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Abstract

Super-resolution is the process of recovering a high-resolution im-
age from multiple low-resolution images of the same scene. An
overview of existing super-resolution techniques is provided. This
includes the formulation of an observation model and coverage of
the dominant algorithms – frequency domain methods, determinis-
tic regularization, and stochastic techniques. Also covered is recent
work on the limits of super-resolution and a section on potential
future directions for super-resolution algorithms.

1 Introduction

Super-resolution, loosely speaking, is the process of recovering a
high-resolution image from a set of low-resolution input images.
Such algorithms have long been portrayed in movies and televi-
sion; a typical movie scene showing a computer operator repeat-
edly zoom in on a person’s face or a license plate where the miss-
ing high-resolution detail magically appears on the computer screen
after each successive zoom (see figure 1). Clearly this is pure fic-
tion, after all there are an infinite number of higher-resolution im-
ages that could form the original low-resolution image, right? With
a single image and no a priori knowledge, this is true; however,
higher-resolution content can be recovered – to a point – if mul-
tiple low-resolution images are available of the same scene from
slightly different poses. A closely related problem is that of image
restoration, which utilizes a priori knowledge of the scene to re-
cover missing detail from a single image1. So, while Hollywood
almost always greatly exaggerates what can realistically be done,
there actually is some merit to the “zoom in and enhance” scenario
commonly depicted.

Applications for super-resolution abound. NASA has been using
super-resolution techniques for years to obtain more detailed im-
ages of planets and other celestial objects. Closer to home, super-
resolution can be used to enhance surveillance videos to more accu-
rately identify objects in the scene. One particular example of this
are systems capable of automatically reading license plate numbers
from severely pixelated video streams. Another application is the
conversion of standard NTSC television recordings to the newer
HDTV format which is of a higher resolution.

A variety of approaches for solving the super-resolution problem
have been proposed. Initial attempts worked in the frequency do-
main, typically recovering higher frequency components by tak-
ing advantage of the shifting and aliasing properties of the Fourier
transform. Deterministic regularization approaches, which work in
the spatial domain, enable easier inclusion of a priori constraints on
the solution space (typically with a smoothness prior). Stochastic
methods have received the most attention lately as they generalize
the deterministic regularization approaches and enable more natu-
ral inclusion of prior knowledge. Other approaches include non-
uniform interpolation, projection onto convex sets, iterative back

∗e-mail: nalldrin@cs.ucsd.edu
1While we focus on the super-resolution problem in this paper, it should

be noted that most if not all of the super-resolution techniques were inspired
by or as part of the image restoration literature.

Figure 1: Two frames from the movie The Bourne Identity showing
the enhancement of a surveillance video.

projection, and adaptive filtering. With the increased emphasis on
stochastic techniques has also come increased emphasis on learning
priors from from example data rather than relying on more heuris-
tically derived information.

The following sections will hopefully serve to elucidate the super-
resolution problem. We start by introducing a model for image for-
mation, then cover various approaches to the super-resolution prob-
lem – frequency domain techniques, non-uniform interpolation, de-
terministic regularization, stochastic methods, projection onto con-
vex sets, and iterative back projection. Next we cover recent work
attempting to determine limits to super-resolution techniques. Fi-
nally, we conclude with a section on potential future research direc-
tions.

1.1 A Very Basic Super-Resolution Algorithm

To motivate the super-resolution problem in a more concrete man-
ner, suppose we have have a camera with finite resolution M ×N,
but we desire an image of higher resolution 2M×2N. What can we
do? One option is to buy a new camera, but this could get expen-
sive or might not be possible. Another option is to take four images



with our existing camera, each image offset by half a pixel from the
other images (see figure 2). If we now combine the images on a
more dense grid, we have the 2M × 2N image we desire. This of
course neglects many things, most importantly the spatial averaging
that occurs over each pixel, but in theory would work well.

Figure 2: Higher density sampling resulting from four translated
images. Blue squares correspond to pixels from the first image, red
triangles the second, green circles the third, and purple pluses the
fourth.

2 The Imaging Process and Motion Models

One of the most important parts of designing a super-resolution
algorithm is choosing a good model for the imaging and motion
process. Ultimately we are trying to remove various camera distor-
tions – primarily decimation – from our input images. Therefore,
at the very least, we need to model the decimation process. Other
camera distortions that may be modeled are lens and motion blur,
geometric distortions, and quantization. Many motion models have
been proposed, ranging from simple translational offsets to com-
plex non-linear transformations. In this survey, we use a few dif-
ferent observation models depending on the needs of the algorithm
being reviewed.

