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Abstract – The recognition and localization of objects in space is of
fundamental interest in many robot vision applications, especially in
those that are supposed to provide services to human beings. The triv-
ial example of any such task is manipulation, i.e., providing a robot
the means of handling objects. In this work, we discuss the chances
and the problems experienced when using a time-of-flight camera as
the only measurement device of an object recognizer. The localiza-
tion is based on the best-fit of the geometric primitives within the ob-
jects considered (such as planes, cylinders, cones, or spheres). Such
shapes are of special interest not only in recognition but also in grasp
planning. We use a time-of-flight camera SwissRanger SR-3000 and
localize a selected set of objects in order to grasp them with a dexter-
ous robotic hand.

Keywords – Object Recognition and Localization, Time-Of-Flight
Camera, Calibration, Robotic Manipulation

I. INTRODUCTION

Robot vision applications can choose from a variety of sens-
ing systems. For object recognition and localization, there are
several range imaging systems available that combine image
processing with distance measurement aspects. One of the
most widely used ranging principles is stereo vision. A stereo
rig measures the disparity between corresponding points in two
images taken from different viewpoints. The main issue in the
stereo analysis of images is the correspondence problem. That
is, the search for the correct match of feature points in the two
images. Especially in scenes with few texturing or a lot of
repeating patterns, correspondence often can not be achieved
and thus, range information can not be obtained. Furthermore,
trying to solve the correspondence problem is computationally
expensive. Another widely used ranging device is the laser
range finder. It utilizes a laser beam to determine the distance
to an object. Since only one measurement can be taken at a
time, the laser beam must scan over the scene in order to mea-
sure a robot’s workspace for recognition purposes. However,
scanning takes time.

Fig. 1. Experimental platform.

In recent years, a novel type of solid state sensors emerged
on the market allowing the capture of range information at
video frame rates. Instead of providing the illuminance (i.e.,
gray-scale or color) as conventional CCD/CMOS chips do,
such sensors measure the viewed scene with respect to dis-
tance. Surface texturing is not required, and ambient light is
not crucial due to the illumination unit on the sensors. These
features make time-of-flight cameras quite interesting to robot
vision. However, since time-of-flight cameras are still some-
what prototypical, they usually do not reach the levels of ac-
curacy required in some robot vision applications. A thorough
calibration of the sensors is unavoidable in order to recover
stable range information. Time-of-flight cameras are often uti-
lized in obstacle avoidance or navigation tasks. However, there
are also several attempts described to use the sensors in object
recognition and localization [1].

In this paper we discuss an object recognizer that localizes
objects by looking at the geometric primitives within the ob-
jects considered. The basic idea is that the model features (such
as planes, cylinders, cones or spheres) usually carry enough
information to make possible proper object recognition and lo-
calization needed for grasping with a robotic hand. After the
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object with geometric primitive shape is recognized, approach
directions for the geometric primitive, along which the object
can be better grasped by the robotic hand are automatically
generated. In a grasping simulator “GraspIt!” [2], the grasps
are simulated and its grasp qualities are evaluated. At the end,
a grasp with high grasp quality which is also feasible for the
robotic arm will be executed.

The paper is organized as follows. In Sec. II, we discuss
characteristics of time-of-flight cameras and propose calibra-
tion and filtering procedures to enhance the quality of distance
measurements. In Sec. III, we describe the best-fitting and seg-
mentation of geometric primitives in point clouds. In Sec. IV,
we present the use of geometric primitives when computing
grasps. And in Sec. V, we evaluate our object recognizer that
localizes through best-fit of the geometric primitives contained
within the object under consideration.

