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Abstract
We present a method to reconstruct a deformable shape from a set of range scans. The input to our algorithm is
a sequence of range scans where the object takes a different pose in each scan. Then, we solve for the skinning
weights and transformation matrices of the linear blend skinning (LBS) model that best align all input scans to a
common reference pose. To handle multiple frames effectively, we avoid an accumulation of the alignment error by
optimizing the alignment of all frames simultaneously. In addition, we develop a method to maintain a single set of
skinning weights rather than having to maintain the weights separately in each frame. Our method does not rely
on markers, an initial segmentation, or template information to construct the model. Also, unlike previous work
that focus just on registration, the advantage of our method is that we can use the skinning weights to animate and
re-pose the reconstructed object.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction
Capturing deformable geometry is an important problem in
computer graphics. A system that enables fast and accurate
capture of moving shapes has many potential applications
in games, movie production, and virtual reality. This topic
has recently received considerable attention specifically for
applications in performance capture [BPS∗08, dAST∗08,
VBMP08].

We can now use high-speed depth cameras to capture
range scans of dynamic objects at video frame rates [WLVG07].
Unlike static range scans, dynamic range scans contain both
the information about the surface and how the underlying
object moves. This provides an exciting opportunity to con-
struct both the surface of the object and a model of its mo-
tion. However, a key processing step with range data is reg-
istration: the process of aligning frames to reconstruct the
complete surface. This problem has been solved for static
objects [BM92, BR07], but it remains challenging for mov-
ing objects that can take different poses in each scan.

In this paper, we present an algorithm to reconstruct both
a surface and a motion model from a set of range scans. To
solve for the object surface, we must compensate for the mo-
tion of the object to align all the scans to a common “ref-
erence” pose. We accomplish this by prescribing a motion
model for the shape and solving for the model parameters to
best predict the observed range scan data. This reconstructed

model can then be directly used for re-posing and animating
the shape.

For describing the movement of the object, we use a sim-
ple motion model called linear blend skinning (LBS). In this
model, the surface is divided into “soft regions,” where each
region is associated with a transformation matrix. These
regions are indicated by assigning a vector of “skinning
weights” at each point on the surface, where the ith com-
ponent of the vector correspondences to the weight or influ-
ence of the ith transformation. Using this model allows easy
editing of the movement because a user only needs to spec-
ify a few transformations to move the entire shape. Our goal
is to automatically solve for these parameters—the transfor-
mations and weights of LBS—to align a set of range scans
to a common pose. Our method does not rely on markers, an
initial segmentation, or template information to construct the
model. Also, unlike previous work that focus just on regis-
tration, the advantage of our method is that it gives both the
completed shape and associated skinning weights.

The main contribution of this paper is to optimize these
quantities for multiple scans. The basic idea is to solve for
the alignment of all frames to a common “reference” frame.
A challenge here is that scans can align on top of each other,
causing the surface to gradually “thicken.” Also, small errors
in the alignment can gradually grow, leading to a “drift” of
the object’s surface. We formulate the optimization so that it
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solves for the global alignment of multiple scans simultane-
ously. This is effective for reducing these types of errors.

Also, we must define a weight for all points (in all frames)
to solve for the transformations. This is because the trans-
formations and weights depend on each other. We describe a
way to maintain a single, consistent set of weights across all
input frames.

Overcoming these challenges allows us to accurately re-
construct complete shape models from range scans of mov-
ing geometry. Specifically, our contributions are:
• An algorithm to reconstruct a deformable shape from par-

tial 3D data, without markers or a template, using a simul-
taneous alignment of all input data,
• An algorithm for global optimization of weights and

transformations on multiple frames,
• A technique to maintain a single, consistent weight func-

tion among multiple input frames.

2. Related Work
Shape registration is an active and well-studied area in com-
puter graphics and vision. There has been considerable in-
terest recently in registering multiple scans of deformable
shapes. A class of methods model the moving object as a sur-
face in 4D space-time [MFO∗07,SWG08,SAL∗08]. In addi-
tion, Wand and colleagues [WJH∗07,WAO∗09] fit a graph of
surface point trajectories to the input data. The main differ-
ence in our work is that we learn both the shape and skinning
weights, allowing a user to animate the reconstructed object
using forward or inverse kinematics.

A closely related work is by Pekelny and Gotsman [PG08],
who reconstruct both the surface and articulated skeleton
from depth scans with a user-given segmentation. In our
work, we do not assume that a segmentation is given, but
instead we learn this automatically based on the motion of
the input data. Chang and Zwicker [CZ09] present a method
to automatically fit the weights and transformations of LBS
to align a pair of range scans. We build on this method and
extend it handle multiple range scans, by formulating the
optimization of weights and transformations over multiple
frames.

