
TCP Nicer: Support for Hierarchical Background
Transfers

Neil Alldrin and Alvin AuYoung
Department of Computer Science

University of California at San Diego
La Jolla, CA 92037

Email:
�
nalldrin, alvina � @cs.ucsd.edu

Abstract— Background computation is a well-
established method of improving user-perceived
performance in an interactive computer system.
Garbage collection, disk prefetching and file system
defragmentation are examples of commonly employed
background tasks. With many of today’s computing
environments shifting from a desktop-centric to
a distributed computing paradigm, it would be
advantageous to have background computation in a
distributed computing environment.

We introduce TCP Nicer, a mechanism enabling multi-
ple priority levels among TCP flows. TCP Nicer provides
an abstraction for performing background computation in
a distributed environment. In this design, lower priority
flows minimally interfere with higher priority flows while
also utilizing available bandwidth. Our results show that
we can achieve 4 levels of priority with only sender-side
modification.

I. INTRODUCTION

TCP Nice[5], [4], [6] is a modified version of TCP-
Vegas enabling background flows that minimally inter-
fere with foreground flows. This effectively provides
two levels of flow priority: one for standard traffic and
another for background traffic. This is useful for many
applications such as data prefetching and peer-to-peer
(P2P) networking where traffic often has low priority.
As an example, suppose a system is running a P2P
application. Without a notion of flow priority, the P2P
transfers might adversely affect user-interactive transfers
such as web browsing. Using TCP Nice, however, the
P2P application could utilize spare bandwidth and min-
imize interference with the user’s other transfers.

While two levels of flow priority is sufficient for
many applications, it would be “nice” to have more. We
present TCP Nicer, which extends TCP Nice to provide
four levels of flow priority. This is useful for applica-
tions like hierarchical prefetching where more important
prefetches can be assigned different priority levels. In

the P2P framework, this could be used to prioritize file
transfers, lookups, and other services. Additionally, end
users could use such a mechanism to prioritize their
applications. For example, a P2P application could be
given lowest priority, followed by a FTP transfer, with
other applications running in the foreground. This is
similar to task priority in an operating system scheduler
except it applies to network resources instead of cpu
cycles.

II. BACKGROUND

There exists a large body of work in networks research
that allow hosts and routers to quickly and accurately
detect network conditions. Most of this work has been
motivated by the need for congestion control to maintain
stability in the Internet. RED, ECN and XCP are exam-
ples of network protocols that attempt to leverage accu-
rate network detection to perform congestion avoidance.
The same mechanisms that allow for accurate congestion
detection can also be utilized by clients wishing to
provide more control over their own TCP connections.

A. TCP Vegas

TCP Vegas[2] is an example of a protocol that lever-
ages improved congestion detection in an attempt to im-
prove utilization during network congestion, but unlike
most other approaches, it is implemented entirely on
the end-host and does not require network infrastructure
support. We describe the key features of TCP Vegas in
order to provide background for the discussion of TCP
Nice and TCP Nicer.

The goal of TCP Vegas is to allow TCP to increase
bandwidth utilization and decrease packet losses. It dif-
fers from traditional implementations of TCP-Reno in
its congestion avoidance mechanism, its treatment of
slow-start, and retransmit policy. We discuss each of the
following techniques briefly.

The congestion avoidance mechanism in TCP Vegas
attempts to detect congestion before packet loss occurs.
It maintains an estimate of expected throughput (based
on outstanding packets and estimated minimum round-
trip time) and the actual throughput. It calculates the
difference between these amounts as Diff � Expected �
Actual and will adjust its congestion window according
to the value of Diff. If Diff ��� then the congestion
window is linearly increased. If Diff � � then the
congestion window is linearly decreased. They define �
and � as tunable parameters. The congestion window is
unchanged in other circumstances.

The slow start mechanism in traditional TCP is de-
signed to probe the network for bandwidth availability
by effectively doubling the size of its congestion window
every round trip time (RTT). While this allows a TCP
client to quickly estimate available bandwidth, it can lead
to a large packet loss – on the order of half the size
of the current congestion window. TCP Vegas seeks to
avoid this loss by waiting two RTTs before doubling its
congestion window. It uses this RTT to determine if it
is approaching congestion. If so, it enters the standard
increase and decrease algorithm.

