

Resolving the Generalized Bas-Relief Ambiguity by Entropy Minimization

Neil G. Alldrin Satya P. Mallick David J. Kriegman University of California, San Diego

Image Formation Model

Camera centered coordinate system Orthographic camera

Image Formation Model

 e_{ij}

Assumptions :

- Lambertian reflectance
- Orthographic camera
- Distant point light source
- No cast shadows / interreflections

Image formation,

 \mathbf{S}_{j}

•
$$e_{ij} = \rho_i \mathbf{n}_i^\top \mathbf{s}_j = \mathbf{b}_i^\top \mathbf{s}_j$$

- e_{ij} pixel intensity at *i*th pixel, *j*th image
 - \mathbf{n}_i surface normal at *i*th pixel (3×1)
 - ρ_i albedo at *i*th pixel
 - \mathbf{b}_i facet vector $\mathbf{b}_i = \rho_i \mathbf{n}_i \ (3 \times 1)$
 - light source vector of jth image (3×1)

 \mathbf{S}_{j}

 \mathbf{n}_i

Photometric Stereo

[Silver 1980, Woodham 1981]

Goal :

- Recover surface (normal map)
- Fixed scene
- Fixed viewpoint
- Varying Illumination
- Solve linear system,
 - $\mathbf{E} = \mathbf{BS}$

$$\begin{aligned} & \{\mathbf{E}\}_{i,j} = e_{ij} \\ & \{\mathbf{B}\}_{i,:} = \rho_i \mathbf{n}_i^\top \\ & \{\mathbf{S}\}_{:,j} = \mathbf{s}_j \end{aligned}$$

Solution : $\mathbf{B} = \mathbf{ES}^{\dagger}$

Jacobs

Computer Science

and Engineering

Uncalibrated Photometric Stereo

- What if the lighting S is unknown?
- Family of solutions,
 - $\mathbf{E} = \mathbf{B}\mathbf{S} = \mathbf{B}\mathbf{A}^{-1}\mathbf{A}\mathbf{S}$
 - $\mathbf{A} \in GL(3)$ [Hayakawa 1994] [Epstein, Yuille, & Belhumeur 1996] [Rosenholtz & Koenderink 1996]
- Factorize E with rank 3 SVD approximation,
 - $\mathbf{E} = \mathbf{U} \mathbf{\Sigma}_{3 \times 3} \mathbf{V}^{\top} \longrightarrow \mathbf{B} \mathbf{A}^{-1} \mathbf{A} \mathbf{S}$
 - Recovers \mathbf{B} , \mathbf{S} up to a 3x3 invertible linear transform

■ SVD + Integrability, $\mathbf{E} = \hat{\mathbf{B}}\hat{\mathbf{S}} = \mathbf{B}\mathbf{G}^{-1}\mathbf{G}\mathbf{S}$ [Belhumeur, Kriegman & Yuille 1997] [Yuille & Snow 1997]

G encodes the GBR ambiguity,

$$\bullet \mathbf{G} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mu & \nu & \lambda \end{array} \right)$$

3 parameters (μ, ν, λ)
G ⊂ GL(3)

(Belhumeur, Kriegman, and Yuille)

SVD + Integrability, E = B̂Ŝ = BG⁻¹GS [Belhumeur, Kriegman & Yuille 1997]

[Yuille & Snow 1997]

• Surface height, z = f(x, y)

$$\hat{z} = \lambda f(x, y) + \mu x + \nu y$$

Albedo & normal,

$$\hat{
ho} =
ho \| \mathbf{n}^{ op} \mathbf{G}^{-1} \|$$

$$\hat{\mathbf{n}}^{\top} = \frac{\mathbf{n}^{\top} \mathbf{G}^{-1}}{\|\mathbf{n}^{\top} \mathbf{G}^{-1}\|}$$

(Belhumeur, Kriegman, and Yuille)

SVD + Integrability, $\mathbf{E} = \hat{\mathbf{B}}\hat{\mathbf{S}} = \mathbf{B}\mathbf{G}^{-1}\mathbf{G}\mathbf{S}$

[Belhumeur, Kriegman & Yuille 1997] [Yuille & Snow 1997]

Surface height, z = f(x, y)

$$\hat{z} = \lambda f(x, y) + \mu x + \nu y$$

Albedo & normal,

$$\hat{
ho} =
ho \| \mathbf{n}^\top \mathbf{G}^{-1} \|$$

$$\hat{\mathbf{n}}^{\top} = \frac{\mathbf{n}^{\top} \mathbf{G}^{-1}}{\|\mathbf{n}^{\top} \mathbf{G}^{-1}\|}$$

₹UCSD |

Jacobs and Engineering

Albedo map

Albedo map (GBR)

SVD + Integrability, $\mathbf{E} = \hat{\mathbf{B}}\hat{\mathbf{S}} = \mathbf{B}\mathbf{G}^{-1}\mathbf{G}\mathbf{S}$

[Belhumeur, Kriegman & Yuille 1997] [Yuille & Snow 1997]

Surface height, z = f(x, y)

$$\hat{z} = \lambda f(x, y) + \mu x + \nu y$$

Albedo & normal,

$$\hat{\rho} = \rho \| \mathbf{n}^\top \mathbf{G}^{-1} \|$$

$$\hat{\mathbf{n}}^{\top} = \frac{\mathbf{n}^{\top} \mathbf{G}^{-1}}{\|\mathbf{n}^{\top} \mathbf{G}^{-1}\|}$$

Resolving the GBR

Need additional constraints,

- Light source strength [Yuille & Snow 1997]
- Surface reflectance
 [Drbohlav & Sara 2002; Georghiades 2003; Tan et al. 2007]
- Surface geometry [Georghiades et al. 2001]
- Interreflections [Chandraker et al. 2005]
- Albedo distribution [Hayakawa 1994]

Albedo distribution :

Only uniform albedo has been exploited previously.