2.1 Continuous Formation Model

Because light is continuous2 , it makes sense to model the formation
of images in terms of the continuous spatial domain. The distortions
arising from the camera system can be approximated by a point
spread function (implying a linear, space invariant process) which
is convolved with the image formed by an ideal pinhole camera. A
formulation of the image formation equation under these assump-
tions is,

yk(m) = ( fk ∗PSFk)(m) =
∫

fk(x)PSFk(x−m)dx (1)

2Quantization of energy and particle nature of light aside.

Symbol Definition
fk(x) kth continuous image formed by ideal pinhole camera
yk(m) kth observed (low-resolution) image
g(p) Super-resolution image (what we want to recover)
g(z) Continuous image corresponding to g(p)
rk(x) Maps kth image coordinates to SR image coordinates
PSFk(x) Point-spread function
K Number of observed images
MN Number of pixels in the observed LR images
PQ Number of pixels in the SR image
L Magnification factor

Table 1: Common symbols.

where fk(x) is the kth ideal image, yk(m) is the observed (low-
resolution) image, PSFk(x) is the point spread function, x ∈ R2

represents real-valued coordinates on the image plane, and m ∈ Z2

represents pixel coordinates on the image plane for the observed
images.

Now suppose we want to recover a high-resolution image, g(p),
corresponding to some ideal image g(z). Also consider a registra-
tion function rk(x) that maps coordinates of g(z) onto the coordi-
nate frame of the kth image. Then we can rewrite equation 1 as,

yk(m) =

∫

fk(rk(z))PSFk(rk(z)−m)
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where z denotes coordinates of the super-resolution image we wish

to recover and
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is the determinant of the Jacobian of rk.

To prevent confusion, note that we are using a little notational free-
dom with the coordinates of g. Wherever g(p) is used we are re-
ferring to the pixel coordinates of g (p ∈ Z2) and wherever g(z) is
used, we are referring to the real coordinates of g (z ∈ R2).

One further simplification can be made to equation 2; if we assume
the registration is correct for all images, then fk(rk(z)) = g(z) for
all k. We can now state,

yk(m) =
∫

g(z)PSFk(rk(z)−m)
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2.2 Discretization and Noise

The next step is to discretize equation 3. We do this by replacing
the continuous image g(z) with the pixelized version, g(p),

yk(m) ' ∑
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where the integration is performed over each pixel p in g. This can
be expressed more compactly as,

yk(m) ' ∑
p

Wk(m, p) ·g(p) where (5)

Wk(m, p) =
∫

p
PSFk(rk(z)−m)
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dz. (6)

We can further simplify the system using matrix notation,

yk = Wkg. (7)



Wk is sometimes referred to as the warp matrix and provides a map-
ping from the high-resolution image to the kth low-resolution im-
age.

Additive noise, η , is also easily added to the system of equations,
yielding

yk(m) ' ∑
p

Wk(m, p) ·g(p)+ηk(m), and (8)

yk = Wkg+ηk. (9)

2.3 The Point Spread Function

The point spread function PSFk(x) can be decomposed as

PSFk(x) = (wk ∗ak)(x) (10)

where wk(x) accounts for optical blurring and ak(x) accounts for
the spatial integration over each pixel. wk is usually further decom-
posed, but we omit the details here. One common form for ak is a
box function,

ak(x) =

{

1
S2 if |x| ≤ S/2 and |y| ≤ S/2
0 otherwise

}

(11)

where S is the length of a side of the box. It may be helpful to think
of this as a square shaped photo-receptor that sums all the light
arriving at its surface. Other common models for ak are impulse
and Gaussian functions, although these are not realistic for CCD
sensors and are used primarily for mathematical convenience.

2.4 Registration

Registration, rk, is often assumed to be known a priori in the
super-resolution literature. Because registration is such a heavily
researched topic, it is beyond the scope of this survey to cover it in
full detail. However, it should be noted that equations 2 and 3 make
the implicit assumption that rk is invertible. Unfortunately, this is
not a reasonable assumption for general camera motions (due to
things like occlusion, failure of the constant brightness assumption,
etc). While this can be overcome to some degree by considering
the registration functions to be locally invertible, it generally means
that super-resolution algorithms work best with input images taken
from about the same pose.