II. TIME-OF-FLIGHT CAMERAS

A time-of-flight camera measures the surrounding scene
with respect to distance. Following the time-of-flight measure-
ment principle, the sensor emits modulated light, which is re-
flected by objects in the scene and projected onto the chip. In
each pixel, the reference signal is correlated with the modu-
lated light that it receives. The distance d of an object along
the line of sight of any pixel is half the distance the light beam
travels in the corresponding direction. Since the distance d is
recovered in each pixel, the sensor yields the surface of the ob-
jects in the scene observable in the sensor’s viewpoint. That
is why precisely speaking it only captures a 2.5D depth map,
not 3D data. It is worth emphasizing that a time-of-flight cam-
era provides range information at video frame rates without the
need to scan the viewed scene.
A. Characteristics of Time-Of-Flight Cameras

Most manufacturers of time-of-flight cameras—such as
PMD Technologies GmbH, MESA Imaging AG or Canesta
Inc.—use amplitude modulation by a sinusoidal on eye safe
near-infrared light emitting diodes (LED). Complementary to
the range information, the sensors also provide intensity and
amplitude information as near-infrared images of ambient il-
luminance and reflectance. Ambiguity in range measure-
ment due to aliasing occurs when the phase-shift observed ex-
ceeds 2π. The non-ambiguity or effective range dmax satisfies
dmax = c

2fmod
, where c denotes the speed of light and fmod

denotes the modulation frequency.
The intensity and the amplitude have a significant influence

on the accuracy of the distance measurement d. The stan-
dard deviation σd of the distance measurement is Poisson dis-
tributed and given by [3]

σd =
dmax√

8

√
I

2A
, (1)

where the intensity I is the average amount of ambient light
and light of the sensor’s illumination and the amplitude A is

the signal’s amplitude influenced by the objects distance and
reflective properties. σd suggests that I should be low and
A should be high in order to obtain proper distance measure-
ments. Varying the integration time is the only means to influ-
ence the overall intensity and amplitude of the measurements.
Low integration times usually result in noise due to bad signal-
to-noise ratio whereas high integration times usually blur or
even cause saturation on the chip. Several authors propose
ways to adjust the integration time or to combine depth maps
taken at various integration times [4] [5].
B. Calibration of Time-Of-Flight Cameras

Since time-of-flight cameras are still somewhat prototypi-
cal, there are numerous factors that affect the accuracy of dis-
tance measurements. Lots of research is being done to under-
stand the effects and to compensate the errors introduced [6],
[7], [8], [4]. Distance errors may be caused by internal effects
such as noise (thermal, electronic, photon shot), propagation
delay in the chip’s circuits, the exact form of the diode’s signal
or lens distortion as well as by external effects such as ambient
light, the reflective properties and the complexity of the scene
or viewed scattering due to objects near the sensor. Although
some of these effects are well described in the literature, a com-
plete model to correct all of them is still missing.

In order to obtain stable range measurements we propose
the following three stage calibration procedure. The first and
second stages are well described in the literature. In the third
stage we may assume parts of the sensor’s environment to be
known. We use such parts as reference and best-fit the ob-
served measurements to it.

Stage 1: In order to get rid of the distortion of the lens and
the misalignment of the chip, we calibrate the time-of-flight
camera with the MATLAB Camera Calibration Toolbox [9]
using 50 intensity images. By means of the estimated intrin-
sic and extrinsic camera parameters an orthogonal point cloud
in Cartesian coordinates corresponding to the radial distance
measurements of the depth map can be computed.

Stage 2: A time-of-flight camera usually possesses consid-
erable variability across its depth sensing range due to internal
and external influences. As a consequence, a wall may ap-
pear vaulted. To correct the errors, we perform a per-pixel
correction. Taking several depth maps of a white wall with
the sensor mounted towards it in various defined distances, a
nominal/actual value comparison is performed. Within 0.5m
to 1.25m an affine relation between nominal and actual values
may suffice to approximate the errors properly (beyond this
range, a more complex relation is required [6]). In each pixel,
a linear regression on the nominal and actual values provides a
lookup value with both an offset and a multiplier. The lookup
values constitute a lookup table which is used to correct the
radial distance measurements:

ci,j = mi,jdi,j + oi,j , (2)

where the indices i, j specify the pixel in the depth map, di,j

the measured and ci,j the corrected distance, oi,j the offset and
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mi,j the multiplier. Furthermore, we clamp ci,j to the ambigu-
ity range [0, dmax ]. We call this procedure an offline correction
of the depth map since it has to be calibrated only once.

