techniques have become more common. While
some progress has been made to ease the pain of direct BRDF mea-
surements, the process is still far from ideal, typically requiring
carefully calibrated aparatus and controlled lighting. The goal of
this project is to ease this burden by enabling BRDF measurements
under natural illumination using spherical harmonics.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Reflectance; I.2.10 [Artificial In-
telligence]: Vision and Scene Understanding—Modeling and re-
covery of physical attributes
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1 Introduction

Recently, data-driven techniques for modeling material reflectance
properties have been gaining in popularity [Matusik et al. 2003a;
Matusik et al. 2003b; Marschner et al. 2000]. This has in large part
been spawned by image-based measurement devices which capture
multiple samples of the 4D BRDF function in a single image. This
drastically reduces the number of measurements required to fully
sample a BRDF over more traditional devices like the gonioreflec-
tometer. One problem that still persists with these setups is that the
lighting must be carefully controlled.

This paper presents initial results of a novel technique for mea-
suring isotropic BRDFs that enables measurements in uncontrolled
lighting environments. The basic idea is to recover spherical har-
monic representations of BRDFs by forming constraints from mea-
sured lighting and exitant radiance. First, the lighting environment
is recovered with a light probe. Then a set of images of a mate-
rial of known geometry are taken in the same lighting environment.
Since the exitant radiance is computed in spherical harmonics as a
linear sum of lighting and BRDF coefficients, we are able to form
a system of linear constraints for the BRDF if we know the lighting
and exitant radiance. The solution to such a linear system yields the
spherical harmonic approximation to the BRDF.
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We begin with a survey of previous work, then describe our tech-
nique in more detail. Finally, we conclude with some initial results
and future work.

2 Previous Work

The study of material reflectance properties has a long history in
computer graphics. Initially, most reflectance models were repre-
sented by low-order parameterizations of the bi-directional refle-
cance function (BRDF). These models can be categorized as em-
pirical and physically based. Empirical models such as the Lamer-
tian model and the Phong model focus on creating “looking good”
with less emphasis on being physically valid while physically based
models like Torrence-Sparrow are derived from analysis of the
physical properties of materials.

The gonioreflectometer was the first device to actually measure the
reflectance properties of materials. However, the process is ex-
tremely slow as it only collects one sample at a time of a four-
dimensional function. To overcome this limitation, various image
based techniques were developed that collect multiple samples of
the BRDF at a time.

Karner et al. [1996] measure a subset of a material’s BRDF by plac-
ing a light source near a plane of the material and taking an image
of the plane. This produces a dense set of samples since the inci-
dent and exitant angles vary over the surface of the plane. The col-
lected data is then used to fit the material to some low-dimensional
reflectance model. Some practical issues hindering the effective-
ness of this technique are that nearby light sources often do not act
as point light sources and multiple images are required to capture a
full hemisphere of directions (as opposed to imaging a sphere which
does this in a single image).

Marschner et al. [Marschner et al. 2000] measure the BRDF of a
curved object of known geometry by capturing 2D slices of the 3D
isotropic BRDF function using a camera as the sensor device. This
drastically reduces the time required to measure the BRDF as a set
of images over a 1D domain is all that’s needed to collect all 3
dimensions of the isotropic BRDF.

A series of papers by Matusik et al. [2003a; 2003b] further the
field of image-based BRDF measurement. In [Matusik et al. 2003a]
BRDFs of isotropic materials are measured via images of spherical
balls of that material under controlled lighting. Also addressed is
determining the space of physically plausible BRDFs. Linear and
non-linear models are used to reduce the dimensionality of the data
to more compact representations. For the non-linear model, a 15



dimensional subspace is achievable. A method for moving along
these subspaces was developed based on perceptually meaningful
linear combinations of the 15 basis vectors constituting the 15 di-
mensional subspace. This enables users to create new BRDFs that
still exhibit properties of real materials.

