
CSE202 Project - Consistent Hashing

Neil Alldrin

November 27, 2002

1 Introduction

Consistent hashing is a special kind of hashing which is useful for certain ap-
plications. Originally devised by Karger et. al. at MIT[2] for use in distributed
caching, the idea has now been expanded to other areas, most notably peer to
peer networking[5][4]. As internet use increases and as distributed systems grow
more prevalent (ie, Napster clones), consistent hashing could play an increas-
ingly important role.

At a basic level, consistent hashing is just a special kind of hashing. Namely,
a consistent hash function is one which changes minimally as the range of the
function changes[2]. This makes consistent hashing ideal in circumstances where
the set of buckets changes over time. Furthermore, it can be shown that, with
high probability, two users with inconsistent but overlapping sets of buckets
will map items to the same buckets. This is particularly important because it
eliminates the need to maintain consistent state among all nodes in a network.

In this paper I present a family of consistent hash functions, attempt to prove
certain properties of these functions, and describe an application of consistent
hashing, namely peer to peer networking.1

2 Consistent Hashing

2.1 Overview

This section formally defines what a consistent hash family is and describes a
possible implementation of a consistent hash function.

2.2 Definitions

A view V is the set of buckets of which a particular user is aware. It is assumed
that while views can be inconsistent, each user is aware of a constant fraction
of the currently available buckets.

A ranged hash function f is a function mapping an assignment of items to
buckets for every possible view. We define f(V, i) = fV (i) to be the bucket
where item i is assigned under view V . A further restriction is that fV (i) ε V
since items can only be assigned to buckets a user knows about.

A ranged hash family F is a family of ranged hash functions.
1These “findings” are primarily a summary of [2], [3] and [4]

1

A random ranged hash function is a function drawn at random from a par-
ticular ranged hash family.

A ranged hash family is balanced if the fraction of items mapped to each
bucket is expected to be O(1/|V |).

A ranged hash function is monotone if, for all views V1 ⊆ V2, if fV2(i) ε V1

then fV1(i) = fV2(i).
The spread of a system is defined as follows. Let {V1...VV } be a set of views

with C distinct buckets among these views where each view has at least C/t
buckets. The spread of a ranged hash function f over item i is the number of
unique buckets i is mapped to over all the views. The spread of a ranged hash
function in general, denoted σ(f), is the maximum of the spreads of each item.

The load, λ(b), of a ranged hash function f and bucket b is the number of
items assigned to b over all user’s views. The load of a ranged hash function in
general is the maximum load over every bucket.

The last four definitions are quantifiable notions of consistency for a hash
function/family. A consistent hash function is one that is balanced and mono-
tone, while attempting to minimize spread and load.

The unit interval is the interval [0, 1]. Throughout this paper we consider
the unit interval to be circular, in other words 1 and 0 are considered adjacent
points.

2.3 Assumptions

1. C is the total number of buckets in the system.

2. Each view in the system contains at least C/t buckets for some constant
t.

2.4 A Consistent Hash Family

Consider the interval [0, 1]. Now randomly map each bucket K · log(C) times
to the interval.2 Also randomly map all items to the same interval. We now
define the ranged hash function fV (i) to return the bucket b ε V closest to i in
the interval. By choosing different mappings of buckets and items we obtain a
family of ranged hash functions.

2.5 Properties of Our Consistent Hash Family

Theorem 2.1. The ranged hash family described above is monotone.

Theorem 2.2. The ranged hash family described above is balanced. For a fixed
view V , the probability that fV (i) = b where b ε V is O(1/V). The probability
that fV (i) = b where b is in any view is O(t · log(C)/V).

Theorem 2.3. The ranged hash family described above has spread σ(i) = O(t ·
log(C)) with probability greater than 1 − 1/CΩ(1) when the number of items
equals the number of buckets and the number of views is proportional to the
number of buckets.

2C is the maximum number of buckets in the range and K is some constant

2

Theorem 2.4. The ranged hash family described above has load λ(b) = O(t ·
log(C)) with probability greater than 1− 1/CΩ(1) when the number of items and
buckets are as in Theorem 2.3.