Stage 3: In the strict sense though, the depth correcting
lookup table is only valid under the internal and external condi-
tions present during its calibration. Influencing conditions are
for example temperature, ambient light, surface reflectance and
angle of intrusion. As a consequence, if any of these conditions
changes, then reliable correction of the depth map by means of
the lookup table can not be guaranteed and even may cause fur-
ther errors. We address this problem by yet another per-pixel
correction complementing the lookup table. Assuming parts
of the sensor’s environment to be known (for instance, a table
board), we transform the observed distance measurements in
such a way that it best-fits the known parts of the environment.
Of course, we must account for possible occlusion of known
parts by unknown objects within the scene. We call this proce-
dure an on-line correction of the depth map since it has to be
calibrated for each individual depth map.

C. Median of Least Span Filter and Scalable Span Filter

The depth measurements of time-of-flight cameras experi-
ence considerable noise. Therefore, smoothing of the data is
essential. Measurement errors occur also on jump edges, i.e.,
gaps in distance between neighboring pixels due to occlusion.
The measured distances at such jump edges constitute pseudo
measurements through mixture of reflected light of foreground
and background objects.

Classical edge-finding filters not only filter the pseudo mea-
surements but also valuable surface information of the objects.
Their thresholds can be determined experimentally such that
the jump edges are found more or less reliably. However, the
threshold is fixed and does not vary with the distance range
considered. Furthermore, the meaning of the threshold with re-
spect to a depth map is not obvious. More sophisticated edge-
finding filters in depth maps are described in the literature but
usually are computationally quite expensive [10]. The authors
of [11] propose a simplified jump edge filter that thresholds
with respect to the opposing angles of the triangle spanned by
the focal point and two neighboring data points.

A similar result is achieved by the following two stage filter
procedure which combines an edge-enhancing smoothing fil-
ter, called median of least span filter, and a jump edge-finding
filter, called scalable span filter.

Stage 1: The median of least span filter is an edge-
enhancing smoothing filter. It follows the value-and-criterion
filter structure [12]. Such a filter has a ‘value’ function, V , and
a ‘criterion’ function, C, each operating on the raw data us-
ing a common structuring element, Ñ (for instance, the same
window). To obtain the filtered data, a ‘selection’ function, S,
evaluates the criterion C within a structuring element N and
assigns the value V that corresponds to the selected pixel. Let
r(·) denote the raw measurement and let f(·) denote the fil-
tered measurement. Let v(·) and c(·) denote the value V and
the criterion C within Ñ , respectively. The value-and-criterion

Fig. 2. Left: Edge-enhancing filter response of a one dimensional signal
using a median of least span filter with a window of size 3. Since

time-of-flight cameras smooth jump edges considerably, the proposed
edge-sharpening makes jump edge-finding more robust. Right: Principle of

the jump edge-finding filter centered at pixel p.

filter structure is defined by

v(p̃) = V
(
{r(Ñp̃)}

)
, (3)

c(p̃) = C
(
{r(Ñp̃)}

)
, (4)

f(p) = v
({
p̃ ∈ Np : c(p̃) = S

(
{c(Np)}

)})
, (5)

where Ñp̃ denotes the structuring element Ñ centered at p̃ and
Np that of N centered at p. However, the evaluation of c(p̃) =
S

(
{c(Np)}) may select more than one pixel p̃ of some pixel p

with raw measurement r(p) and thus, the filter may yield sev-
eral filtered measurements f(p). In this case, some method that
chooses among these measurements is required. One method
could be to average the values v(p̃) of all the selected pixels p̃.
Another method could be to take the selected pixel p̃ such that
the filtered measurement f(p) = v(p̃) and the raw measure-
ment r(p) differ the least, that is |f(p) − r(p)| → min. The
value-and-criterion filter structure allows the use of different
linear and nonlinear operators and retains much of the struc-
turing control of the standard morphological operators (such
as opening or closing) [12]. In case the value operator V is
chosen to be the median, the criterion operator C is chosen to
be the span (i.e., max−min) and the selection operator S is
chosen to be the minimum, we obtain the median of least span
filter. Since the span of an inhomogeneous region containing
a jump edge is typically wider than that of a homogeneous re-
gion, the median of least span filter sharpness inhomogeneous
jump edges by means of averaging over homogeneous neigh-
borhoods (see Fig. 2).