3 Frequency Domain Approaches

The super-resolution problem was posed, along with a frequency
domain solution, by Tsai and Huang[Tsai and Huang 1984]. Prior
to their paper, interpolation was the best technique for increasing
the resolution of images. Tsai and Huang showed that with mul-
tiple offset images of the same scene – and proper registration –
restoration better than cubic spline interpolation could be achieved.
Their motivation was to improve spatial resolution of satellite im-
ages of earth, where a large set of translated images of the same
scene are available.

3.1 Theory

In one dimension, Tsai and Huang’s original formulation of the
super-resolution problem considered each low-resolution image, yk,

as a discrete uniform sampling of some unknown continuous image,
g(x), offset by some amount δk. If we denote the sample spacing
by T , then pixel i in the kth low resolution image can be written in
terms of the original image as

yki = g(iT +δk) (12)

where k ∈ {1, ...,K} and i ∈ {1, ...,P}; K and P being the number
of images and number of pixels per image respectively3.

Now define yk(x) = g(x + δk). Using the shifting property of the
continuous Fourier transform (CFT), we have

Yk(ω) = e jδkω G(ω), (13)

where Yk(ω) and G(ω) are the CFT of yk(x) and g(x) respectively.
Letting Ykn be the discrete Fourier transform (DFT) at discrete fre-
quency n of the kth frame fki, by definition of the DFT we have

Ykn =
N−1

∑
i=0

ykie
− j2π in

N , n = 0, ...,N−1. (14)

From the aliasing relationship between the DFT and CFT we have

Ykn =
1
T

∞

∑
m=−∞

Yk(
n

NT
+mωs), (15)

where ωs is the sampling frequency of each image. If we assume
the original image is band-limited, then G(ω) = 0 for |ω| ≥ Lωs
for some L and we can write a matrix equation for each discrete
frequency n,

Qn = φnGn, (16)

where Qn ∈ CK×1 with kth element Ykn; Gn ∈ C2L×1 with ith el-
ement G( n

NT + (i− L− 1)ωs); φn ∈ CK×2L with (k, j)th element
T−1 exp

{

j2πδk−1
( n

NT +( j−L−1)ωs
)}

.

When δk is known, equation 16 is independent for different n and
can be solved separately for the unknown column vector Gn, which
contains the CFT of g(x) at 2L equidistant frequency points with
spacing ωs. After this is done for each n we have an estimate of
G(ω) at LN frequency points ranging from (−Lωs) to (Lωs −

1
NT )

with spacing 1
NT . From this we can estimate g(x) at a resolution

increased by a factor of 2L.

As stated, we are solving a K × 2L matrix equation for each fre-
quency component. By taking advantage of the structure of φn we
can vastly reduce the complexity of the problem as well as prove
some nice properties of the system. First note that φn can be de-
composed as

φn = DnH, (17)

where Dn is a diagonal matrix with kth diagonal element

T−1 exp
{

j2πδk−1

( n
NT

−Lωs

)}

(18)

and [H]i j = exp{ j2πδi( j−1)ωs}. Using equation 16 we can write

D−1
n Qn = HGn (19)

where D−1
n is a diagonal matrix with kth diagonal element

T exp
{

− j2πδk−1

( n
NT

−Lωs

)}

. (20)

3The derivations in this section are taken from [Tsai and Huang 1984].



Turning our attention to matrix H, if we let Wi = e j2πδi−1ωs then H
is a Vandamonde matrix of the form,
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(21)

which means the rows of H are linearly independent so long as
the offsets in each image satisfy δi 6= δ j + mT , where i 6= j and
m is any integer. If this holds and K ≥ 2L, then solving for Gn is
well-posed. Another benefit of this decomposition is to note that
H is independent of n, meaning its pseudo-inverse only needs to be
computed once.

So far we have only been considering the one dimensional case.
If we extend the analysis to two dimensions, the results are almost
identical. Using the 2D Fourier transforms instead of the 1D Fourier
transforms, we arrive at a system analogous to equation 16,

Qmn = φmnGmn. (22)

We can also do a similar decomposition of φmn,

φmn = DmnH (23)

so that

D−1
mnQmn = HGmn. (24)

Like the 1D case, H is independent of m and n so it’s pseudo-inverse
only needs to be computed once for all frequencies m and n. Unlike
the 1D case, however, well-posedness is no longer guaranteed even
if no image coincides with another. The chance of this happening
is low, so the technique still generally works well.

