
Detecting Pedestrians

Neil Alldrin
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093

nalldrin@cs.ucsd.edu

Abstract

Viola, Jones, and Snow recently implemented a pedestrian detection sys-
tem that incorporates both appearance and motion in real-time. Simple
sum-of-pixel filters are boosted into a robust pedestrian classifier. Detec-
tion is then achieved by thesholding a linear combination of these simple
filters. The simplicity of the filters, along with some implementation
tricks, enables the system to run in real-time. Motion information is in-
corporated by taking differences between successive frames in time.

This paper is a reimplementation of their system, with the purpose of
evaluating the merits and pitfalls of their approach. I also discuss some
issues that were inadequately explained in their paper, such as how to
train features used in the cascade, and provide a performance compari-
son.

1 Introduction

The pedestrian detection system of Viola, Jones, and Snow [7] combines appearance and
motion into their earlier work on object detection [6]. Their system successively applies
simple features to windows in each frame. A pedestrian is “detected” if a linear combi-
nations of feature responses exceeds a predetermined threshold. Each feature is a simple
sum-of-pixels filter with an associated weight and threshold. For performance reasons, the
features are applied sequentially in a cascade so that only regions of an image likely to
contain a pedestrian are examined by later features. Since pedestrians tend to be sparse,
only a few features need be evaluated for most image regions. The features, weights, and
thresholds used during detection are learned with a variant of AdaBoost.

Motion is captured through difference images, which are simply differences between suc-
cessive framesin time. Shifted versions of these difference images capture local transla-
tional motion information. Perhaps the biggest advantage of difference images is that they
requires much less computation than other techniques for motion capture such as optical
flow.

This paper is a reimplementation of the pedestrian detection system of Viola, Jones, and
Snow. An overview of how the system works and is trained is presented, followed by a
comparison to the original detection system.



Figure 1: A sum-of-pixel filter. The response of the filter is the sum of the intensities of
pixels within the light colored rectangle subtracted by the sum of the intensities of pixels
in the dark colored rectangle.

2 Related Work

Using motion for recognition is far from a new idea. Recent work has been done on pe-
riodicity analysis [1] [4]. These systems, however, examine motion over long periods of
time whereas the system presented in this paper only uses local motion information. Per-
haps more related is work by Efros et al. that uses optical flow measurements to recognize
human action [3]. While optical flow possibly provides more motion information than
difference images, it is prohibitively expensive to compute and the representational gap
between optical flow and difference images is unclear.

3 Data Structures

A variety of data stuctures are required for efficient implementation of the pedestrian detec-
tion system. Integral images enable fast sum-of-pixel filter evaluation, difference images
capture local motion in a video sequence, and scaling effects are dealt with using pyramids
of difference images.

3.1 Sum-of-pixel Filters

The detection system needs filters that fulfill two requirements: (1) they must be capable
of distinguishing pedestrians from non-pedestrians with better than random probability and
(2) their responses need to be extremely fast to compute. Sum-of-pixel filters do both.

See figure 1. A sum-of-pixel filter is composed of a set of oriented rectangles; the response
is the sum of the intensities in the rectangles. Let I be an image and

�
x1 � y1 � and

�
x2 � y2 � be

the upper left and lower right corners of a rectangle within the image. Then the response r
of the rectangle is

r � x2

∑
x � x1

y2

∑
y � y1

I
�
x � y ��� (1)

Each rectangle has an orientation oi. Suppose a filter has rectangles with responses
r1 � r2 �����	�	� rn and orientations o1 � o2 �
�	���	� on, where oi ���� 1 � 1 � . Then the response of the
filter is

r f ilter �
n

∑
i � 1

oiri � (2)



I ∆ U D L R

Figure 2: A sample difference image.

3.2 Integral Images

Integral images fascilitate fast computation of sum-of-pixel filters by enabling the sum of
a rectangle to be computed in four memory operations. Each pixel in the integral image
II is the sum of the pixels above and to the left of the corresponding pixel in the original
image I. So, II

�
x � y � � ∑x

x ��� 1 ∑y
y � � 1 I

�
x � � y � � . The sum of intensities in a rectangular region

� � x1 � y1 ��� � x2 � y2 � � is

r � II
�
x1 � y1 � � II

�
x1 � y2 � � II

�
x2 � y1 ��� II

�
x2 � y2 ���

Hence, the response of a rectangle is reduced from M � N operations to just four oper-
ations, where M and N are the width and height of the rectangle respectively. Dynamic
programming could also be used to provide similar speedup, but makes implementation
more complicated.