Stage 2: The scalable span filter is a jump edge-finding filter
on depth maps. It is a span filter with a threshold that scales
with distance. A data point is marked as jump edge in case its
neighborhood contains measurements that line up with the line
of sight of the corresponding pixel. The degree of line-up is
controlled by an apex angle, ϕ. We describe the principle of the
jump edge-finding filter using the illustration in Fig. 2 in two
dimensions. We note, the line-up regions become line-up cones
in three dimensions. Instead of computing opposing angles of
the triangle spanned by the focal point and data points of pixel
p and any of its neighbors, p̃, we consider the lengths of the line
segments dp̃(ϕ) and Dp̃(ϕ) between the focal point and the
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Fig. 3. Best-Fit Principle.

intersection points of the line of sight of p̃, lp̃, with the line-up
region. Let dp(ϕ) = minp̃∈Np {dp̃(ϕ)} denote the minimum
and Dp(ϕ) = maxp̃∈Np

{Dp̃(ϕ)} the maximum length of the
line segments in the neighborhood of pixel p. Regarding the
interception theorem, dp(ϕ) and Dp(ϕ) scale with respect to
the distance measurement r(p) at p. Therefore, it suffices to
compute lookup tables with values dp(ϕ) andDp(ϕ) assuming
r(p) = 1. A pixel p at distance r(p) 6= 1 is regarded a jump
edge in case any of its neighboring pixels, p̃, lie within the
line-up region, i.e., r(p̃) < r(p)dp(ϕ) or r(p̃) > r(p)Dp(ϕ).

III. BEST-FIT METHOD AND SEGMENTATION OF
GEOMETRIC PRIMITIVES

Best-fitting of geometric primitives (such as planes, cylin-
ders, cones or spheres) in measurement point clouds is
achieved via non-linear least-squares [13]. The optimization
problem is depicted in Fig. 3. Given a hypothesis on the
feature to be fitted, the model parameters, a, consisting of
shape parameters (for instance, the radius of a cylinder) as well
as of position parameters (translation and rotation) are esti-
mated. Let X = (X1, . . . , Xn) denote n data points and let
Xa = (Xa

1 , . . . , X
a
n) denote the n corresponding base points

on the model feature with parameters a. Let da = (da
1 , . . . , d

a
n)

denote the Euclidean distances da
m = ‖Xm −Xa

m‖, where
m = 1, . . . , n. The objective function is given by σ2

0 =
da′P ′Pda with some weighting matrix P ′P . The estimation
of the parameters a of the model feature F becomes:

min
a

min
{Xa

m}n
m=1∈F

σ2
0

(
{Xa

m}
)
. (6)

While best-fitting is in progress, the measurements can also be
segmented into inlier (i.e., data points belonging to the model
feature F to be fitted) and outlier (i.e., data points not belong-
ing to F ). As segmentation criterion, we use the Euclidean
distance. More precisely, the error of fit is assumed to be equal
to an order of magnitude of the noise level of the measure-
ment device (see Fig. 4). The algorithms for best-fitting and
segmentation of geometric primitives can operate in manual
mode. Given a measurement point cloud, the user specifies the
model feature to be fitted and selects a measurement point with
which the best-fit is initiated.

An analysis of the principal curvatures within a surrounding
region of a selected measurement point is used in automatic
identification of geometric primitives within point clouds [14].

Fig. 4. Segmentation in inlier and outlier.

Hypotheses on model features to be fitted to the point cloud
are established, and the model feature that best-fits the mea-
surements is determined. That way, the algorithms for best-
fitting and segmentation of geometric primitives can also oper-
ate in automatic mode. Using randomly chosen measurement
points to initiate the best-fit on hypothesized model features,
a point cloud is segmented into all its identifiable geometric
primitives.