4 Spatial Domain Approaches

Approaching the super-resolution problem in the frequency domain
makes a lot of sense because it is relatively simple and computation-
ally efficient. However, there are some problems with a frequency
domain formulation. For one, it restricts the inter-frame motion to
be translational because the DFT assumes uniformly spaced sam-
ples. Another disadvantage is that prior knowledge that might be
used to constrain or regularize the super-resolution problem is of-
ten difficult to express in the frequency domain. Since the super-
resolution problem is fundamentally ill-posed4, incorporation of
prior knowledge is essential to achieve good results.

A variety of techniques exist for the super-resolution problem in the
spatial domain. These solutions include interpolation, deterministic
regularized techniques, stochastic methods, iterative back projec-
tion, and projection onto convex sets among others. The primary
advantages to working in the spatial domain are support for un-
constrained motion between frames and ease of incorporating prior
knowledge into the solution.5

4At some magnification, the observations alone fail to contain enough
information to support a unique super-resolution image.

5The following sections are primarily adapted from the following three
papers : [Park et al. 2003; Borman and Stevenson 1998; Elad and Feuer
1997].

4.1 Non-Uniform Interpolation

Perhaps the most naive method for performing super-resolution is
to map pixels from the low-resolution images onto a common plane
(according to the motion model for each image) and then interpolate
over a more finely sampled grid to obtain a higher-resolution image.
Unfortunately, this technique generally works very poorly because
of some inherent assumptions; the main problem being that cam-
era sensors do not act as impulse functions, but instead spatially
average the incident light across each pixel. Figure 3c highlights
the lack of high frequency recovery using this technique. Notice
that non-uniform interpolation looks only marginally better than bi-
linear interpolation. Application of a deblurring kernel, however,
yields nice looking results.

Figure 3: Results of non-uniform interpolation. (a) Nearest neigh-
bor interpolation (over a single image). (b) bi-linear interpolation
(over a single image). (c) non-uniform interpolation (over four
translated input images). (d) application of a deblurring algorithm
to (c). (Figure taken from [Park et al. 2003])

4.2 Deterministic Regularization

When presented with an ill-posed problem it becomes necessary to
impose prior knowledge on the solution space in order to obtain a
unique solution. Many standard techniques exist for doing this, but
perhaps the most common approach is to impose a smoothness prior
via Tikhonov regularization on top of a least-squares optimization
function[Park et al. 2003]. Recall our image formation equation
(equation 9),

yk = Wkg+ηk. (25)

Assuming the matrix Wk can be estimated for each input image yk,
we can estimate the high-resolution image g(p) by minimizing the



following objective function,

K

∑
k=1

||yk −Wkg||2 +λ ||Cg||2. (26)

Here, C ∈ RPQ×PQ encodes our prior knowledge of what the high-
resolution image should look like. The most common choices for
C encourage smooth solutions by penalizing high frequency spatial
variations in g. λ controls how much weight is given to the reg-
ularization constraint; large values of λ will result in overly con-
strained solutions that may not reflect the data, while small values
could result in noisy solutions depending on the characteristics of
the sampling noise, η .

The presence of the regularization term guarantees a convex and
differentiable optimization function so long as C is invertible. Thus,
a unique optimal value of g can be computed using a number of
standard methods like gradient descent.

Figure 4 shows results of the deterministic regularization technique
with a smoothness prior. Note the large effect of λ on the resulting
images and how it compares to a stochastic based approach (cov-
ered in the next section). The results are certainly an improvement
over the low-resolution image, but enforcing smoothness is not al-
ways the best option, especially if other priors can be formulated
that preserve high-frequency details better (such as the edge pre-
serving prior in figure 4d).

To give more insight on the regularization matrix C, we derive a
matrix that can be used to enforce smoothness. A typical measure
of smoothness is the discrete 2D Laplacian,

Q =





0 1 0
1 -4 1
0 1 0



 (27)

which approximates ∂ 2 f
∂x2 + ∂ 2 f

∂y2 . We want to apply Q to each pixel
in g. Since the image g has been mapped to a MN × 1 vector, we
simply need to make sure Q is mapped onto the rows of C appropri-
ately. Namely, the main diagonal of C should be −4 and the rows
corresponding to the pixels adjacent to the pixel corresponding to
the given row should be 1; all other entries will be 0. The same
methodology can be used to apply other constraints on a per-pixel
basis.

