
Generalized deformation energy for reduced

deformable models

Will Chang
Department of Computer Science and Engineering

University of California, San Diego
wychang@cs.ucsd.edu

October 1, 2007

1 Deformation model

A reduced deformable model [3, 5, 8] is a function D(x) : R3 → R3 representing
the deformation of space as a weighted sum of rigid transformations (picture
here)

D(x) =
∑

j

wj(x)Tj(x).

Here, Tj is a rigid transformation (rotation and translation) belonging to SE(3),
and wj(x) is a spatially varying weighting function that defines the region of
influence for transformation Tj . The weighting function we use must be nor-
malized; this means that the weighting functions influencing a point x ∈ R3

must sum up to 1: ∑
k∈{j | x∈Ωj}

wk(x) = 1,

where Ωj is the (effective) support of wj . Normalized weighting functions – also
called partition of unity functions – can be generated from any set of weighting
functions using the formula [6]

ϕj(x) =
wj(x)∑
k wk(x)

.

These partition of unity functions can be pre-generated or applied when de-
forming the space by dividing out the sum of the weights at each point. (Pre-
generating POUs lead to complicated expressions, so we work with unnormalized
weighting functions when we describe the deformation energy in the subsequent
sections.)

1



2 Two previous approaches

Reduced deformable models have been used by Sumner et al. [8] and Botsch
et al. [2] to express deformations of 2D and 3D shapes. The goal of their
methods is to compute a deformation of space given user constraints on the
embedded object. In the context of reduced deformable models, this amounts
to solving for the transformations Tj given that they are already distributed
in space according to the weighting functions wj(x). Generally there are two
objectives in solving for the deformation:

1. The smoothness objective, or deformation energy, which guarantees that
the deformation transitions smoothly throughout space and is physically
plausible, and

2. The constraint objective, which specifies that the deformation matches
the constrains given by the user.

In this report we describe a novel deformation energy which generalizes the
previous work of Sumner et al. and Botsch et al. In Sumner et al., the reduced
deformable model is described using a deformation graph, where the nodes gj

are the locations of the transformations Tj , and the edges connect nodes whose
influences overlap. They define a regularization term, or smoothness energy for
each neighbor k of node j as (picture here)∑

j

∑
k∈N(j)

αjk‖Tj(gk)− Tk(gk)‖2. (1)

Here, N(j) is the set of neighbors at cell j, and αjk is a weighting term that
measures the extent of overlap of nodes j, k. Intuitively, this constraint mea-
sures the difference between node j’s transformation applied to the location of
its neighbor gk and node k’s transformation applied to itself. This idea of com-
paring the transformations by applying them to representative sample points
was proposed by Pottmann et al. as an alternative to the Frobenius norm [2, 7].

Botsch et al. define a similar deformation energy, where the deformations are
compared at all points within a prescribed volume. This is in contrast to Sumner
et al. which compares the transformation at a single point gk. Specifically,
Botsch et al. define cells Cj that subdivide space, and the transformations
Tj assigned to each cell are thought to influence the region within the cell.
Neighboring cells Cj , Ck define an elastic energy which measures the difference
between the transformations Tj and Tk applied to all points in the volume
Cj ∪ Ck: ∑

each pair (j,k)

wjk

Vj + Vk

∫
Cj∪Ck

‖Tj(x)− Tk(x)‖2dx, (2)

where Vj , Vk are the volumes of the cells Cj , Ck respectively, and wjk measures
the overlap between the cells (the face area shared by cells Cj and Ck divided
by the sum of the distances from the centers to the face).

2



We can reformulate this deformation energy in two different ways. First, con-
sider the indicator function IV : R3 → {0, 1}, V ⊆ R3,

IV (x) =

{
1 if x ∈ V,

0 otherwise.