The proofs for these theorems are sketched in [2].

2.6 Implementation

An implementation of a consistent hash function will involve a set of buckets
corresponding to a user’s view V and a set of items I.3 Since we don’t know
the total number of buckets in the system, we assume an upper bound on C.
The operations that can be done by the user are hash(i), addBucket(b), and
deleteBucket(b).

Prior to using our algorithm, we have to figure out where each bucket b ε V
lies in our unit interval and store that information. The location of each bucket
is trivial since it simply involves |K · V · log(C)| = O(V · log(C)) calls4 to a
random function with each call taking O(1) time.

Storing the bucket locations in a way that allows efficient hashing of items
is more complicated. First, note that we want to store the interval over which
an item will be mapped rather than the location of the bucket itself. A fairly
good way to do this is to use a single balanced binary search tree to store
the correspondence between segments of the unit interval and buckets. In this
scheme there will be K · V · log(C) intervals, so the search tree will have depth
O(log(V · log C)) = O(log(C · log C)). This puts a lower bound of Ω(log(C ·
log C)) on the hash operation.

A better way to store segment/bucket mappings is to divide the unit interval
into K · C · log(C) equal-length segments and to have separate search trees for
each segment. Since the expected number of buckets in each segment is O(1), the
expected time to determine which bucket an item maps to within a segment is
also O(1) (the expected depth of each search tree is log(O(1)) = O(1)). Finding
out which segment an item belongs to also takes O(1) time (segments are of
equal size so the segment can be located by dividing the item’s location by the
number of segments).

Another detail to consider in an implementation of a consistent hash func-
tion is the fact that continuous intervals are used but cannot be realized on
computers. To get around this we note that we only need to use enough bits to
distinguish each point in the interval, or O(log C) bits.

Theorem 2.5. hash(i) can run in O(1) expected time.

Proof. The time to map an item to a bucket is the sum of the time it takes
to locate the item’s position in the unit interval and the time it takes to figure
out which bucket that location corresponds to. Finding an item’s position takes
O(1) time since it is a single call to a random function that can run in O(1)
time. Mapping a location to a bucket takes O(1) expected time if we use the
data structure described and analyzed above. Therefore, the overall run-time is
O(1).

3It should be understood that multiple users may be operating on some larger set of
buckets, but each user uses the same basic algorithm to hash items to buckets, so we consider
only a single user’s point of view.

4Recall that we need to map each bucket K · log(C) times and that V ≥ C/t.

3

Theorem 2.6. addBucket(b) can run in O(log C) expected time.

Proof. Suppose we are using the multiple search tree data structure described
above for mapping segments to buckets and have already hashed all I possible
items into their corresponding buckets. At this point we add another bucket to
our view. Doing this will add K · log(C) new bucket intervals each changing
their surrounding two bucket intervals. This results in 3K · log(C) new or
modified intervals. If we re-hash every item contained in segments spanned
by these intervals we will have a correct hashing of items since items outside
these segments are already in their correct buckets. The expected number of
segments spanned by a single interval is O(K·C·log(C)

K·V ·log(C)) = O(1). The expected
number of items in each segment is also O(1). This means we must re-hash
the expected O(log(C)) items contained in O(log(C)) segments. Each hash
takes O(1) expected time so the total time taken is O(log C). Since we have
considered the worst possible case we are done.

Theorem 2.7. deleteBucket(b) can run in O(log C) expected time.

Proof. This proof is almost identical to the proof for Theorem 2.6. The only
difference is that the number of intervals to consider is 2K · log(C) instead of
3K · log(C) since removing an interval introduces no new intervals and modifies
the surrounding two intervals.

3 An Application : Chord

Chord is a peer-to-peer (P2P) networking protocol developed at MIT[5][4]. It
serves as the backbone for other research projects, such as the Cooperative File
System[1], as well as being a research project in its own right. This section
describes Chord, primarily in the context of consistent hashing.