Retransmissions in early implementations of TCP
Reno suffered from lack of a fine-grained timing mech-
anism (the clock used had granularity on the order of
500 ms). To enable the retransmit mechanism to perform
faster retransmits, TCP Vegas uses the receipt of other
ACKs as an additional trigger to check if a timeout is
likely to have occurred.

B. TCP Nice

TCP Nice borrows the congestion avoidance mecha-
nism from TCP Vegas to achieve its goals. Modifications
include a more sensitive congestion detector, faster re-
sponse to congestion, and a stronger mechanism for flow
back-off.

The TCP Nice congestion detection mechanism de-
pends on an estimation of minimum RTT and maximum
RTT. Two parameters, fraction and threshold , are de-
fined as follows:

if 	
����
�����������	�������	 �
�!�"	 �$#%����	 ��&('

Where 	 is the number of observed RTTs greater than) �*	 +-,.,0/) �213+-,.,4�3�657
98�:�5;�(<=� within some time
period. This means that if a fraction of the segments
sent out in the last congestion window took longer
than the minimum RTT by some amount, TCP Nice
assumes congestion. When congestion isn’t detected by
this mechanism, TCP Nice falls back on the � and �

congestion avoidance rules of TCP Vegas. Upon segment
loss, it will use TCP Reno’s congestion control rules.

Multiplicative decrease of the congestion window
during congestion avoidance allows faster response to
detected congestion. In addition to this, the congestion
window is permitted to go below one (up to a limit of>?A@). This policy provides a stronger mechanism for back-
off and is what allows even multiple Nice flows to retain
non-interference properties with respect to a foreground
TCP flow.

While TCP Nice is based on the same mechanisms
as TCP Vegas, its primary goal is to avoid interference
with a foreground flow while also achieving a reasonable
share of spare bandwidth. Despite the fact that these
goals are in direct conflict, TCP Nice is able to achieve
around 70% of spare bandwidth while interfering with
the foreground flow by no more than 5%.

III. TCP NICER

With TCP Nicer, we wish to implement a hierarchy
of TCP Nice flows, with each pair maintaing the same
non-interference properties as TCP Nice. The existing
TCP Nice design was clean enough to allow extensions
for this. In particular, the separation of the congestion
detection mechanism, and the flow backoff schemes
naturally divided our (initial) design into two parts:
congestion detection and flow backoff.

A. Congestion Detection

Congestion detection is based on using the RTT to
infer congestion in the network. The parameters used in
the TCP Nice congestion detection scheme are fraction
and threshold. Analysis by [5] indicates that the perfor-
mance of TCP Nice is stable for threshold values less
than 1 and between 0.1 and 0.9 for fraction. We repeated
this analysis and arrived at similar findings. Holding
all other parameters equal, we found that ��
����B�DC
was the lower bound such that flows achieve reasonable
throughput on an empty link. ��
����4� CFEHG was the
maximum value before a TCP Nicer flow would interfere
with a TCP flow. Our use of the parameter �I5;
98�:�5;�(<=�
differs from the definition above. We define it as the
percentage difference between the current RTT and the
min RTT for congestion to be signaled. We found that
�657
98�:�5;�(<=� values between J(EKJ and J(EH' lead to the most
stable results.

B. Flow Backoff

The two mechanisms we use to manipulate the level of
flow backoff were the amount of multiplicative decrease

TABLE I

PARAMETER VALUES

LNMPO�QSR6M T"U�V WXQAY�O ZXW[W \K]9Y^O _�O!ZXY
Level 0 1.10 1.75 1.0 0.90

Level 1 1.20 0.50 0.2 0.30

Level 2 1.20 0.10 0.1 0.05

and additive increase performed by a TCP Nicer flow. We
define multiplicative decrease to be the factor the existing
congestion window is multiplied by during multiplicative
decrease. For example, a)a` < ��8X��
98X�F:P8 of

>b would
cause the congestion window to be divided by c instead
of ' , and a)a` < �28X��
98X�F:�8 of 2 causes the congestion
window to remain the same. ���d� �*	 ��
98X�F:P8 is defined
to be the number of segments added to the congestion
window (the definition can easily be extended to reflect
bytes intead). Intuitively, these two parameters are re-
lated. For example a flow with a large multiplicative
decrease would probably not employ a large additive
increase since it would severely oscillate. Moreover, a
multiplicative decrease of ' or greater does not make
sense since it would no longer be a decrease. We found
that setting)a` < �28X��
98X�F:�8 less than 1.75 leads to proper
backoff as does an additive increase of under J .
C. Tuning the parameters

None of the parameters are completely independent
of each other. In fact, we found the initial bounds we
placed on the parameters could be broken with sufficient
adjustment of other parameters. However, we used the
bounds as a guide to our experimentation. We first tried
to create an extremely aggressive flow (one that achieves
maximum bandwidth very fast) that would minimally
interfere with a foreground TCP flow, and repeated this
process for successively less agressive flows. We also
worked in the opposite direction: beginning with a pair
of very passive flows, we increased the aggressiveness
until we started to interfere with foreground flows. The
parameter values we arrived at are summarized in table
I. With these parameters we achieve three levels of
background flow priority.

