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» Image Formation Model

B Camera centered coordinate system
B Orthographic camera

Surface f(x,y)
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» Image Formation Model

vAyg

B Assumptions :
« Lambertian reflectance
+ Orthographic camera g
. Distant point light source D fffffffffffffffffffff Y-
+ No cast shadows / interreflections ¢, &

B |mage formation,
* e =pin; s;=b,s;

* e;; — pixel intensity at ¢th pixel, jth image
n; — surface normal at ¢th pixel (3 x 1)
p; — albedo at ith pixel
b, — facet vector b; = p;n; (3 x 1)
s; — light source vector of jth image (3 x 1)
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» Photometric Stereo

m [Silver 1980, Woodham 1981]

m Goal :
« Recover surface (normal map)
+ Fixed scene
+ Fixed viewpoint
« Varying lllumination

" Solve linear system,
{B}i,: — Pi n;l_
(S} =s;
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» Uncalibrated Photometric Stereo

® \What if the lighting S is unknown??

B Family of solutions,
+« E=BS =BA 'AS
« A e GL(3)
[Hayakawa 1994]

[Epstein, Yuille, & Belhumeur 1996]
[Rosenholtz & Koenderink 1996]

B Factorize E with rank 3 SVD approximation,

- E=UX;5,:3V' = BA 'AS
+ Recovers B, S up to a 3x3 invertible linear transform
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» The GBR Ambiguity

m SVD + Integrabillity,
E =BS =BG 'GS
[Belhumeur, Kriegman & Yuille 1997]
[Yuille & Snow 1997]

B G encodes the GBR

ambiguity,
1 0 O
+G= 0 1 0
uw voA

« 3 parameters (i, v, \)
+ G C GL(3)

(Belhumeur, Kriegman, and Yuille)
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» The GBR Ambiguity

m SVD + Integrabillity,
E =BS =BG 'GS
[Belhumeur, Kriegman & Yuille 1997]
[Yuille & Snow 1997]

B Surface height,
z = f(z,y)

2=Af(z,y) + px + vy
® Albedo & normal,
p=pln' G|

TM—1
o E n G (Belhumeur, Kriegman, and Yuille)
N = Ta- |
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The GBR Ambiguity

m SVD + Integrability,

E =BS =BG 'GS
[Belhumeur, Kriegman & Yuille 1997] &

[Yuille & Snow 1997] ,

B Surface height,
z = f(z,y)

\

2=Af(z,y) + pz +vy
® Albedo & normal,
p=pln' G

> g =
‘\ 2t = -'- -JM ¢
E: v

W _yn G Albedo map Albedo map (GBR)
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» The GBR Ambiguity

m SVD + Integrabillity,
E =BS =BG 'GS
[Belhumeur, Kriegman & Yuille 1997]
[Yuille & Snow 1997]

B Surface height,
z = f(z,y)

\

2= A (z,y) + pr + vy
® Albedo & normal,
p=pln'G|

TM—1
o n' G Albedo map Albedo map (GBR)
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» Resolving the GBR

B Need additional constraints,

+ Light source strength
[Yuille & Snow 1997]

+ Surface reflectance
[Drbohlav & Sara 2002; Georghiades 2003; Tan et al. 2007]

« Surface geometry
[Georghiades et al. 2001]

+ Interreflections
[Chandraker et al. 20035]

+ Albedo distribution
[Hayakawa 1994]

B Albedo distribution :
« Only uniform albedo has been exploited previously.
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» Motivation

® Consider an object with one albedo
m Distribution well approximated by a delta function

Surface Albedo map

Mass

0 0.5 1

Albedo
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» Motivation

B Under a GBR, the distribution is smeared

B Smearing dependent on G and the distribution of n
*p=pln' G

m Analytic solution : Surface  Albedo map
bTGGTH = 2 =

B | inear in
(4, vy 1> + 07 + X%, p°)

uw:0—0.5 §
v:0 2
A:1—0.75

0 05 1

Albedo
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» Motivation

B Many objects consist of a small set of dominant
colors

® \Ve say such objects satisfy the k-albedos
constraint
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» Motivation

B Multi-color objects
have have multiple
peaks

m A GBR transformation
smears the peaks

JU

True Albedo Distribution Albedo Distribution Under GBR
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» Motivation

B Does enforcing
“peakiness” resolve the
GBR ambiguity?