3.1 Peer to Peer Networks

A P2P network at its most basic level is a decentralized network where all
nodes have similar functionality. These networks have significant advantages
over traditional networks:

1. No central (and expensive) servers are required.

2. Resources on all nodes can be utilized.

3. P2P networks are more robust against certain types of faults.

P2P networks are also a special case of distributed systems. The primary
twist is that nodes are continually joining and leaving the network whereas
traditional distributed systems have a fixed set of nodes. Because the set of
nodes in the network changes, data must be continually moved from node to
node if that data is to be persistent. Content addressable networking partially
solves this problem by providing a mapping of keys to machines, but its reliance
on a key directory makes it difficult to maintain and limits scalability.

4

3.2 The Chord Protocol

The Chord protocol takes the idea of content addressable networking and makes
it work efficiently in a peer-to-peer (P2P) network. This is accomplished by
using a variant on consistent hashing, essentially making the entire network one
large distributed hash table.

In the Chord framework, every node is a bucket and every key is an item.
Nodes and keys are mapped into a space of size 2m (aka the unit circle) by stan-
dard hash functions (aka random functions). Keys are assigned to the nearest
node in the clockwise direction around the 2m “circle”. So far this is just the
consistent hashing algorithm described in 2.6 with some superficial changes.

The main difference comes in how and where the location of other nodes are
stored. This was previously taken care of in a single local data-structure, but
this does not suffice for P2P networks since it would either require a central
server which violates the principles of P2P networks or it would require each
node to have its own copy which would require too much overhead. Chord
gets around these problems by storing this information in a distributed fashion.
Basically, every node has pointers to the next K · log(N) nodes in the 2m circle
(these are called successors). This allows lookups to occur in O(N/log(N))
time by traversing the circle in order. To speed up lookups, each node also has
a finger table which stores the m nodes closest to positions n+2i for i = 1 to m.
This allows much faster lookups (O(log(N))) if the finger table is correct.

When a node joins the system it is mapped somewhere in the circle and
becomes the new successor to the node immediately behind it while taking on
the next node as its own successor. Keys are also given to the new node by
its predecessor. When a node leaves the system he bequeaths his keys to his
successor and tells his predecessor he’s leaving. If a node stops responding for
some reason, it will eventually cause predecessors to remove that node from
their successor lists.

3.3 Correctness

The Chord system is difficult to disconnect because each node has pointers to
O(log(N)) other nodes. This means at least O(log(N)) nodes have to fail before
it is even possible for the network to become disconnected. Even with failures
of up to N/2 nodes, the system still remains connected with high probability
(assuming a random distribution of failures, an adversary could always choose
just the right O(log(N)) nodes to disconnect a node). [4] goes into a more
detailed theoretical analysis of Chord’s robustness, taking into account node
joins, departures, and failures albeit in a somewhat limited model. What really
proves Chord are the test results, which coincide nicely with the theoretical
findings. However, even this is not enough because the tests used nowhere near
the number of nodes possible on the internet, so it remains to be seen how well
Chord performs as a massive scale system.

4 Conclusion

Consistent hashing has been shown to be a useful idea, both in itself and in the
context of peer to peer networking. Most of the benefits of consistent hashes
translate directly to peer to peer networking (ie, balanced loads, low bucket

5

exchange, etc) making these systems “better”. Furthermore, tests have shown
that, at least in limited contexts, these systems work well in practice.

References

[1] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Sto-
ica, I. Wide-area cooperative storage with cfs. In Proceedings of the eigh-
teenth ACM symposium on Operating systems principles (2001), ACM Press,
pp. 202–215.

[2] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M.,
and Lewin, D. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing (1997),
ACM Press, pp. 654–663.

[3] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanid-
ina, R., Iwamoto, K., Kim, B., Matkins, L., and Yerushalmi, Y.
Web caching with consistent hashing. In Proceeding of the eighth interna-
tional conference on World Wide Web (1999), Elsevier North-Holland, Inc.,
pp. 1203–1213.

[4] Liben-Nowell, D., Balakrishnan, H., and Karger, D. Analysis of
the evolution of peer-to-peer systems. In Proceedings of the twenty-first an-
nual symposium on Principles of distributed computing (2002), ACM Press,
pp. 233–242.

[5] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Bal-
akrishnan, H. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer communications (2001),
ACM Press, pp. 149–160.

6