3.3 Motion

Motion is captured in difference images, which are just absolute differences between pairs
of images in time. Five kinds of difference images are used in the detection system:

∆ � abs
�
It � It � 1 �

U � abs
�
It � It � 1 ���

D � abs
�
It � It � 1 � �

L � abs
�
It � It � 1 � �

R � abs
�
It � It � 1 ���

where It is the image at time t and � � ��� � � are operations that shift an image one pixel up,
down, left, and right respectively. Figure 2 shows a difference image used while training
the classifier.

To account for scaling effects, a hierarchy of difference images at various scales is pro-
duced. These scaled difference images are arranged in levels in a pyramid structure. Each
level l is constructed by first scaling the original input image by a scale factor sl then con-
structing the difference images for that level,

∆l � abs
�
It � It � 1 �

U l � abs
�
Il
t � Il

t � 1 ���
Dl � abs

�
Il
t � Il

t � 1 � �
Ll � abs

�
Il
t � Il

t � 1 � �
Rl � abs

�
Il
t � Il

t � 1 ���
where Il is I scaled by sl � 0 � 8l � 1. This process ensures that each level of difference images
are shifted in a scale-invariant way. Scaling stops when I l is less than 20 � 15 pixels.



level 2: diffImages(scale(I,s2))

level 1: diffImages(scale(I,s1))

. . .

Figure 3: The pyramid datastructure. Each level in the pyramid contains six images � I l , ∆l ,
U l , Dl , Ll , and Rl � and an associated scale factor s.

4 The Detection Algorithm

The pedestrian detection algorithm works by running a classifier on every 20 � 15 window
in a pyramid. The classifier is a set of weak classifiers arranged in a cascade as shown in
figure 4. The cascade improves computational efficiency by quickly eliminating windows
which are unlikely to contain a pedestrian. Only windows that have similar characteristics
to a pedestrian make it to the end of the cascade.

Each classifier in the cascade is a thresholded sum of weighted features and each feature
is a thresholded sum-of-pixels filter. Let F be a feature with corresponding filter f and
threshold th. Then the output of the filter is,

o
�
F � �

 
1 if response

�
f �"! th

0 otherwise

where response
�
f � is the response of f as defined in equation 2. The output of a classifier

in the cascade is then

o
�
classi f ier � �

 
1 if ∑n

i � 1 wio
�
Fi �#! thclassi f ier

0 otherwise

where thclassi f ier is the classifier threshold and � F1 � F2 �
�	���	� Fn � are the features in the classi-
fier with outputs � o � F1 ��� o � F2 ���
�	�	��� o � Fn � � and weights � w1 � w2 �
�	���	� wn � .
Four types of filters are used in the system: appearance filters, which operate on the original
image I, and three types of motion filters, which operate on � ∆ � U � D � L � R � . The appearance
filters are the same as used in Viola and Jones’ earlier work [6]. In all, there are over
500,000 possible filters that operate in a 20 � 15 window across � I � ∆ � U � D � L � R � .
Four basic kinds of appearance filters are employed with two, three, four, and six rectangles
respectively. Figure 5 shows some examples of appearance filters. The set of appearance
filters includes all scales and orientations of the base appearance filters that fit inside a
20 � 15 window, over 100,000 filters in total.

The first type of motion filter compares sums of absolute differences between ∆ and one of
� U � D � L � R � ,

fa � ra
�
∆ � � ra

�
S �

where S �$� U � D � L � R � and ra
� � is a single box rectangular sum in the detection window.



Figure 4: The cascade architecture. The input image is passed through a sequence of
classifiers. For an image to be classified as a pedestrian it must pass through all classifiers.
Classification stops immediately if any of the stages fail.