The above deterministic regularization approach can be further en-
hanced using multichannel theory[Hong et al. 1997b; Hong et al.
1997a; Kang 1998], which essentially enables constraints between
images to be expressed. This is usually accomplished by concate-
nating the input images into one long vector and using a larger warp
matrix W that contains cross image terms. Some work has also been
done on estimating optimal regularization parameters λ by analyz-
ing the L-curve[Hansen and O’Leary 1993].

4.3 Stochastic Reconstruction Methods

While deterministic regularization enables the use of prior knowl-
edge to constrain the solution, it does so in a somewhat awkward
way, by tacking on a regularization term to the optimization func-
tion. Another approach to the same problem is to use statistical
techniques that explicitly handle prior information and noise. If
certain conditions are met, the two formulations yield the same op-
timization functions; however, inclusion of prior knowledge is usu-
ally more natural using a stochastic approach.

The most common statistical approach for super-resolution is the
Bayesian formulation. This encompasses maximum likelihood

Figure 4: The effects of regularization on super-resolution. (a)
Nearest neighbor interpolation (over a single image). (b) Least
squares estimate with small λ . (c) Least squares estimate with large
λ . (d) Maximum a posteriori technique with an edge-preserving
prior. (Figure taken from [Park et al. 2003])

(ML) and maximum a-posteriori (MAP) techniques. We start with
the standard observation equation,

yk = Wkg +ηk (28)

where the observed data yk, noise ηk, and super-resolution image
g are assumed to be stochastic and the warp matrix Wk is known.
Corresponding to the noise ηk is its autocorrelation matrix Sk . If
we lack prior knowledge, we can set S−1

k to the identity matrix,
which corresponds to white noise. Likewise, we define Q to be the
autocorrelation matrix of g.

The maximum a-posteriori approach, introduced by Schultz and
Stevenson[Schultz and Stevenson 1996] to the super-resolution lit-
erature, tries to find the SR image g that maximizes the probability
of the SR image given the observed images, Pr{g|{yk}

K
k=1}; ie,

gMAP = argmaxg
[

Pr{g|{yk}
K
k=1}

]

(29)

Applying Bayes rule and taking the logarithm of the result, we ob-
tain

gMAP = argmaxg
[

Pr{{yk}
K
k=1|g} ·Pr{g}

]

(30)

gMAP = argmaxg
[

log(Pr{{yk}
K
k=1|g})+ log(Pr{g})

]

(31)

where log(Pr{{yk}
K
k=1|g}) is the log-likelihood function, and

Pr{g} is the a priori density of g.

If we assume the noise and SR image correspond to zero mean
Gaussian additive random processes with autocorrelation matrices



S and Q, then it can be shown that the MAP estimation is

gMAP = argmaxg
[

(Y −W g)T S−1(Y −W g)+gT Q−1g
]

, (32)

where we have combined the K images into a single linear system
for notational convenience. Minimization yields

g = (W T S−1W +Q−1)−1W T S−1Y. (33)

This is exactly equivalent to the minimum mean squared error
(MMSE) solution.

Freeman et al.[Freeman et al. 2000; Freeman et al. 2002] employ
more powerful priors using Markov random fields (MRFs). The
basic idea is to divide the observed images and the scene (ie, the
SR image) into patches, assigning one node of a Markov network to
each patch. Each scene patch is then connected to its corresponding
image patch and to its spatially adjacent neighbors (see figure 5).

Figure 5: MRF network used by Freeman et al.

In this model, Pr(g) is defined as

Pr(g) =
1
Z

exp{−U(g)} =
1
Z

exp

{

− ∑
c∈C

φc(g)

}

(34)

where Z is a normalizing constant, U(g) is an “energy” function,
φc(g) is a potential function that depends on pixel values within a
clique (aka patch) c, and C is the set of cliques.

Freeman et al. train the network on a set of real-world photographs
and achieve fairly good results (see figures 6 and 7). It should
be noted that their paper only considers a single observed image
and therefore should be considered an image restoration algorithm
rather than a super-resolution algorithm. However, it highlights the
power of using a more flexible prior model combined with a learn-
ing framework.

A similar patch based technique recently developed in the computer
vision community is the epitome[N. Jojic and A.Kannan 2003;
Cheung et al. 2005]. The most recent work enables super-resolution
in videos using priors learned from previous frames in the scene.
The results related to super-resolution look good, but are applied
to somewhat benign scenes, so it remains to be seen whether the
technique truly works well or not for super-resolution.