We can rewrite the above equation as∑
each pair (j,k)

wjk∫
R3 ICj∪Ck

(x)dx

∫
R3

ICj∪Ck
(x)‖Tj(x)− Tk(x)‖2dx,

and in the spirit of Sumner et al., the deformation energy is defined for each
neighbor k of cell j as∑

j

∑
k∈N(j)

wjk

2
∫

R3 ICj∪Ck
(x)dx

∫
R3

ICk
(x)‖Tj(x)− Tk(x)‖2dx. (3)

Second, we can also interpret this energy in terms of basis functions defined at
each cell. In this case, consider the indicator IVj

(x) on the total neighboring
volume Vj =

⋃
k∈N(j) Ck as representing the influence of cell j on other cell. We

can then write the pairwise energy∑
each pair (j,k)

wjk∫
R3 IVj

(x)IVk
(x)dx

∫
R3

IVj (x)IVk
(x)‖Tj(x)− Tk(x)‖2dx. (4)

Note that we can also reformulate the regularization in Sumner et al. using an
indicator at the point gk:∑

j

∑
k∈N(j)

αjk

∫
R3

Igk
(x)‖Tj(x)− Tk(x)‖2dx =

∑
j

∑
k∈N(j)

αjk‖Tj(gk)− Tk(gk)‖2.

(5)

3 Generalized deformation energy

The observations above lead us to define a generalization of the deformation
energy that uses the weighting function wj(x) from the deformation model in-
stead of indicator functions. As above, we define the generalized deformation
energy in the spirit of equation 4 as∑

each pair (j,k)

τjk

∫
R3

wj(x)wk(x)‖Tj(x)− Tk(x)‖2dx, (6)

where τjk is a normalization constant defined as the inner product

τjk = 〈wj , wk〉 =
(∫

R3
wj(x)wk(x)dx

)−1

.

3



This inner product measures the extent of overlap of the two weighting functions
wj and wk. Alternatively, we can define the energy in the spirit of equation 3
as ∑

j

∑
k∈N(j)

τjk∫
R3 wk(x)dx

∫
R3

wk(x)‖Tj(x)− Tk(x)‖2dx. (7)

Equation 6 compares the transformations where the influences of Tj and Tk

overlap, but equation 7 compares the them in the region of the neighbor Tk.
The latter constrains in pairs in sense that node j constrains node k and vice
versa, whereas the former is defined once for each unique pair (to avoid double-
counting). Now, given this deformation energy, our goal is to find the rigid
transformations T1, . . . , Tn that minimize the energy:

argmin{T1,...,Tn}
∑

each pair (j,k)

τjk

∫
R3

wj(x)wk(x)‖Tj(x)− Tk(x)‖2dx.

4 Constraint term

We would like to give positional constraints for select vertices rather than pre-
scribing transformations directly. Following the formulation in Sumner et al.,
we have ∑

l

‖u′l −D(ul)‖2 =
∑

l

∥∥∥u′l −
∑

j

wj(ul)Tj(ul)
∥∥∥2

, (8)

where (ul, u
′
l) is the original / translated constraint pair, and k iterates in the

set j ∈ {k |ul ∈ Ωk}.

5 Numerical solution & implementation

We use a Newton solver in the same way as Botsch et al. to solve this opti-
mization problem. To constrain the transformations to be rigid, we linearize
the transformations using affine approximations

Tj(x) ≈ Aj(x) = x + c̄j + (cj × x),

where c̄ is a translation and c is an angular velocity. This equation is derived by
taking the first derivative of a rigid motion, and represents uniform translations,
uniform rotations, and uniform helical motions [7]. At each step of the solver,
we replace the transformations with their linearized versions, yielding a sparse
linear system that can be solved in closed form (calculation details to follow?):∑

each pair (j,k)

τjk

∫
R3

wj(x)wk(x)‖Aj(x)−Ak(x)‖2dx.

4



Note that the Aj are not rigid, so we map them to their closest rigid coun-
terpart using a simple local shape matching technique [1, 4]. The closest rigid
transformation Tj = (Rj , tj) is found by solving another minimization problem:

argminTj

∫
R3

wj(x)‖Tj(x)−Aj(x)‖2dx.

For the Gaussian weight function

wj(x) = exp
{
−‖x− gj‖2

2σj
2

}
Following Horn’s procedure [4], we can derive the closed form solution for the
rotation Rj . This solution is given as a quaternion of the form:

q =
[
1 +

√
1 + ‖cj‖2 , cjx, cjy, cjz

]>
.

We normalize this quaternion and find the corresponding rotation matrix Rj .
This rotation is applied with respect to the centroid of Ωj as the origin, i.e.

Tj(x) = Rj(x− gj) + gj + tj .

Then, the translation tj is the difference between the centroids of the two trans-
formations, which results in

tj = c̄j + (cj × gj).

