
Classifying Facial Expression with Radial Basis
Function Networks, using Gradient Descent and

K-means

Neil Alldrin
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

nalldrin@cs.ucsd.edu

Andrew Smith
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

atsmith@cs.ucsd.edu

Doug Turnbull
Department of Computer Science

University of California, San Diego
La Jolla, CA 92037

dturnbul@cs.ucsd.edu

Abstract

This paper compares methods of training radial basis function networks.
We found RBF networks initialized by supervised clustering perform bet-
ter than networks initialized by unsupervised clustering and improved
with gradient descent. Gradient descent did not significantly improve the
networks initialized by supervised clustering.

1 Introduction

Radial basis function (RBF) networks are commonly used for pattern classification. In this
paper, we explore three techniques for training RBF networks. First, we present the struc-
ture of standard RBF networks and describe three techniques for learning their parameters.
We then evaluate these training techniques on a set of human facial images.

2 RBF Networks

Radial basis function networks typically have two distinct layers as shown in figure 1. The
bottom layer consists of a set of basis functions each of which is a function of the distance
between an input pattern and a prototype pattern. A standard choice of basis function is the
Gaussian:

����������	�

����������� ����� � ��� ���� �� � (1)



bias=1

y_1 y_c

basis
functions

inputs

x_1 x_d

phi_1 phi_M

outputs

Figure 1: A generic RBF network.1

The top layer is a simple linear discriminant that outputs a weighted sum of the basis
functions. The equation for a single output � � is:

��� �!����	#"$�&%('*) � � � � �����,+ ) �.- /�02143 (2)

For our networks, we set the weights of the top layer using the least squares error. Rewriting
the formula for � � in matrix notation, equation 2 becomes � �����5	7698

. The minimum of
the sum squared error : 	 '

�<;�=>; � � � � �!� = ���@? =� � � 	A8<BC8D6 B �E8<B�F
is
6 B 	G8IH&F

where
8JH

is the pseudo-inverse of
8

,
8JHI	K�L8<BC8I�NM ' 8<B

.

2.1 Initializing Parameters for Radial Basis Functions

Shperical Gaussian basis functions, as in equation 1, each have two parameters,
� �

and
� �

,
for the O th basis function

�P�
. The three techniques we explore for finding these parameters

are maximum likelihood (ML), K-Means, and gradient descent.

Maximum Likelihood:
Let

�Q� 'SRQTUT�T �WV,X � be the set of input patterns in class O and let the number of basis functions,
assuming one basis function per class. Using maximum likelihood to set the parameters of
basis function

�P�
to:

� � 	 YZ�[
V<\$
= %C'

� = (3)

� � 	 ]^^_ YZ�[
V \$
= %('

�!� = ��� � � B ��� = ��� � �
(4)

K-means:
K-means is an unsupervised clustering algorithm that finds a set of ` centers that iteratively

1Figure adopted from [2]



minimizes the mean squared distance from each data point to its closest center[4]. Each
center represents a cluster, or subset of nearby data points. The average value for all the
points in a cluster are used to find a

�
for the basis function corresponding to that cluster.�

is set to the standard deviation of the points in the cluster, as in equation 4. Using K-
Means to find basis functions is less restrictive than using ML because the number of basis
functions is not dependent on the number of classes.

2.2 Improving parameters using Gradient Descent

A common technique for reducing the error of machine learning models is gradient de-
scent. The basic idea of gradient descent is to reduce the error by iteratively adjusting the
parameters of the learning model. The gradient of the error function points in the direction
of maximum increase, so the error of the learning model can be reduced by moving the
parameters in the opposite direction of the gradient. Typically this is accomplished through
the iterative process of repeatedly calculating the gradient for a particular input, or set of
inputs, and adjusting the parameters by a small amount.

The parameters of our model are the weights of the linear discriminant, ) � � , and the means
and standard deviations of the radial basis functions,

� �
and

� �
. Since the optimal set of

weights for a given set of radial basis functions can be calculated in one step, there is no
need to use an iterative process to update the weights. However, no such closed form exists
for the optimal set of Gaussians, so we must resort to iterative processes.

Our training procedure uses stochastic gradient descent which trains the RBF network for
a number of epochs. Each epoch trains the RBF network on every data point in our training
set, one at a time, in random order.

Our error function is the common sum-of-squares error, : �!� = ��	 '
�a;Gb� %(' � ��� �!� = �W�c? =� � � .

The derivative of this error with respect to the standard deviation of basis function j,
� �

, isd :d � � �e� = ��	 $
�
� � � �!� = �f�g? =� � ) � �.
Q������� �U� � = ��� � �U� ��h� �� � �U� � = ��� � �U� ��ji� (5)

The derivative of the error with respect to the i’th component of the j’th mean, k � 0 , isd :d k � 0 �e� = ��	
$
�
� � � ��� = �C�l? =� � ) � �Q

���������U� � = �g� � �U� ���� �� � �e� =0 � k � 0 �� �� (6)

For each basis function, the term, ;�b� %(' � ��� �!� = �>�m? =� �Jn ) � � can be computed with the
backpropagation algorithm.

Once we have calculated the gradient of the error, we update the means and standard devia-
tions by moving them by a small amount against the gradient: k � 0Copk � 0 ��q�r
sr
t X!u where

q
is a small, decreasing value called the learning rate. After the basis functions are updated,
a new set of optimal weights is calculated.