Capel and Zisserman[Capel and Zisserman 2001] employ a “face
space” prior learned from images of human faces. Figure 8 shows

Figure 6: A restored image of a tiger from Freeman et al. (Top)
Observed low-resolution image. (Bottom) Restored image.

the effect of changing the weight on their prior term. Baker and
Kanade[Baker and Kanade 2002] also learn priors from images of
human faces, but instead of learning entire faces, they learn a set
of typical face patches. The prior term then indicates how close
the images are to being formed from a set of patches. Results are
shown in figure 9.

While papers that use learned constraints claim to be less ad-hoc
than algorithms that use “artificial” constraints like smoothness, this
is completely dependent on the training data. There could be unin-
tended, and subtle, consequences to using training sets that are not
well thought out. The main issue is that the training sets need to
reflect the statistics of the images being restored without introduc-
ing bias; however, it is no simple task to evaluate whether or not a
given training set satisfies this criterion. Since most learning based
approaches use somewhat ad-hoc training sets, it is difficult to eval-
uate the algorithms and also to compare different algorithms to one
another.

4.4 Other Restoration Techniques

4.4.1 Projection Onto Convex Sets

Another method for reducing the space of possible reconstructions
is projection onto convex sets (POCS)[Youla 1978; Elad and Feuer
1997]. This is a set-theoretic approach where each piece of a priori
knowledge is formulated as a constraining convex set. Once the
group of convex sets is formed, an iterative algorithm is employed
to recover a point on the intersection of the convex sets,

gi+1 = PMPM−1 · · ·P2P1{gi} (35)



(a) (b)

(c) (d)

Figure 7: A restored image of a boy from Freeman et al. (a)
Observed low-resolution image. (b) Bi-cubic interpolation. (c)
Method of Freeman et al. (d) Actual high-res image.

where Pj is the projection of a given point onto the jth convex set
and M is the number of convex sets. In essence, we are restricting
the final restored image to lie on the intersection of the constraining
sets, {Pj}

M
j=1. The reason we require convex sets is that conver-

gence is guaranteed for the case where each set is convex.

One potential group of convex sets is based on the l2 distance mea-
sure,

Gk =
{

g
∣

∣ ||Wkg− yk||
2 ≤ 1

}

,1 ≤ k ≤ K. (36)

This defines a set of ellipsoids (one for each input image) and re-
stricts the final solution to lie inside the ellipsoids. Other possi-
ble convex sets include ones based on the l∞ norm, those imposing
smoothness, and those constraining the image intensity to be posi-
tive. Two problems with the POCS approach are that uniqueness is
not guaranteed for the final recovered image and that defining the
projections Pj can be difficult.

4.4.2 Iterative Back Projection

Irani and Peleg[Irani and Peleg 1991] proposed a super-resolution
algorithm based on iterative back projection (IBP). The key idea
is that the error between the observed low-resolution images and
the corresponding low-resolution images formed using an estimate
of the SR image can be used to iteratively refine the estimated SR
image. The update equation is

gn+1(p) = gn(p)+∑
m

(yk(m)− ỹk(m))
(hBP

mp)
2

c∑m′ hBP
m′ p

(37)

where gn is the estimate of the SR image at the nth iteration, yk is
the kth low-resolution image, ỹk is the kth low-resolution image as
approximated from gn, and hBP is a back projection kernel. While

Figure 8: Face space MAP reconstruction results with varying
weight on the prior term. As λ increases the image moves closer to
the average face. (Figure from [Capel and Zisserman 2001])

iterative back projection is relatively easy to understand, the method
does not directly address the ill-conditioning of the problem and
incorporation of a priori constraints is difficult.

5 Limits on Super-Resolution

Recently there has been growing interest in determining what the
limits of super-resolution algorithms are. The most prominent work
in this direction is that of Baker and Kanade[Baker and Kanade
2002]. Another analysis was later done by Lin and Shum[Lin and
Shum 2004], following up on the results of Baker and Kanade. Both
analyses address a somewhat simplified, but well justified, form of
the super-resolution problem.

5.1 Baker and Kanade

Baker and Kanade derive three results that each show that the super-
resolution problem becomes much more difficult as the magnifica-
tion factor increases. The first is that for certain classes of point
spread functions, the reconstruction constraints are not invertible
and the null space of the linear system grows quadratically with the
magnification term. Second, they show that for other more general
classes of point spread function, the condition number grows at or
greater than quadratic. The third result is that the solution space for
potential reconstructions grows “extremely fast” with increases in
magnification factor – meaning regularization terms will dominate
the solution at some point.