6 Misc. Implementation Notes

Replacing sums with more equations. Note that instead of minimizing the
expression ∑

each pair (j,k)

τjk

∫
R3

wj(x)wk(x)‖Aj(x)−Ak(x)‖2dx

we can instead independently minimize each summand

τjk

∫
R3

wj(x)wk(x)‖Aj(x)−Ak(x)‖2dx

since they are positive. This also holds with the constraint term, i.e.∑
l

∥∥∥u′l −
∑

j

wj(ul)Tj(ul)
∥∥∥2

can be broken into minimizing each summand∥∥∥u′l −
∑

j

wj(ul)Tj(ul)
∥∥∥2

.

5



However, note that we cannot separate the individual terms in the sum within
the norm.
The derivatives of the vertex constraint term. The vertex constraint
term is

‖u′l −D(ul)‖
2 =

∥∥∥u′l −
∑

j

Dj(ul)
∥∥∥2

=
∥∥∥u′l −

∑
j

wj(ul)Tj(ul)
∥∥∥2

,

where j ∈ {k |ul ∈ Ωk}. We compute derivatives of this function below:∥∥∥u′l −
∑

j

Dj(ul)
∥∥∥2

=
[
u′l −

∑
j

Dj(ul)
]>[

u′l −
∑

j

Dj(ul)
]

=
[
u′l
> −

∑
j

D>
j (ul)

][
u′l −

∑
j

Dj(ul)
]

= u′l
>

u′l − 2
∑

j

u′l
>

Dj(ul) +
[ ∑

j

D>
j (ul)

][ ∑
j

Dj(ul)
]

= u′l
>

u′l − 2
∑

j

u′l
>

Dj(ul) +
∑

∀ pairs (j,k)

D>
k (ul)Dj(ul).

(The sum in the last equation iterates between all possible pairs of j, k ∈ {i |ul ∈
Ωi}.) To minimize this term, we take each partial derivative and find the value
that make it equal to zero. So each derivative contributes a constraint in the
linear system. When we compute the derivative with respect to node j, the only
relevant terms are

−2u′l
>

Dj(ul) + 2
∑
k 6=j

D>
k (ul)Dj(ul) + D>

j (ul)Dj(ul).

(Here the sum iterates in the set of all {k |ul ∈ Ωk} except for k = j.) Now,
taking the derivative with respect to cj and c̄j , we obtain:

∂/∂cj ⇒ −2wj(ul)(ul × u′l) + 2wj(ul)
∑

k

wk(ul)
[
(ul × c̄k) + (ul

>ul)ck − (ul
>ck)ul

]
,

∂/∂c̄j ⇒ −2wj(ul)u′l + 2wj(ul)
∑

k

wk(ul)
[
ul + c̄k + (ck × ul)

]
.

Setting this equal to zero, we get the two constraints:∑
k

wk(ul)
[
(ul × c̄k) + (ul

>ul)ck − (ul
>ck)ul

]
= ul × u′l,∑

k

wk(ul)
[
ul + c̄k + (ck × ul)

]
= u′l.

Simplifying this further, this amounts to the two constraints:

ul ×D(ul) = ul × u′l,

D(ul) = u′l.

6



7 Results

7



References

[1] Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. Primo: coupled
prisms for intuitive surface modeling. In SGP ’06: Proceedings of the fourth
Eurographics symposium on Geometry processing, pages 11–20, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Association.

[2] Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross. Adaptive
space deformations based on rigid cells. In Computer Graphics Forum: EU-
ROGRAPHICS 2007 Papers, volume 26, pages 339–347, 2007.

[3] Kevin G. Der, Robert W. Sumner, and Jovan Popović. Inverse kinematics
for reduced deformable models. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, pages 1174–1179, New York, NY, USA, 2006. ACM Press.

[4] B.K.P. Horn. Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America, 4(4), 1987.

[5] Doug L. James and Christopher D. Twigg. Skinning mesh animations. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 399–407, New York,
NY, USA, 2005. ACM Press.

[6] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter
Seidel. Multi-level partition of unity implicits. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 463–470, New York, NY, USA, 2003. ACM
Press.

[7] Helmut Pottmann, Qi-Xing Huang, Yong-Liang Yang, and Shi-Min Hu. Ge-
ometry and convergence analysis of algorithms for registration of 3d shapes.
Int. J. Comput. Vision, 67(3):277–296, 2006.

[8] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded deforma-
tion for shape manipulation. In SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, page 80, New York, NY, USA, 2007. ACM Press.

8


