
A Three-Unit Network is All You Need to
Discover Females

Neil Alldrin
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

nalldrin@cs.ucsd.edu

Andrew Smith
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

atsmith@cs.ucsd.edu

Doug Turnbull
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

dturnbul@cs.ucsd.edu

Abstract

We train neural networks to classify images according to facial expres-
sion, gender, and identity. We explore two dimension reduction tech-
niques, PCA and downsampling. We compare two activation functions,
the logistic sigmoid and “funny”-tanh and experiment with networks
with different numbers of hidden units.

1 Introduction

In this paper we explain modifications to the traditional back-propagation algorithm, and
use this modified algorithm to classify images of human faces. Each face in our data set is
classified by gender, identity, and facial expression. Our goal is to train neural networks to
learn these classifications.

Our approach is divided into three stages: pre-processing images, training the network,
and validating the networks ablitiy to generalize. During the pre-processing stage we ei-
ther downsample the images or use principal components analysis (PCA) to reduce the
dimensionality of the data. In the training stage, a neural network is trained using error
back-propagation. In the validation stage, the network is tested with novel data.

We divide the images into three sets, a training set, a hold-out set, and a test set. The
training set is the data that the back-propagation algorithm uses to adjust weights. While
these weights are being adjusted, the hold-out set is used to find the point at which the
network stops learning general trends and starts memorizing the training set (overfitting).
Once back-propagation trains the network, it attempts to classify the test set to evaluate the
performance on novel data.

All of our neural networks are multi-layer perceptron networks with one hidden layer. For
classification tasks, we use the same number of outputs as classes. We train networks with

varying numbers of hidden units to find a network architecture capable of good classifi-
cation. For each of these network architectures we partition our data for cross validation.
Cross validation involves running back-propagation multiple times with different test sets.

2 Heuristic Improvements to Back-Propagation

Back-propagation is a computationally efficient way to learn the weights of a feed-forward
neural network.

2.1 Our Back-Propagation Algorithm

Definition of variables:

����� is the � th input of the network.
���	� is the
 th output of the network.
��� � is the target value for the
 th output.
��
������ is the activation function (we consider
������������������� "!$#�%'&(��)*+��� and
(�,������.-'�/�10�2+3�4+�).
��576$8 � denotes the weight from hidden unit 9 to a output unit
 , similarly 5���8 6 is a

weight from input unit � to a hidden unit 9 .
��:;5 is the change in weight.
�
=< � and
=< 6 are the weighted sums of the inputs to output unit
 and hidden unit 9

respectively.
��>�6 is the activation of hidden unit 9 (ie, >+6?�@
(�
=< 6A�).
��B is the “momentum”.
��C is the learning rate.
��D�� is the error for output unit
 . D 6 is the error for hidden unit 9 .

Our back-propagation algorithm works as follows:

1. Normalize the inputs.

2. Randomly initialize weights.

3. Initialize :;5 6$8 �E�F:G5 ��8 6 �IH .
4. For < �J� to some number of Epochs,

(a) C;�FKL-'��MN0 < � , where K , M are constants.
(b) For each input in the training set (in random order),

i. O�
�P D � �Q�,� ��R � � �=
TS=�
=< � � .
ii. O�
VUW9;P :G5 6$8 �E�XBZYA:;5 6$8 ��0�C[YA> 6 Y�DA� .

iii. OT9\P DV6?�]
 S �
=< 6��_^ � 576$8 � D � .
iv. OT9+U$�`P :;5a��8 6L�XBbY�:;5c�.8 6d0�CGYA���?YADe6 .
v. O�
VUW9;P 5 6$8 �E�F5 6$8 �f0�:;5 6g8 � .

vi. OT9+U$�`P 5 ��8 6 �X5 ��8 6 0�:;5 ��8 6 .
(c) If the current set of weights is the best found so far on the hold-out set, save

this set of weights as 5h�.i=j/k=l and 5nm+i=j/k=l .
5. Return 5h�.iWjok=l and 5nm�i=j/kpl .