The following assumptions are made throughout Baker and
Kanade’s analysis,

• The point spread function takes the form,

PSFk(x) = (wk ∗ak)(x) where (38)

ak(x) =

{

1
S2 if |x| ≤ S/2 and |y| ≤ S/2
0 otherwise

}

(39)

with the width of the photoreceptor S the same for all input
images.



• The optical blur portion of the PSF, wk(z), is a Dirac delta
function, δ (z), implying no optical blurring (this is later re-
laxed).

• The registration function rk(z) corresponds to global transla-
tion. Thus, registration takes the form

rk(z) =
1
L

z+ ck (40)

where L is the magnification factor and ck ∈ R2 is a constant
(although different for each image).

The performance of any resulting super-resolution algorithm based
on these assumptions will depend on the number of input images
K and the values of the local translations ck. The analysis assumes
the best possible scenario where there is an arbitrary number of
input images and the registration is perfectly estimated. Thus, any
derived upper bounds will be for best case scenarios.

5.1.1 Invertibility for Square Point Spread Functions

If we use a square point spread function PSFk(z) = ak(z) and the
registration is a translation, we can simplify the image formation
equation (eqn 5) to,

yk(m) = ∑
p

Wk(m, p) ·g(p) (41)

Wk(m, p) =
1

L2

∫

p
ak

(

1
L

z+ ck −m

)

dz (42)

where the integration is over the pixel p. Using our earlier assumed
form for ak, we can further simplify Wk(m, p) to

Wk(m, p) =
1

(L ·S)2 ·A (43)

where A is the area of intersection between SR pixel p and the trans-
lated low-resolution pixel m (see figure 10. Without loss of general-
ity, we can assume each pixel in the SR image occupies an area of 1
(which implies each LR image pixel occupies an area of (LS)2). If
LS is an integer larger than 1, then equation 41 is not invertible for
any set of translations {ck}

K
k=1 and the smallest dimension of the

null-space is (LS−1)2. If LS is not an integer, then some {ck}
K
k=1

will enable inversion of equation 41.

Figure 10: The area of intersection between SR image pixel p and
translated low-resolution pixel m. (Figure from [Baker and Kanade
2002])

We omit the proof, but it is somewhat intuitive that if the size of
each observed pixel is an integer multiple of the size of an SR im-
age pixel then the resulting constraints will have less variety than
if this were not so. Figure 11 compares magnifications of LS = 1.5
and LS = 2.0. With a magnification of 2.0 and no regularization,
the problem is ill-conditioned as can be seen by the high-frequency
artifacts in the reconstruction; whereas the magnification of 1.5 is
invertible without regularization. Note the results agree with the
theory. This result is important because it proves that there exist
non-invertible scenarios regardless of the number of input images
using fairly standard assumptions regarding the PSF and registra-
tion.

Figure 11: (a) Super-resolution with LS = 2.0, no regularization.
(b) Super-resolution with LS = 1.5, no regularization. (c) Super-
resolution with LS = 2.0, with regularization. (Figure from [Baker
and Kanade 2002])

5.1.2 Conditioning for Arbitrary Point Spread Functions

The next result shown by Baker and Kanade is that the condition
number for the linear system in equation 5 grows at least as fast as
(LS)2 for any optical blur wk. This can be proved by employing the
property of singular values of matrix A that for any vector x,

σ1 ≥
||Ax||2
||x||2

≥ σn (44)

where σ1 is the largest singular value, σn is the largest, and || · ||2 is

the L2 norm. Since Cond(A) = σ1
σn

≥
||x||2||Ay||2
||y||2||Ax||2

for any x and y, we
can bound the condition number by finding appropriate x and y. If
we choose x to be the SR image of all ones and y to be a checker-
board pattern and use PSFk = ak, it follows that the corresponding
low-resolution images are yk(m) = 1 and |yk(m)| ≤ 1

(LS)2 respec-
tively, for all m. This implies a condition number greater than or
equal to (LS)2. For the extension to arbitrary PSFs the reader is
directed to the original paper for the proof.