D. Damping Oscillations

In testing the effectiveness of particular sets of param-
eters, we encountered many surprising behaviors. The
first occurred in slow start and in steady-state situations
for low-priority background flows. For example, if a
highly sensitive congestion scheme is coupled with a

powerful backoff scheme, a flow can drive itself into
severe oscillation preventing it from using available
bandwidth, even on a network with no load. This is
a side effect of queueing delay and the TCP Nice
calculation of RTT values. On an empty network, a
flow will observe a nearly constant RTT for the first
several busrst of segment transmissions. However, due
to queueing delay, the RTT will eventually drive up past
the congestion threshold if the detection algorithm is too
sensitive. This behavior repeats, causing oscillations and
preventing sufficient network bandwidth utilization. Our
solution to this is analogous to the TCP Vegas approach
to slow start. We delay the back off mechanism for an
RTT to avoid reacting to spurious latencies. We use this
method to prevent particular cases of severe oscillations.
We believe that by varying the number of RTTs to wait
before reacting, we might be able to more finely tune
the behavior of concurrent TCP Nicer flows of different
priority levels. We leave this as future work.

IV. EXPERIMENTAL METHODOLOGY

The primary goal of the simulations is to show how
well our priority levels work. All tests use ns 2.1b8a
with a simple topology consisting of a single sender and
a single bottleneck link. The bottleneck router is droptail
FIFO, has a queue size of 50, bandwidth of 0.3Mbps, and
latency of 40ms. Data packets are 512 bytes and traffic
is generated from simulated FTP transfers.

¿From this point forward, foreground (FG) flows refer
to TCP-Reno flows and background (BG) flows refer to
TCP Nicer flows. Also, TCP Nicer flows are divided into
three priority levels: level 0 is high priority, level 1 is
medium priority, and level 2 is low priority.

V. RESULTS

Figure 1 shows the performance of a foreground flow
against 19 high priority background flows. Before the
background flows start, the foreground flow reaches full
utilization; this is followed by a period of instability
when the other flows begin. The foreground flow even-
tually recovers and again utilizes most of the bandwidth.
The latency of the foreground flow is only affected
during the period of instability where it jumps by about
13%. This shows that startup effects temporarily cause
interference, but in practice this will probably have little
impact since background flows will likely be long-lived.

Figure 2 compares a single foreground flow against 19
medium priority background flows. The startup effects
are less significant than with high priority background

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Foreground
Level 0

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

R
T

T
 (

s)

Time (s)

Foreground
Level 0

Fig. 1. Throughput (a) and latency (b) of a single TCP Reno FG flow compared to 19 priority level 0 BG flows (aggregated). All BG flows
start at time e 50.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Foreground
Level 1

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200

R
T

T
 (

s)

Time (s)

Foreground
Level 1

Fig. 2. Throughput (a) and latency (b) of a single TCP Reno FG flow compared to 19 priority level 1 BG flows (aggregated). All BG flows
start at time e 50.

flows and near-optimal utilization is achieved by the
foreground flow in steady-state.

Figure 3 shows a foreground flow with 19 low pri-
ority background flows. As expected, startup effects are
further reduced and in steady-state the background flows
have almost no effect on the foreground flow.

Figure 4 compares a single high priority flow to 19
medium priority flows. The medium priority flows cause
roughly a 10% decrease in throughput and a negligable
increase in latency. While this is fairly good, the variance
of the bandwidth is high and could cause problems
for real-time applications. This probably is not a major
issue since real-time applications will likely not use
background flows.

Figure 5 compares a single high priority flow to 19 low
priority flows. As expected the interference is minimal.