In [Matusik et al. 2003b] a library of 100 densely sampled BRDFs
is analyzed to determine the best sampling stategy for measur-
ing isotropic BRDFs. First a set of wavelet basis functions were
computed that were best able to reproduce the original (densely-
sampled) BRDFs. Under the assumption that novel BRDFs are
similar to those in the BRDF library, new materials can be mea-
sured with many fewer images by recording fewer samples in low-
frequency regions of the BRDF.

Dror et al. [2001a; 2001b; 2001c; ] have explored surface re-
flectance properties for materials of known geometry using single
images. Their methodology is based on statistics of natural images
and exploits various features to estimate the type of material be-
ing observed. This is useful for automated surface classification,
but precise surface reflectance properties are not obtained, so it’s
usefulness for re-rendering the material are limited.

Perhaps the most related work to this project is that of Ramamoor-
thi. In his PhD dissertation [2002] he analyses forward and in-
verse rendering in the frequency domain using spherical harmonics.
While he briefly touches on BRDF measurement in the frequency
domain, the main point of his work is to form a mathematical frame-
work for spherical harmonic representations of the rendering equa-
tions.

Other relevant work includes that of Boivin and Gagalowicz [2001],
Yu et al. [1999], and Ikeuchi and Sato [1991].

3 Methodology

This section describes the BRDF measurement process in some de-
tail, with the goal of enabling a reader to reproduce the results with
a minimum of guesswork.

3.1 What Are We Measuring?

The first step in the process is to collect good material samples to
work with. An ideal material sample for this project will be per-
fectly spherical, completely homogeneous, and isotropic. More-
over, since the BRDF is only an approximation of light transport,
we require materials to have negligable subsurface scattering. To
measure lighting, we also require a specular ball.

Baltec is a company that specializes in making precision balls.
Their chrome plated steel balls work well for light probes and they
have a variety of other materials that would work well for BRDF
measurements. Other types of balls that are easily obtainable in-
clude billiard balls and street hockey balls.

3.2 Imaging

Once material samples are collected, we are ready to begin col-
lecting measurements. This involves finding a good location for
placing the spheres, calibrating the camera both geometrically and
radiometrically, and finally taking images in high dynamic range.

Because we are not taking into account interreflections or spatially
varying lighting effects, we must take care to place the spheres so

they do not have nearby surfaces or light sources. Because the
spheres cannot float in mid-air, this is impossible. A practical al-
ternative is to place the spheres on a thin stand covered with black
matte material.

Geometrically calibrating a camera is a well studied, but sometimes
tedious task. Therefore, to simplify things, we assume the camera
is orthographic. This assumption holds if the camera is far away
from the object being imaged. The rule of thumb is to have the
camera positioned at least ten times the distance of the size of the
object being imaged. If the camera has an aspect ratio of 1 and no
significant distorions (like radial distortion) then the image obtained
directly from the camera will suffice.

Radiometric calibration involves finding the mapping between pixel
intensity and light intensity arriving at the camera. Luckily, the
Canon EOS camera used for this project has a linear response curve,
so it doesn’t require calibration.

A final requirement for measurements used in this project is that
they be done in high dynamic range. Following the techniques of
Paul Debevec, we take multiple images at different exposures and
combine them into a single high-dynamic range image using HDR-
Shop.

3.3 Measuring Lighting

3.3.1 Calibrating the Light Probe

A mirrored ball is never perfectly specular as it always absorbs
some percentage of the light in practice. To account for this, the
albedo of the mirrored ball needs to be measured and intensities
adjusted accordingly. This can be done by placing a diffuse mate-
rial in the scene so that it is directly visible by the camera and also
visible in the reflection off the mirrored ball. The ratio of reflected
intensity to direct intensity is the albedo of the mirrored ball.

One potential problem is that the light probe does not have uniform
albedo. Rather, there are blemishes throughout the surface. This
is not currently accounted for, but could potentially be a serious
issue. One workaround would be to take multiple images of the
light probe at different orientations and then average the intensities
at a given angle. If enough images are taken the blemishes will have
an equal effect in all directions.