5.1.3 Volume of Solutions for Arbitrary Point Spread
Functions

The third major result states that in the presence of quantization, the
volume of the set of solutions grows asymptotically as |LS|2n where
L is the magnification factor, S is the width of the photoreceptor for
a single pixel, and n is the number of pixels in the SR image we
are trying to recover. This is probably the most relevant result as it
shows that the number of possible solutions grows very rapidly with
the magnification factor. For standard super-resolution algorithms
incorporating a smoothness prior, this means that at some point the
number of potential smooth solutions grows so high that the al-
gorithm no longer works well. Figure 12 shows super-resolution
results for increasing magnification factor.



5.2 Lin and Shum

While Baker and Kanade show asymptotic trends in super-
resolution algorithms based on the magnification factor and width
of the photoreceptor for each pixel, they don’t show limits on the
magnification L, the number of input images needed to obtain ac-
ceptable results, or at what point additional images fail to provide
new information. Lin and Shum[Lin and Shum 2004] extend the
results of Baker and Kanade by analyzing these problems. Basing
their analysis on perturbation theory of linear systems, they derive a
practical limit of 1.6X magnification in the presence of registration
and image noise and a theoretical limit of 5.7X for perfect regis-
tration. Further, they show a sharp cutoff in reconstruction perfor-
mance once a certain set of low-resolution pixels have been cap-
tured and also show limits on the number of low-resolution images
needed to form such a set.

6 Future Research Directions

While the super-resolution problem has been heavily studied, two
recent trends have emerged that seem ripe for further advancement.
The first trend is that of analyzing the limitations of super-resolution
algorithms. The work of Baker and Kanade and that of Lin and
Shum are fairly complete for the case of translated input images
with standard reconstruction based algorithms6. However, it would
be interesting to examine the effects of non-translational motion
and further explore the effects of registration error and other forms
of noise. Another thing that should be more carefully researched
are the effects of quantization. Specifically, it would be good to
have an analysis of how increased quantization granularity affects
conditioning of the image formation equation.

The second trend in super-resolution is the use of learned priors
to constrain the solution space. While much research has been
focused in this direction recently, there is certainly still room for
improvement. The primary issues here are finding good models
for representing a priori information and finding efficient learning
techniques for these models. The modeling and learning aspects go
hand in hand because as model flexibility increases, the ability to
effectively learn parameters of the model decreases.

In addition to these two trends, we have identified some new direc-
tions for future research. The first asks the question “Can we design
camera sensors that are optimal for super-resolution algorithms?”.
Current CCDs act like box functions, spatially integrating over a
uniform rectangular region for each pixel. It is likely that other
types of sampling, such as integration over a Gaussian function,
would yield better results7.

Another direction is to combine super-resolution with dense stereo
reconstruction. Dense stereo reconstruction is the process of es-
timating the depth of every point in the scene from two or more
input images taken from different poses. Current techniques typ-
ically estimate depths for every pixel in one of the images, but it
should be possible to obtain depths on a finer grid by combining
super-resolution techniques with dense stereo.

A third potential problem is to combine high dynamic range imag-
ing with super-resolution. High dynamic range imaging involves

6Reconstruction based algorithms are those that use an image formation
model to relate the high-resolution image to low-resolution inputs. Inversion
of the formation model then is the crux of such algorithms.

7Obviously, the most ideal sampling function from a theoretical stand-
point is an impulse function, but this is not feasible; also, the smaller the
area of integration on the sensor, the higher the signal-to-noise ratio will be.

taking multiple images from the same viewpoint at different expo-
sures and then combining the images to obtain an image of higher
dynamic range8. By taking multiple images at different exposures
and with slight translational offsets it might be possible to obtain a
super-resolved high dynamic range image more efficiently than if
the two stages are done independently.

7 Conclusions

We have provided a review of the current state of super-resolution
research, covering the past, present, and future of the problem. A
standard image formation model was first introduced, followed by
summaries of the major classes of algorithms including frequency
domain approaches, deterministic regularization, stochastic tech-
niques, and projection onto convex sets. We then covered recent
analyses on the limits of super-resolution algorithms and finally dis-
cussed potential future directions for research.
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Figure 9: “Hallucination” based reconstruction results using the method from Baker and Kanade. Only four low-resolution images were used
for each of the reconstructions. Note that as the magnification increases, the algorithm begins placing patches somewhat randomly. (Figure
from [Baker and Kanade 2002])

Figure 12: Results from a reconstruction-based super-resolution algorithm for increasing magnification factor. Notice that as the magnification
increases, the smoothness constraint is no longer sufficient to recover much of the detail. This can be explained by the large increase in
potential solutions as the magnification increases. (Figure from [Baker and Kanade 2002])