2.2 Notes on Our Back-Propagation Algorithm

We use a number of techniques presented in [1]:

� All inputs are normalized prior to learning (step 1). Specifically, each dimension
of the input is normalized over all patterns to have mean H and standard deviation� .� Weights are initialized randomly with mean H and standard deviation �.-.qargs) ,
where q is the fan-in of a unit.� Every epoch, the training set is randomly shuffled.� Momentum is used to dampen oscillations in the weight updates.� When using the standard sigmoid function we set targets to �tmT�+� and �t�vu� and
when using the “funny”-tanh function (
(�,���`�w�������.�v "!V#v%'&��)*+���) we initialize
targets to be -1 and 1. These targets are the values at which the curvature of the
activation function is maximized.

In addition to the above techniques we do the following:

� We choose constants K and M to control the learning rate C . M controls how
quickly C decreases and K increases C by a constant factor.� To test our algorithm, we use a forward difference to approximate the gradient
of the error with respect to the weights and compare it to the change in weights
obtained by back-propagation. This ensures that the weights move down the error
surface.

2.3 Comparison of Two Activation Functions : Tanh vs. Logistic Sigmoid

After finding a suitable learning rate, using the “funny”-tanh activation function yields
faster convergence, shown in figure 1. In general, we observed this trend for many different
data sets. For this reason, we use “funny”-tanh as the activation function for all of our
experiments in section 3.

3 Classifying Human Faces : Identity, Gender, Facial Expressions

Each graph shows how well the data is classified by networks with different numbers of
hidden units. For each number of hidden units, we ran our learning algorithm a number of
times using cross-validation. Each figure shows the average percentage of data correctly
classified by the networks after their weights have been learned, indicated by the solid line
and squares. The standard deviation is indicated by dotted lines above and below the mean.
Each figure shows the statistics for the training, hold-out, and test sets.

3.1 Identity

We divide our 110 images into 10 sets of 11 images, so that each set ideally contains one
image of each person. In reality, each person is not equally represented in our data, so some
of these 10 sets lack an image of a particular person. However, this is sufficient for creating
the training, hold-out, and test sets such that each person is always adequately represented
in the training set. We pick 2 sets to be our hold-out and test sets, and use the remaining 8
as the training set.

Figure 2 shows the success of networks with different sized hidden layers classifying im-
ages by identity. Complete success would mean that the network could be given an image

0 100 200 300 400 500 600 700
0

0.5

1

1.5
tanh
sigmoid

Figure 1: Comparison of the convergence of the standard logistic sigmoid and
(�,���x��������.�v "!V#v%'&��) *���� as activation functions. In this example the XOR function was being
learned by a network with two hidden units.

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 2: Average success classifying by identity with downsampling to 20x24 pixels.

of a person’s face and output their identity for any picture of a person in the training set. Im-
ages are downsampled from 240x292 to 20x24 pixels. This is justifiable because a human
can still classify the images by identity at this resolution. Each hidden unit has weighted
connections from all pixels (and a bias). Sixteen hidden units are enough to learn the train-
ing set perfectly every time. Also, classifying novel data does not seem to improve when
more than sixteen hidden units are used. We conjecture that each hidden unit recognizes
a particular person, since the images in our data set are of fourteen different people. The
network correctly identified about 80 percent of the test set (novel data), much better than
guessing randomly, which would be correct once every fourteen inputs.

Figure 3 shows the same test with images downsampled to 40x48 pixels. This is not sig-
nificantly better or worse than images downsampled to 20x24 pixels. However, this figure
took nine hours to generate compared to an hour and a half.

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed
Number of hidden units

2 6 10 14 18 22 26
0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 3: Average success classifying by identity with downsampling to 40x48.

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 4: Average success classifying by identity with PCA.

Figure 4 shows the same test using PCA to reduce the dimension of the original images.
We project the data onto the 37 directions of maximum variation (about 85 percent of the
total variance). This technique required 22 hidden units to perfectly classify the training
data and 20 hidden units maximized the success of classifying novel data.

Interestingly, the PCA-reduced data requires more hidden units to learn to classify by iden-
tity than raw pixel data of downsampled images. The number of input units for PCA is 37
as opposed to 480 for images downsampled to 20x24 and 1920 for the images downsam-
pled to 40x48. Thus using PCA greatly reduces the cpu-time required; however, as can be
seen in figures 2 and 4, downsampling produces better classification on novel data.

3.2 Gender

We divide the data into fourteen sets, q r �y�z� q|{ and } r �z�y� } { , one per person. The hold-out
and the test sets each consist of one male set and one female set, ~ q � U$} 6v� and the training
set consists of the remaining ten sets. This ensures the training set always contains an
equal number of males and females and that the hold-out and test sets only contain images
of people not in the training set (to prevent learning by identity).