3 Human Expression Classification

3.1 Experimental Methodology

The goal of our experiments is to train RBF networks that can classify images of human
faces as one of the following six expressions: happy, sad, surprized, afraid, disgusted,
angry. We use three methods for learning the parameters of the network. The first method
uses supervised learning (ML) of the gaussian parameters, k � and

� �
, combined with the

least squared error solution for the top layer weights. The second method uses unsupervised



clustering (K-Means) to learn k � and
� �

, again using least squares to learn the weights.
The third method uses gradient descent on k � and

� �
, updating the weights with least

squares after every training example. For the techniques that use K-Means, the number of
Gaussians are varied from 1 to 53. For the supervised learning techniques, six Gaussians
are used, one for each expression.

For all experiments, we use “difference” images instead of the original images of facial
expressions. For each image of a face, we define the corresponding “difference” image as
the difference between that image and the average of all images of that individual. Also, we
use principal component analysis to reduce the dimensionality of the data to 20. The orig-
inal images are downsampled to fit our computational resources. To evaluate the success
our our networks, we use cross-validation which reserves a small amount of the training set
to test the network’s ability to generalize to novel data.

3.2 Results

Supervised and Unsupervised Clustering:

0 56 10 15 20 25 30 35 40 45 50

20

40

60

80

100

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

Training Data

0 5 6 10 15 20 25 30 35 40 45 50

20

40

60

80

100

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

Novel Data

Figure 2: Performance of supervised (ML) and unsupervised (K-Means) clustering. The
circle represents the average supervised result and the squares represent the average unsu-
pervised results with varying numbers of clusters.

Figure 2 shows that supervised clustering generalizes better than unsupervised clustering
with any number of clusters. Unsupervised clustering did best in the range of 20 to 30 clus-
ters, achieving roughly 50% correct classification, but with a high standard deviation. The



sharp falloff in generalization after 45 clusters combined with the near perfect classifcation
of the training data indicates memorization.

Gradient Descent:

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

Figure 3: Gradient descent initialized with K-Means. In order from top to bottom are the
training, hold out, and test sets.

Figure 3 shows that a network with RBFs initialized with K-Means and trained with gra-
dient descent generalizes best with around six clusters as opposed to 25 clusters without
gradient descent. Using six radial basis functions instead of twenty-five is intuitively better
because a learning model with fewer parameters implies generalization rather than memo-
rization. The fact that we are classifying six facial expressions also seems to indicate good
generalization. Using gradient descent to improve a network initialized with supervised
clustering had little effect.

Figure 4a illustrates the use of a hold out set to reduce memorization. The network finds an
optimal set of weights for the hold out set quickly, but continues to memorize the training
set. 4b shows that gradient descent significantly moves the centers of RBFs initialized with
K-Means.

Comparison:

Figure 5 shows the success rate for both K-Means initialized RBF networks, and K-Means
initialized and gradient descent improved RBF networks, printed side-by-side for compar-
ison. Clearly, gradient descent improves the RBFs placed with K-Means.



(a) 0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

R
M

S
 E

rr
or

Error of Training Set
Error of Holdout Set

(b) −0.5

0

0.5

1

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

Figure 4: (a) Mean squared error of training (solid) and holdout sets (dotted) during gra-
dient descent training. (b) The centers of six RBFs being moved by gradient descent,
projected onto three random dimensions.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Radial Basis Functions

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

Figure 5: K-Means initialized RBFs versus K-Means initialized and gradient descent im-
proved RBFs.

4 Conclusion

The network that generalized best was found using supervised clustering with all principal
components, as summarized in table 1. For all of our tests in the results section we used the
top 20 principal components, representing 80 percent of the total variance in the data set.
Using all components increased the success of RBF networks using supervised clustering,



Table 1:

20 Principal Components All (52) Principal Components
mean std mean std

training data 0.926 0.020 1.00 0.000
novel data 0.659 0.167 0.742 0.142

but did not greatly improve the success of RBF networks initialized with K-means.

Gradient descent greatly improves generalization of RBF networks initialized with unsu-
pervised clustering. However, as with all iterative error reduction techniques it is more
computationaly intensive.

Using gradient descent to improve the RBFs found with supervised clustering did not sig-
nificantly reduce error. However, it is not always possible to use supervised clustering
because it might be the case that only a small portion of the entire data set has known
classes. In this case, one would use unsupervised clustering on the entire data set to set
the parameters of the radial basis functions, and use least-squares to find the weights that
minimize the error on the classified data.

Individual Contributions

Neil Alldrin:
I helped write the ML classifier, helped a little with the back-prop code, helped with testing,
helped write the writeup, and stuff. I had fun and stuff.

Andrew Smith:
I wrote the gradient descent procedure. I wrote one version of a finite-difference error
gradient approximator, used for code checking purposes. I ran the tests to generate the
figures in this paper. I wrote k-means. I wrote the least-squares solver (it was easy in
matlab) This project was a bit too rushed for me to have more than a marginal amount of
fun.

Doug Turnbull:
I was wrote much of the file loading, preprocessing, and testing code in addition to imple-
menting the maximum likelihood module. I was also involved in running tests and writing
this report. I transcended fun.

References

[1] Alldrin, N., Smith, A., Turnbull, D. (2003) A Three-Unit Network is All You Need to Discover
Females, CSE253, UCSD.

[2] Bishop, C.M. (1995) Neural Networks for Pattern Recognition, Oxford University Press, New
York.

[3] Hastie, T., Tibshirani, R., Friedman, J. (2001) Elements of Statistical Learning, Springer-Verlag,
New York.

[4] Kanungo, T, et. al. (2000) The Analysis of a Simple k-Means Clustering Algorithm, Computa-
tional Geometry 2000, Hong Kong.