Consider an object with one albedoDistribution well approximated by a delta function

Under a GBR, the distribution is smeared
Smearing dependent on G and the distribution of n
\$\hloch\rho = \rho ||n^TG^{-1}||\$

Analytic solution : $\hat{\mathbf{b}}^{\top} \mathbf{G} \mathbf{G}^{\top} \hat{\mathbf{b}} = \rho^2$ Linear in $(\mu, \nu, \mu^2 + \nu^2 + \lambda^2, \rho^2)$

- Many objects consist of a small set of dominant colors
- We say such objects satisfy the k-albedos constraint

- Multi-color objects have have multiple peaks
- A GBR transformation smears the peaks

True Albedo Distribution

Albedo Distribution Under GBR

Does enforcing "peakiness" resolve the GBR ambiguity?

True Albedo Distribution

Albedo Distribution Under GBR

Entropy Minimization

Entropy is a natural measure of the spread of a distribution and conversely its peakiness,

$$H(f) = -\int_{S} f(x) \log f(x) dx$$

f is a p.d.f. *S* is the support of *f*

Doesn't depend on knowledge of k (# of colors)

- Advantage over most clustering algorithms
- Entropy minimization has been successfully applied to other computer vision problems [Finlayson et al. 2004; Palubinskas et al. 1998]

Entropy Minimization

Let ρ̃ = || b̂^TG̃ || = || b^TG⁻¹G̃ || be a random variable representing the albedo distribution obtained by correcting for GBR G̃.
 Let *f*_{ρ̃} be the p.d.f. of ρ̃.

• Objective : Minimize $H(f_{\tilde{\rho}}) = -\int_{S} f_{\tilde{\rho}}(x) \log f_{\tilde{\rho}}(x) dx$ with respect to $(\tilde{\mu}, \tilde{\nu}, \tilde{\lambda})$ where $\tilde{\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \tilde{\mu} & \tilde{\nu} & \tilde{\lambda} \end{pmatrix}$

Degenerate Configurations

Nearby albedo modes.

Entropy is lower under GBR

Theoretical Correctness

Intuition

- Each albedo corresponds to a delta function in the distribution
- A GBR perturbs each mode of the distribution
- Perturbation has finite support proportional to (μ, ν, λ)
- Entropy can only increase as long as modes don't overlap

Theoretical Correctness

■ Theorem :

The true GBR parameters (μ, ν, λ) correspond to a local minima of our objective when the following hold,

- Surface contains $k \ll N$ albedo values
- Non-degenerate surface normal distribution
- Albedo is independent of surface normal
- Sufficient (not necessary) conditions.
 More details in paper.

Approximating the Entropy

Entropy is defined w.r.t. a density function

In practice only have samples drawn from the distribution

Options :

- Fit a continuous distribution (using Parzen windows, mean-shift algorithm, kernel based estimators, etc.) then compute entropy
- Approximate entropy from a histogram

Approximating the Entropy

MLE estimator of entropy,

$$\hat{H}_{MLE}(f) = -\sum_{i=1}^{m} \frac{a_i}{n} \log \frac{a_i}{n}$$

• $\{a_i\}, i = 1...m$ is an m-bin histogram computed from n samples

$\blacksquare \hat{H}_{MLE}$ is biased, but variance is low

 $\blacksquare m = 256$ used in our experiments

- Input : M images of N pixels each
 Algorithm
 - i. Recover normals / albedos up to a GBR using algorithm of Yuille and Snow
 - ii. Perform discrete search over GBR parameters μ,ν,λ a)Apply GBR
 - b)Compute m-bin histogram $\{a_i\}, i = 1...m$ of albedo values c)Approximate entropy using

$$H(f_{\rho}) \simeq -\sum_{i=1}^{m} \frac{a_i}{N} log \frac{a_i}{N}$$

iii. Apply GBR corresponding to $\arg \min H(f_{\rho})$ iv. Integrate to obtain surface μ, ν, λ

COMPUTER Science

Experimental Results

Input ImagesThree datasets

Stanford Bunny (Synthetic)

6 input images

Yale B Face Database

9 input images

Red & Yellow Fish

5 input images

Review

Novel constraint

- Albedo distribution should have low entropy
- Valid for large class of real-world objects
- New method to resolve the GBR ambiguity
 - By minimizing entropy of albedo distribution
- Validation
 - Theoretical
 - Experimental

Questions?

9 input images

Future Work

Computer Science

and Engineering

Jacobs |

Exploit color information

Increases separability in the albedo distribution

Exploit geometry

• Facet vectors ($\hat{\mathbf{b}} = \hat{\rho}\hat{\mathbf{n}}$) should lie on concentric ellipsoids under a GBR

Apply method to other ambiguities

- Lorentz ambiguity [Basri & Jacobs 2001]
- KGBR ambiguity [Yuille et al. 2001]