Object recognition and localization based on geometric
primitives can be achieved by operating the best-fit and seg-
mentation algorithms either in automatic or in manual mode.
In automatic mode, the whole scene viewed by the sensor is
segmented into all its identifiable geometric primitives. Sepa-
rate geometric primitives may be combined to form composite
model features by evaluating the interrelations of the identi-
fied geometric primitives (for instance, discs may be combined
with a cylinder to represent its top and bottom, since only its
hull is best-fitted). In manual mode, the scene is separated
into patches. For any patch, the user specifies the composite
model feature (with fixed shape parameters) and either selects
a measurement with which the best-fit is initiated or provides
an initial guess of the position. The best-fit and segmentation
algorithms estimate the shape and position parameters of ge-
ometric primitives within measurement point clouds that are
used in classification.

IV. GRASP PLANNING

The shape (sphere, cylinder, cone or box), the position and
the orientation of a recognized and localized object are used to
plan feasible grasps. The grasping simulator “GraspIt!” [2] is
optimized to plan grasps of simple geometric primitives within
a few seconds. The method is based on the observation that
humans unconsciously simplify the grasping task to selecting
one of only a few different preshapes appropriate for the ob-
ject and for the task to be performed. From the object shape,
starting positions and approach directions are generated, from
which the object can be grasped well by the robotic hand. In
the simulation, the hand in predefined preshape is placed at
starting position, moves along one of the approach directions
towards the object and the fingers close around the object. The
contact points between the hand and the object are collected,
with which the grasp quality is evaluated. “Largest sphere in
grasp wrench space” is used as grasp quality, so that the grasp
with higher quality can resist with independence of the pertur-

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on May 17,2010 at 14:55:15 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Computed grasp and its real execution.

bation direction [15]. To execute a planned grasp, the grasp
pose relative to the object must be reachable by the robotic
arm. Besides the reachability of the arm, collisions between
the robot and the environment should also be avoided. These
two constraints are used to filter the approach directions in the
simulation in two ways. The starting position relative to object
is transformed into arm coordinate system, and checked by the
arm inverse kinematic algorithm, whether the position is reach-
able for the arm. If not, the grasps from this starting position
will not be simulated. Secondly, ray intersection from the start-
ing position along the approach direction toward the object is
checked. If the ray intersects firstly with other obstacles near
the object to be grasped, the hand would collide with these ob-
stacles. This approach direction does not need to be tested. In
this work, the localized geometric primitives that should not be
grasped are treated as obstacles to be avoided. After a grasp is
planned in the simulation, a motion planning system is used to
bring the arm collision-free to the grasp position. With a grasp
force optimization step, the object can be grasped firmly and
safe [16].

V. EXPERIMENTAL RESULTS

A. Configuration and Task

In the work presented, a SwissRanger SR-3000 manufac-
tured by MESA Imaging AG is used. It provides 176x144
pixels on a custom designed CCD/CMOS chip with up to 25
frames per second. Using a sinusoidal with a frequency of
fmod = 20MHz, it measures a distance range of dmax = 7.5m.
The effective resolution in an operation distance of 1.5m is
about 6mm lateral and 8mm in depth. For the sake of the work
presented, any other time-of-flight camera with about 20.000
pixels could have been used. All of them exhibit similar per-
formances.

The time-of-flight camera is mounted on a pan/tilt unit. We
assume the robot to be situated at a table such that the object
on it are within the viewing frustum of the sensor as well as
within the working space of the manipulator. We assume the

position of the table board to be known. Given the configu-
ration of our experimental platform, the sensor observes the
objects at a distance of about 0.75m tilted about 35◦ towards
the table. The robot is equipped with two seven degrees of
freedom (DOF) arms (KUKA LBR3) with each an Schunk An-
thropomorphic Hand (SAH) attached. We establish a data base
of 8 objects whose shapes consist of geometric primitives (2
spheres, 3 cylinders, 1 cone and 2 boxes). We consider the task
of grasping objects off the table.
B. Evaluation of Calibration

It is reported in the literature that the distance accuracy of
the camera chips available is limited to 5-10mm due to chip
design issues (in ideal conditions) [17]. Since our robot’s envi-
ronment is anything but ideal (varying ambient light, varying
surface reflectance, varying angle of intrusion, ...), the mea-
surement errors we experience are typically well beyond that
limit.