Figure 5: Sample appearance filters.



trainClassifiers(X ,Y , f ilterSet) �
// X � � x1 � x2 �
�	���	� xn � , a set of example windows
// Y � � y1 � y2 �����	�	� yn � where yi �%� 0 � 1 � , labels for the windows

m � number of negative examples
l � number of positive examples

W � � w1 � w2 �
�	�	��� wn � , where wi �
 

1
2m if yi � 0
1
2l if yi � 0

For t � 1 �
�	���	� T
1. Normalize the weights, wi � wi

∑n
j & 1 w j

2. For each filter f j � f ilterSet, train a feature h j by determining the optimal thresh-
old for the filter.

3. Assign errors ε j � ∑n
i � 1 wi ' h j

�
xi � � yi '

4. Select the classifier ht with the lowest error εt

5. Update the weights, wi � wiβei where ei � 1 if example xi is correctly classified
otherwise ei � 0 and βt � εt

1 � εt

The final strong classifier is h
�
x � �

 
1 if ∑T

t � 1 αt ht
�
x �(! 1

2 ∑T
t � 1 αt

0 otherwise
where αt � log

� 1
βt �

�
Figure 6: Pseudo-code for the AdaBoost algorithm used to train the pedestrian classifiers.

The second type of motion filter is just the appearance filters applied to difference images,

fb � φb
�
S �

where φb
� � is one of the rectangle filters used for appearance.

The third type of motion filter measures the magnitude of motion in one of the difference
images,

fc � rc
�
S �

where rc
� � is a single box rectangluar sum in the detection window.

5 Training

The classifiers used for detection are trained with a variant AdaBoost. Training involves
selecting a subset of features, assigning weights to those features, and assigning a threshold
to each classifier. This is achieved by treating features as weak classifiers and boosting them
into a strong classifier.

Figure 6 shows the AdaBoost algorithm [5] [6]. While the full set of over 500,000 filters
could be used for training, in practice it is sufficient to use a randomly sampled subset of
the filters (50,000 were used in this paper). These filters are drawn from the appearance
and motion filters described in section 4.

One point glossed over by Viola, Jones, and Snow is how to determine the optimal thresh-
olds for a feature during training. Since AdaBoost does not consider all examples equally
(it assigns weights to each example), a simple mean of the filter responses does not suf-
fice. The solution used in this paper is based on univariate quadratic discriminant analysis



R I I ∆ − R I L

Figure 7: The first six features learned by AdaBoost and their associated image(s). It
appears to be honing in primarily on vertical bars.

[2]. Univariate quadratic discriminant analysis assumes the filter responses for the positive
and negative examples form Gaussian distributions and assigns weighted means and vari-
ances to these sets. From the weighted means and variances, a threshold can be chosen that
approximately minimizes the error.

The thresholds chosen in this implementation are a simplification of this technique that
assigns the feature threshold to the average of the weighted means of the negative and pos-
itive examples. Let f

�
x � be the response of a filter to example x and Xneg � � x1 � x2 �
�	�	��� xm �

be the set of negative examples with associated weights Wneg � � w1 � w2 �
�	���	� wi � . Then the

weighted mean of the negative examples for filter f is µn � ∑i wi f ) xi *
∑i wi

. If µp is similarly

defined for the positive examples, then the threshold assigned to f is 1
2

�
µn � µp � .

The cascade is formed by first training one large classifier (40 filters were in this paper) and
then inserting thresholds at intermediate points within the classifier. Intermediate thresh-
olds are chosen so that a significant portion of the negative examples are rejected while still
passing most of the postive examples. These thresholds are manually selected, although
this could be automated with a holdout set and target detection and false positive rates (as
is done by Viola, Jones, and Snow).

6 Implementation

The detection system presented in this paper is written entirely in Matlab. Even after heavy
optimization, detection still takes roughly three seconds per 384 � 288 frame on a 3.0GHz
Xeon. To contrast, Viola, Jones, and Snow’s implementation processed four frames per
second on a roughly equivalent system. While they do not specify their implementation
details, it seems likely they used a lower level language such as C or C++, which would
explain the performance differential.

7 Results

Video sequences used for both training and testing were taken from the PETS2001 database
(datasets 1,2 and 3). The classifier was trained on windows of successive frames extracted
from the videos. For negative examples, windows were uniformly randomly selected across
frames, window locations, and window scales. Windows containing a pedestrian were man-
ually removed. Positive examples were collected by manually tracking pedestrians through
video sequences. The bounding box was adjusted as necessary to keep the pedestrian prop-
erly scaled and in the center of the window. Approximately 4000 negative examples and
6000 positive examples (taken from six different pedestrians) were used during training.