3.4 Angles and Other Geometric Considerations

Figures 2 and 3 show the spherical coordinate system used through-
out this paper. It will be convenient to distinguish between global
and local coordinates. Global coordinates, denoted (θ ,φ), are de-
fined with respect to the viewing angle of a given image. θ and φ
are the spherical coordinate equivalents to the Euclidean space cen-
tered at the center of the image of the sphere with z-axis pointing
straight toward the viewer and x and y-axes defined as the x and
y-axes of the image. Local coordinates, denoted (θ ′,φ ′), are based
on the surface normal at a given point on the surface of the imaged
sphere. Local and global coordinates are related by a rotation in
SO(3).

3.4.1 Surface Normals

A common operation is to determine the surface normal at a given
pixel in an image of a sphere. Because of our assumed orthographic
projection model, the image is equivalent to the sphere projected
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Figure 2: Elevation angles. θi is the incident angle and θo is the
exitant angle.
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Figure 3: Azimuth angles. φi is the incident angle and φo is the
exitant angle.

directly down onto a plane (see figure 4). This is a very simple pro-
jection model and the surface normal at a given pixel in the image
is easily computed in terms of the sphere radius R and center point
x0 = (x0,y0). Suppose the pixel coordinate is x = (x,y), then the
global angular coordinates of the surface normal are,

θN = sin−1(
||x− x0||

R
)

φN = tan−1(
y− y0

x− x0
)

where the global coordinate system has x and y axes aligned with
the image, the z axis directed toward the image plane, and the image
is centered about the center of the sphere.

3.4.2 Incident Lighting

When computing incident lighting angles from an image of a mir-
rored ball, the situation is slightly different. This is because what
matters is not the surface normal, but the light reflected off the sur-
face of the mirrored ball. Luckily, the incident lighting angle is very
closely related to the surface normal angle. The only difference is
that the elevation angle is doubled,

θi = 2sin−1(
||x−R||

R
)

φi = tan−1(
y−R
x−R

).

Material Sample

Image Plane

Figure 4: Orthographic projection model.

3.4.3 Differential Solid Angle

To evaluate integrals over the sphere, we need to compute the differ-
ential solid angle, sinθdθdφ , corresponding to a pixel in the image
of a light probe. We can compute dθ and dφ separately and then
multiply them together. We start with dφ . First note that we should
have a total of 2π radians if we integrate the differential azimuthal
angles about a fixed radius r. Also note that we have a total of
2πr pixels to divide the 2π radians among (this is just the circum-
ference in pixel units for a circle of radius r). Therefore we cover
dφ = 2π 1

2πr = 1
r radians for a pixel at radius r. Noting that r = θR

π ,
we can rewrite this as,

dφ =
π

θR
.

The formulation for dθ is only slightly more difficult. We can
rewrite the formula for θ as

θ = 2sin−1(
r
R

)

where r = x−R. Now we can take the derivative with respect to r,

dθ
dr

=
1
R

1
√

1− (r/R)2
.

Since each pixel occupies distance dr = 1 we get

dθ =
1
R

1
√

1− (r/R)2
dr

dθ =
1

R
√

1− (r/R)2
.



Putting it all together, we arrive at a differential surface area of

sinθdθdφ = sinθ
1

R
√

1− (r/R)2

π
θR

=
πsinθ

Rθ
√

1− (r/R)2
.

3.5 Spherical Harmonics

The spherical harmonics1 are a set of orthonormal basis functions
defined over the sphere. Given a function over the sphere f (θ ,φ),
the function can be reformulated as

f (θ ,φ) =
∞

∑
l=0

l

∑
m=−l

flmYlm(θ ,φ)

where Ylm are the orthonormal spherical harmonic basis functions.
To compute the spherical harmonic coefficients of f we can inte-
grate over the sphere,

flm =

∫ 2π

φ=0

∫ π

θ=0
f (θ ,φ)Y ∗

lm(θ ,φ)sin(θ )dθdφ .