Figure 6 shows that the low priority flows significantly
interfere with medium priority flows. Even a single low
priority flow causes the medium priority flow’s through-
put to periodically spike downward. With ten flows, the
medium priority flow averages slightly under 50% of
maximum utilization and with more flows the situation
gets even worse. Latency (not shown) increases about
40% with ten flows. While these results are somewhat
discouraging, a single medium priority flow still easily
outperforms nine low priority flows.

Figure 7 shows the result of staggering four flows
of different priority levels. The lowest priority flow

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Foreground
Level 2

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200

R
T

T
 (

s)

Time (s)

Foreground
Level 2

Fig. 3. Throughput (a) and latency (b) of a single TCP Reno FG flow compared to 19 priority level 2 BG flows (aggregated). All BG flows
start at time e 50.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Level 0
Level 1

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

R
T

T
 (

s)

Time (s)

Level 0
Level 1

Fig. 4. Throughput (a) and latency (b) of a single priority level 0 BG flow compared to 19 priority level 1 BG flows (aggregated). All
level 1 flows start at time e 50.

starts first and is taken over when the medium priority
flow starts. Similarly, the high priority and foreground
transfers take over when they start.

VI. CONCLUSIONS

We have shown that TCP Nice can be extended to
support four priority levels. However, our results indicate
that extending beyond this many levels will require more
advanced techniques. We highlight suggestions for some
of these techniques below.

Our scheme of performing a variable delay for flow
backoff provided a rough approximation to percentile
RTT estimates. It allows flows to ignore spurious RTTs
that might cause delays. This is particularly effective for

lower priority flows which have large backoff values.
The authors of TCP Nice specifically mention improving
the robustness of RTT estimates by calculating first and
ninety-ninth percentile values. It isn’t clear whether or
not the potential gain warrants the added complexity of
this scheme, in light of past studies [1] and the presence
of simpler approximation schemes for mean and mode
values.

It is clear from our results that particular combinations
of foreground-background flows work better than others.
We would like to investigate the possibility of enabling
a TCP Nicer flow to dynamically adjust its priority or
even its parameters within a priority level. This would be
valuable to maintaining more stable results and also be

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Level 0
Level 2

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

R
T

T
 (

s)

Time (s)

Level 0
Level 2

Fig. 5. Throughput (a) and latency (b) of a single priority level 0 BG flow compared to 19 priority level 2 BG flows (aggregated). All
level 2 flows start at time e 50.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Level 1
Level 2

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Level 1
Level 2

Fig. 6. Throughput of a single priority level 1 BG flow compared to (a) a single low priority BG flow and (b) nine low priority BG flows
(aggregated). All level 2 flows start at time e 50.

of value to an end-user, who might want to dynamically
reassign TCP Nicer priorities based on the status of the
network or other active flows.

We would like to implement these changes into the
TCP code of the Linux kernel and measure the real-
world performance of TCP Nicer. It would be interesting
to compare its performance to a proprietary scheme
like Microsoft’s Background Intelligent Transfer Service
(BITS)[3], where they are seemingly able to offer back-
ground transfers without directly modifying the Operat-
ing System’s internals.

We would also like to note that the notion of using
background transfers has several limitations. First of
all it is sensitive to other traffic on the network. It is

unclear how one client’s TCP Nicer background transfers
might affect another client’s transfers that share some
of the same links. Also, this technique is limited to
providing control on the sender-side as it cannot be
assumed that other hosts will cooperate. While receivers
could probably be made to support prioritized inbound
flows, TCP Nicer does not address this.

REFERENCES

[1] A. Acharya and J. Saltz. A study of internet round-trip delay.
Technical report, University of Maryland, 1996.

[2] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. Tcp vegas:
New techniques for congestion detection and avoidance. In
Proceedings of the SIGCOMM Symposium, pages 24–35, 1994.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Foreground
Level 0
Level 1
Level 2

Fig. 7. Comparison of four flows of varying priority. The low priority flow starts at 0, the medium priority flow starts at 50, the high
priority flow starts at 100, and the foreground flow starts at 150.

[3] Microsoft. Windows server 2003 : Background intelligent trans-
fer service. Technical report, Microsoft Corporation, 2002.

[4] A. Venkataramani, R. Kokku, and M. Dahlin. Operating system
support for massive replication systems. In Proceedings of the
Tenth ACM SIGOPS European Workshop, 2002.

[5] A. Venkataramani, R. Kokku, and M. Dahlin. System support
for background replication. ODSI, 2002.

[6] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: A
mechanism for background transfers. OSDI, 2002.