The classifier was trained using these examples and 50,000 randomly selected filters from
the total set of 500,000. Forty of these features were selected by AdaBoost along with cor-



Figure 8: Results from the detection algorithm on the PETS2001 test dataset. Notice there
is one false negative and no false positives in this particular image.

responding feature weights and a threshold. Cross-validation indicated an average 98.8 per-
cent detection rate and a 1.2 percent false positive rate for unmodified classifiers returned
by AdaBoost. Considering the number of windows per image this is an unacceptable result,
but the inaccuracy most likely reflects problems with the training set since it was manually
constructed. Figure 7 shows the first few features selected by AdaBoost.

One problem with the classifier returned by AdaBoost is that the threshold is much too low.
This is because the prior probability for a pedestrian is much lower than the prior prob-
ability for a non-pedestrian, but the AdaBoost algorithm assumes they have equal priors.
Attempts were made to adjust the threshold automatically based on a holdout set, but not
enough negative examples were present to accurately do this. Instead, the threshold was
manually adjusted until the false positive rate was qualitatively low enough. The resulting
threshold yielded zero false positives, but also had a surprisingly low detection rate of about
9 percent on the holdout set. While the holdout set had a dismal detection rate, the perfor-
mance on actual images was much better because many windows overlap each pedestrian,
giving the classifier multiple chances to detect a given pedestrian. The thresholds for the
cascade were manually chosen so that as many negative examples were rejected as possible
while still allowing almost all positive examples though.

Figure 8 shows detected pedestrians in a frame from the PETS2001 test dataset. Notice
there are no false positives and only one false negative. While this is slightly better than
average, it is indicative of the classification performance of the detector on the PETS2001
dataset.



8 Comparison to Viola, Jones, and Snow

While the majority of my implementation is the same as that described by Viola, Jones,
and Snow, there are a few areas of divergence. For example, while learning the optimal
threshold for a feature, the orientation should also be learned, otherwise the best an in-
verted feature could do is classify all examples the same. The orientation was omitted for
two reasons: (1) calculating the orientation for every feature response adds computational
complexity, (2) the set of filters being trained on contains both orientations for all filters.
Another difference between the two implementations is that my training set of examples
is inferior. Viola, Jones, and Snow collected 16000 positive examples and about 20 mil-
lion negative examples, compared to my 6000 positive and 5000 negative examples. Their
examples are also drawn from a variety of sources, whereas mine are all taken from the
PETS2001 training sets. Another difference is that I manually select thresholds where they
automate this process to some degree.

9 Future Work

The boosted sum-of-pixel feature technique introduced by Viola and Jones has many po-
tential uses. One such use would be to introduce it into a particle filter context where the
sum-of-pixel classifier could be used to estimate a likelihood. This would enable an ex-
tremely simple parameterization of pixel coordinates, scale, and velocity. This would also
increase the robustness of the Viola and Jones algorithm and make it faster since full image
searches would no longer be necessary. The simplicity of the parameterization also would
have a huge benefit over more complex contour based parameterizations. Another possi-
ble application of this algorithm would be for behavior classification. For this to work,
however, longer-term motion analysis might be necessary necessary. Perhaps looking at N
successive frames instead of 2 would improve classification performance.

10 Conclusions

The pedestrian detection algorithm introduced by Viola, Jones, and Snow is unique in that
it incorporates both motion and appearance information in near real-time. My implemen-
tation was able to do a relatively good job despite training with an inadequate training set
and requiring manually specified thresholds. However, detection rates were definitely be-
low what some other techniques are capable of achieving. Again, the key advantage is
speed. With a detection rate of three seconds per frame in an interpreted programming
language, the algorithm is indeed very fast for what it accomplishes.

References

[1] CUTLER, R., AND DAVIS, L. S. Robust real-time periodic motion detection, analysis, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000),
781–796.

[2] DUDA, R. O., HART, P. E., AND STORK, D. G. Pattern Classification. John Wiley and Sons
Inc., 2001.

[3] EFROS, A. A., BERG, A. C., MORI, G., AND MALIK, J. Recognizing action at a distance.
pp. 726–733.

[4] HARITAOGLU, I., HARWOOD, D., AND DAVID, L. S. W4: Real-time surveillance of people and
their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000),
809–830.

[5] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements of Statistical Learning.
Springer, 2001. HAS t 01:1 1.Ex.



[6] VIOLA, P., AND JONES, M. Rapid object detection using a boosted cascade of simple features.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (2001).

[7] VIOLA, P., JONES, M. J., AND SNOW, D. Detecting pedestrians using patterns of motion and
appearance. In iccv03 (Nice, France, 2003), pp. 734–741.