3.5.1 Lighting

(a) (b)

(c) (d)

Figure 5: Comparison of original light probe image (a) with ones
generated from a spherical harmonic decomposition using terms up
to (b) l = 5, (b) l = 15, (c) l = 35. Notice the distinct ringing effects
due to high frequency aliasing.

The incident lighting can be represented as a function over the
sphere (if we assume distant lighting). The spherical harmonic de-

1Most of the results presented here are derived by Ramamoorthi in his
PhD dissertation [Ramamoorthi 2002].

composition of the lighting is

L(θi,φi) =
∞

∑
l=0

l

∑
m=−l

LlmYlm(θi,φi).

Figure 5 shows approximations to a lighting environment using
spherical harmonics.

3.5.2 Rotation

To represent lighting in local coordinates, the lighting environment
needs to be rotated into the local tangent frame. We represent rota-
tions in terms of Euler angles (α,β ,γ) with rotations about the Z,Y ,
and Z axes. In cartesian coordinates the rotation can be written as a
product of three rotation matrices Rγ

z , Rα
y , Rβ

z ,

X rot = Rβ
z Rα

y Rγ
z X

In the spherical harmonic representation, the rotated lighting coef-
ficient Llm′ is a linear combination of the unrotated lighting coeffi-
cients {Llm|− l ≤ m ≤ l} at level l,

L(θi,φi) =
∞

∑
l=0

l

∑
m=−l

l

∑
m′=−l

LlmDl
mm′(α,β ,γ)Ylm′ (θ ′

i ,φ
′
i )

where Dl is a matrix satisfying

Dl
mm′(α,β ,γ) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(Rα ,β ,γ(θ ,φ))Y ∗

lm′ (θ ,φ)sinθdθdφ .

A simpler form for Dl is

Dl
mm′(α,β ,γ) = dl

mm′ (α)eImβ eIm′γ

dl
mm′ (α) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(Ry(α)(θ ,φ))Y ∗

lm′ (θ ,φ)sinθdθdφ .

3.5.3 BRDF

The BRDF, ρ(θ ′
i ,φ ′

i ,θ ′
o,φ ′

o), is a 4D-function over incident and
exitant angles. Since the BRDF is always multiplied by cos(θ ′

i )
we create a new function ρ̂(θ ′

i ,φ ′
i ,θ ′

o,φ ′
o) = ρ(θ ′

i ,φ ′
i ,θ ′

o,φ ′
o)cos θ ′

i .
To enforce reciprocity, we can further multiply by cosθ ′

o, so that
ρ̃ = ρ̂ cosθ ′

o. Now ρ̃ can be represented using two spherical har-
monic expansions, one for the incident lighting and one for exitant
radiance,

ρ̃(θ ′
i ,φ ′

i ,θ ′
o,φ ′

o) =
∞

∑
l=0

l

∑
n=−l

∞

∑
p=0

p

∑
q=−p

ρ̃lm,pqY ∗
ln(θi,φi)Ypq(θo,φo).

where the expansion about the incident directions are in terms of
the complex conjugate of the spherical harmonic coefficients which
allows for later simplifications.

Isotropy reduces the BRDF from a 4D function ρ(θ ′
i ,φ ′

i ,θ ′
o,φ ′

o) to
a 3D function ρ(θ ′

i , ,θ ′
o, |φ ′

o −φ ′
i |). In spherical harmonics, the co-

efficients simplify to

ρ̂l pq = ρ̂lq,pq = ρ̂l(−q),p(−q).



3.5.4 Reflected Light Field

The reflected light field, B(α,β ,γ,θ ′
o,φ ′

o), is a function of surface
orientation and exitant radiance direction. If we assume isotropy, γ
drops out and we are left with a 4D function B(α,β ,θ ′

o,φ ′
o), which

can be represented in the frequency domain as

B(α,β ,θ ′
o,φ ′

o) =
∞

∑
l=0

l

∑
m=−l

∞

∑
p=0

min(l,p)

∑
q=−min(l,p)

BlmpqClmpq(α,β ,θ ′
o,φ ′

o)

where Clmpq(α,β ,θ ′
o,φ ′

o) = Λ−1
l Dl

mq(α,β )Ypq(θ ′
o,φ ′

o), Λl =
√

4π
2l+1 .