JU

True Albedo Distribution Albedo Distribution Under GBR
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» Entropy Minimization

B Fntropy is a natural measure of the spread of a
distribution and conversely its peakiness,

H(f) = - [S () log f(z)da

f isap.d.f.
S is the support of f

B Doesn't depend on knowledge of k (# of colors)
« Advantage over most clustering algorithms

B Entropy minimization has been successfully
applied to other computer vision problems

[Finlayson et al. 2004; Palubinskas et al. 1998]
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» Entropy Minimization

mlets=|b'G| =|b'G 'G|be a random variable
representing the albedo distribution obtained by
correcting for GBR G.

m | et /5 be the p.d.f. of 5.

® Objective :
Minimize H(f;) = /fp z)log f5(z

1
with respect to (i, 7, \) where G = ( 0

[ = O

> O O
N—

g
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Degenerate Configurations
B k albedos on k planar surface patches
(N

Entropy 1s constant

s

0.4 - 0.4 .
0.2| 1 02
% 05 % 05
True distribution GBR transformed distribution
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Degenerate Configurations

B Nearby albedo modes.

Entropy 1s lower under GBR

0.03 0.03

0.015; 0.015;

85 1 15 85 1 15
True distribution GBR transformed distribution
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» Theoretical Correctness

B |ntuition
« Each albedo corresponds to a delta function in the
distribution
+ A GBR perturbs each mode of the distribution
+ Perturbation has finite support proportional to (u, v, \)
« Entropy can only increase as long as modes don't

overlap
H = 1.00 __ H = 3.99
© = 0.000, v = 0.000, A = 1.000 p = 0.050, v = 0.050, A\ = 1.050
H =3.19 H =4.74

= 0.025,v = 0.025, A = 1.025 4 = 0.100, v = 0.100, A = 1.100
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» Theoretical Correctness

® Theorem :
The true GBR parameters (u, v, \) correspond to a
local minima of our objective when the following
hold,

« Surface contains k < N albedo values
« Non-degenerate surface normal distribution
« Albedo is independent of surface normal

B Sufficient (not necessary) conditions.
B More details in paper.
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! Approximating the Entropy

B Entropy is defined w.r.t. a density function

B |n practice only have samples drawn from the
distribution

m Options :

+ Fit a continuous distribution (using Parzen windows,
mean-shift algorithm, kernel based estimators, etc.)
then compute entropy

« Approximate entropy from a histogram
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! Approximating the Entropy

B MLE estimator of entropy,

™m

2 a; a;
H = —) Zlog 2
MLE(f) ; —log —
*{a;},i = 1...m is an m-bin histogram computed from n
~ samples
B e IS blased, but variance is low

B, =256 used In our experiments
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» Algorithm Overview

B Input : M images of N pixels each
® Algorithm
I. Recover normals / albedos up to a GBR using

algorithm of Yuille and Snow

li. Perform discrete search over GBR parameters p, v, A
a)Apply GBR
b)Compute m-bin histogram{a;},i = 1...m of albedo values
C)Approximat?% entropy using

a; a;
H(fp) = — _logﬁ
=1

ii. Apply GBR corresponding to arg min H(f,)
Iv. Integrate to obtain surface Hs Vs A
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Experimental Results

B |nput Images
B Three datasets
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! Stanford Bunny (Synthetic)

6 input 1mages

Albedo
distribution

MNormals

Depth Map

Surface

N
/)

Calibrated Uncalibrated Minimum Entropy
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Yale B Face Database

distribution

Albedo

MNormals

Depth Map

Surface

Calibrated Uncalibrated Minimum Entropy

9 input 1mages
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» Red & Yellow Fish

5 input 1mages

Albedo
distribution

MNormals

Depth Map

Surtace

Calibrated

Uncalibrated Minimum Entropy
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® Novel constraint
+ Albedo distribution should have low entropy
+ Valid for large class of real-world objects

B New method to resolve the GBR ambiguity
« By minimizing entropy of albedo distribution

m \/alidation
+ Theoretical
+ Experimental
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Questions?
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Calibrated Uncalibrated Minimum Entropy

9 input 1mages
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B Exploit color information

+ Increases separability in the albedo distribution

should lie on concentric
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® Apply method to other amb

Lorentz ambiguity [Basri & Jacobs 2001]

« KGBR ambiguity [Yuille et al. 2001]
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