Figure 5 shows the success of networks with different sized hidden layers classifying im-
ages by gender. The training set can be completely classified by a network with two hidden
units. Networks with more than two hidden units did not significantly improve classifica-
tion of novel data. The networks correctly classified an average of 80 percent of novel data,
better than a 50-50 guess. We suspect the classification was not perfect because there were
not enough examples of males and females to train the networks.

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed
Number of hidden units

2 6 10 14 18 22 26
0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 5: Average success classifying by gender with downsampling.

3.3 Facial Expressions

As when classifying by gender, we divide the data into fourteen sets, one per person. The
hold-out and test sets each consist of a set of images of a particular person expressing the
6 different emotions. The training set is the rest of the data. This guarantees that validation
is with images of a person not included in the training or hold-out sets.

Two approaches to classification by facial expression are to use raw images and to use “dif-
ference” images. Difference images for a particular person are created by subtracting the
image of that person expresssing a neutral face from each image of that person expressing
an emotion.

3.3.1 Original Images

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 6: Average success classifying by facial expression with downsampling.

Most neural networks in figure 6 had difficulty learning the training data and were able
to correctly classify about 45 percent of novel data (compared with a probability of 1/6
guessing randomly), but with a large standard deviation. We suspect this large amount of
variance corresponds to sensitivity to who is in the test and hold-out sets. This would be
due to different “styles” of facial expressions (ie, teeth showing in a smile for some people
but not others). Another possible reason could be the intrinsic difficulty of learning facial
expressions.

3.3.2 Difference Images

Every network with more than eight hidden units learned the training data to within 95
percent accuracy. This is an improvement over using raw images. Generally, using dif-

2 6 10 14 18 22 26
0

20

40

60

80

100
Training Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed
Number of hidden units

2 6 10 14 18 22 26
0

20

40

60

80

100
Holdout Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units
2 6 10 14 18 22 26

0

20

40

60

80

100
Test Set

%
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

Number of hidden units

Figure 7: Average success classifying by facial expression using difference images with
downsampling.

ference images made no difference in the success rate of classifying novel data. However,
using difference images lowered the variance of the success rate. This could indicate less
sensitivity to facial characteristics unrelated to emotion (ie, long blonde hair).

4 Conclusion

Using “funny”-tanh as an activation function instead of the standard logistic sigmoid helps
weights converge in fewer epochs. This confirms the results in [1]. We also found it diffi-
cult to chose a learning rate that decreased fast enough to avoid oscillations, but not before
significantly reducing the error. Quickly converging weights require learning rates specif-
ically tuned to the input data and the type of classification. Downsampling the images
results in more input units to the network than PCA and therefore requires more computa-
tion. However, it seems to find better networks than using PCA for dimension reduction.

Classifying identity was much more successful than classifying by gender or expression.
This confirms our intuition that the networks recognize distinctive features of each person,
for example, hair color or skin texture. Classifying by facial expression was more success-
ful than classifying by gender. We suspect this was because features used to distinguish
gender are much more subtle than those used to dinstinguish facial expressions.

Individual Contributions

Neil Alldrin:
I helped write the back-propagaion and some supporting functions and scripts, helped run
tests on the data, made the graphs all pretty, helped write the report, drank a lot of coffee,
spent an inordinate amount of time in my office, etc.

Andrew Smith:
I helped write backprop.
I generated the sigmoid vs. funny-tanh plot.
I tweaked parameters (eta & alpha) for backprop for about 30 houurs.
I wrote the functions to load and save weights.
I generated some of the data for the graphs.
I provided lots of good MP3’s for my partners’ enjoyment.

Doug Turnbull:
I was responsible for implementing many of the image testing matlab modules including
precomputation with PCA and image reduction, cross validation, and file input and output.

Much of my time was spent running test after test for various parameters and classifications.

References

[1] LeCun, Yann, Bottou, Leon, et. al. (1998) Efficient BackProp Neural Networks: Tricks of the
trade

[2] Russel, Stuart & Norvig, Peter (1995) Artificial Intelligence : A Modern Approach, First Edition
New Jersey: Prentice-Hall Inc.