Since the reflected light field coefficients can be expressed in terms
of the incident lighting coefficients and the BRDF coefficients as
Blmpq = ΛlLlmρ̂l pq, we can substitute this into the previous for-
mula,

B(α,β ,θ ′
o,φ ′

o) =
∞

∑
l=0

l

∑
m=−l

∞

∑
p=0

min(l,p)

∑
q=−min(l,p)

LlmDl
mq(α,β )Ypq(θ ′

o,φ ′
o)ρ̂l pq

3.6 Recovering the BRDF Coefficients

Ramamoorthi recovers the BRDF coefficients by measuring the
incident lighting and the entire reflected light field from which
the BRDF coefficients can be directly recovered using the relation
Blmpq = ΛlLlmρ̂l pq. The problem with this technique is that it re-
quires taking a dense set of images to recover the reflected light
field, but it should be possible to get by with many fewer measure-
ments for low frequency approximations to the BRDF.

Instead of directly solving for the BRDF coefficients, we form a
linear system of constraints on the BRDF coefficients and solve
it using least squares minimization. The constraints are obtained
from the formula for B(α,β ,θ ′

o,φ ′
o) in the previous section. In

this formula, everything but the BRDF coefficients, ρ̂l pq are known:
B(α,β ,θ ′

o,φ ′
o) is the intensity measured at a single pixel at a given

surface normal, Llm is the lighting which we measure with a mir-
rored ball, and Dl

mq(α,β ) and Ypq(θ ′
o,φ ′

o) can be directly computed.

By stringing out the constraints we can form a linear system of the
form

Ax = b

where A is composed of the LlmDl
mq(α,β )Ypq(θ ′

o,φ ′
o) terms, b is

the exitant light field, and x is the BRDF coefficients which we are
solving for. A standard technique for solving inhomogeneous linear
equations of this form is to find the least squares solution,

x = (AT A)−1AT b.

While this works well in theory, in practice the number of un-
knowns grows very rapidly with increasing frequency making com-
putations unwieldy. To account for this, we solve for each level l
sequentially. The algorithm consists of

• For l = 1 to lmax

• Solve the system Alxl = b for x

• Let b = b−Alxl

• Repeat

This method yields good results while keeping the linear systems
managable.

4 Results

Figures 6 to 8 show some results of the BRDF recovery technique.
One readily apparent shortcoming is that higher frequency spherical
harmonic representations exhibit a lot of undesired artifacts (see
figure 7. As seen in the second row of figure 6, specularities are
also not handled very well with the current technique. However,
diffuse materials look pretty good as they can be represented well
with low-frequency spherical harmonics.

Figure 9 shows the lighting environment used to capture the yel-
low sphere. Note the computation works despite a quite complex
lighting environment.

Figure 9: Lighting used to capture the yellow sphere

5 Conclusion

This paper has presented a new way to capture BRDFs under natural
illumination. While the results are still somewhat preliminary, the
method is capable of capturing the reflectance of diffuse materials.
While using higher frequency terms was not particularly successful
thus far, I believe that more experimentation will yield better results
on more diverse BRDFs. Also, other extensions such as the use
of spherical wavelets instead of spherical harmonics could further
improve performance.
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(a) (b) (c) (d)

Figure 6: Rendering with measured BRDFs. (a) Actual image, (b) rendered image, (c) difference, (d) difference magnified by 2-fstops. The
top two rows are rendered using spherical harmonic frequencies up to l = 2 while the bottom row is rendered using up to l = 5.
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Figure 7: Higher order frequency terms. (a) Actual image, (b) l = 2, (c) l = 5, (d) l = 10, (e) l = 15.

(a) (b) (c) (d)

Figure 8: BRDF estimated from only four images. (a) Actual image A, (b) rendered image A, (c) Actual image B, (d) rendered image B.
While it looks ok under some lighting conditions, it doesn’t on others.