By applying the first and second stage of our calibration pro-
cedure planes in the sensor’s environment are corrected to be
represented by plane patches in the measurement point cloud.
Under the internal and external conditions present during cal-
ibration, the measurements are corrected with an error less
than 5mm. However, when viewing different table boards with
differing reflective properties at different angles of intrusion
we find that though represented by plane patches the corre-
sponding measurements are typically shifted and tilted in depth
(sometimes even 7.5 cm). Taking this observation into account,
we execute the third stage of our calibration procedure with
reference to the table board that is assumed to be known. In
order to do so, the inlier/outlier segmentation of our best-fit al-
gorithms for planes makes the calibration possible even though
objects may be placed on the table. Performing the plane best-
fit on approximately 20.000 measurement points takes about
100msec.

As a result of our calibration method, any table board with
objects we tested was accurately measured with an error less
than 5mm.
C. Evaluation of Jump Edge-Filtering

The proposed jump edge-finding filter performed as well as
other jump-edge finding filters described in the literature. The
key feature of the filter is that applying it just requires sim-
ple operators (edge-sharpening and thresholding with a lookup
table that scales in depth).
D. Evaluation of Object Recognition and Localization

Due to the multipath problem of time-of-flight cameras [5]
(i.e., direct and indirect reflections in the viewed scene can not
be separated and may cause errors in depth measurement at
edged surfaces), objects placed upright on the table board usu-
ally lean towards the viewing direction of the sensor. For in-
stance, the measurements corresponding to a cylinder standing
on the table board constitute a point cloud that may not be up-
right. We observe that best-fitting a cylinder to the measure-
ment points may even yield a cylinder axis that comprises an
angle of about 10◦ with the table board’s surface normal. The
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Fig. 6. Best-fit and segmentation of geometric primitives in measurement
point cloud (manual mode).

extent of the error varies with respect to surface reflectance
and angle of intrusion. In other words, the estimation of the
rotation is expected to be erroneous due to the multipath prob-
lem and therefore, we correct the estimate such that the object
stands steady on the known table board. Concerning the esti-
mation of the translation, we experience another measurement
error, especially with curved surfaces, that squeezes the mea-
surement points representing objects on the table board. For
instance, a cylinder of radius 5cm may be displayed as cylindri-
cal point cloud with a radius of only 4.25cm, a sphere of radius
4.5cm may be displayed as spherical point cloud with a radius
of only 4cm. The extent of the error again varies with respect
to surface reflectance. The estimate of the translation may be
erroneous in automatic mode because the estimated shape pa-
rameters may be erroneous and in manual mode because with
the fixing of the shape parameters more local minima occur.

The automatic mode requires a reasonable amount of sur-
face points to establish a model feature hypothesis. Given the
density of measurements, their noise level and other errors of
time-of-flight cameras, we notice that the model features pro-
cessable by the algorithms need to be 2-3 times the size of the
objects manageable by our robotic hand. Running several tests
on such objects in automatic mode we observe translation er-
rors of about 1.5cm. Avoiding the classification step in manual
mode, we observe translation errors of about 2.5cm when run-
ning tests on objects manageable by the robotic hand.
E. Evaluation of Manipulation Task

Running several tests we are able to grasp the objects found
during recognition. Fig. 6 shows the localization results corre-
sponding to the scene in Fig. 1.

VI. CONCLUSION

Time-of-flight cameras are interesting to robot vision. How-
ever at the present stage of sensor design, reliable calibration
and filtering are key issues in any application. This paper pro-
poses a calibration procedure that performs very well in appli-
cations like grasping objects off a table (even in varying con-
ditions). Also, a simple jump edge-finding filter is presented.

Objects can be localized by means of their shape. In grasp
planning, geometric primitives are of special interest. This pa-
per discusses the chances and the problems experienced when
recognizing geometric primitives within measurement point
clouds of time-of-flight cameras. Although feasible, we be-
lieve that further sensor developments are in need in order to
reliably best-fit and segment geometric primitives in data of
time-of-flight cameras.
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