We also draw on the work of rigid registration [Neu97]
and extend it to the articulated case. However, we extend
these approaches to handle multiple transformations in each
frame and also to incorporate joints between the transforma-
tions in each frame.

Our work is also related to methods that focus on learn-
ing models of surface motion from geometric data. In par-
ticular, there is much work in capturing, representing, and
manipulating human body shapes [ACP02,ACP03,ASK∗05,
ACPH06, HSS∗09]. These works rely on markers and/or
templates to build the initial database of body shapes from
range scans, but are able to learn more expressive sur-
face motion models than our approach. It is also possible
to construct rigged models from mesh animations [JT05,
SY07, dATTS08], but these techniques rely on input trian-

Reference Frame Frame 1

Transformations to Reference
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Frame 2 Frame 3

Figure 1: For each input frame, we solve for a set of trans-
formations that align the frame to the reference.

gle meshes that have the same connectivity and topology.
In contrast, our method attempts to construct rigged models
using partial geometric data that is not in correspondence,
without using markers or a template.

3. Algorithm Overview
Our goal is to reconstruct the complete surface and asso-
ciated skinning weights of an object that fits the observed
range scan data. Concretely, we must find the transforma-
tion matrices and their associated skinning weights (regions)
that aligns all input frames to a reference frame, as shown in
Figure 1.

For this purpose, we extend a pairwise registration method
[CZ09] to handle multiple scans. If this method is applied
directly to multiple scans, it causes a “drifting” of the sur-
face (if frames are registered sequentially), or it needs to
keep a separate set of skinning weights for each registered
pair (if frames are registered hierarchically in groups of two
frames).

We address these limitations and reformulate the op-
timization to simultaneously align multiple input frames,
while maintaining a single set of skinning weights for the
entire dataset. To improve the performance of the optimiza-
tion, we optimize the alignment of a reduced set of sampled
locations on each frame. These sample points serve as loca-
tions to measure the alignment distance of each frame to the
reference. We summarize our entire algorithm in the follow-
ing procedure and in Figure 2.

1. Initialize Reference: Sample points and initialize weights
on the reference frame (Section 4.1).

2. For each new frame:

a. Initialize Frame: Initialize weights on the new frame,
by aligning the reference frame to the new frame (Sec-
tion 4.2).

b. Global Alignment: Optimize the global alignment of
all initialized frames (Section 4.3).

c. Update Reference: Update the reference with the sur-
face information of all frames (Section 4.4).

3. Post-process: Refine weights, accumulate all scanned
points, and reconstruct the surface geometry (Section 4.4).

submitted to Eurographics Symposium on Geometry Processing (2009)



paper1063 / Constructing Deformable Shapes from Range Scans 3

Initialize
Frame

Global
Alignment

Update
Reference

Post-
Process

Initialize
Reference

Repeat For Each Scan

(Section 4.1) (Section 4.2) (Section 4.3) (Section 4.4) (Section 4.4)

Figure 2: Overview of our reconstruction algorithm.

In the subsequent sections we discuss each step of our al-
gorithm in more detail. But first, we provide some technical
background for our discussion.

3.1. Background
The linear blend skinning (LBS) model describes the mo-
tion of a surface using weights and transformations. Each
vertex of the surface is assigned a vector of weights (one
weight per transformation) in some reference pose. Then, the
transformations move each vertex according to its assigned
weights by computing a weighted sum of the transformed
points. This is summarized by the function D(x) : R3→R3,
where

D(x) =
B

∑
j=1

w j(x)Tj(x) =
B

∑
j=1

w j(x)
(
R jx+ t j

)
. (1)

Here, B is the total number of transformations, and j is
the index of the transformation. Tj(x) denotes applying the
transformation (rotation R j ∈ SO(3) and translation t j ∈R3)
to the position x. Also, let us denote w(x) as the vector of
weights at x, with components w j(x) for each transforma-
tion j. We assume that the weights are non-negative and sum
to 1 for all x ∈ R3.

For our algorithm, we will use a single weight function
defined in the reference frame. However, since the pose of
each frame is different, we will have a different set of trans-
formations for each frame. We use the notation T ( f �Ref)

j to
denote the jth transformation for frame f . Note that the di-
rection of transformation T ( f �Ref)

j is from frame f to the
reference frame.

The range scan data is given as a set of point clouds.
We also estimate the normals at each point by using a sim-
ple mesh constructed from the rectilinear structure of the
scanned points. We can also use a more robust alternative,
such as estimating the least-squares fitting plane at each
point.

4. Registration Algorithm
In this section, we describe in detail our optimization for
the global alignment of all frames. We first describe how to
initialize each input frame, followed by details of the global
optimization.

4.1. Initializing the Reference Frame
In our algorithm, the reference frame serves two important
purposes: as a common location to (1) align all the input
frames, and (2) define the skinning weights. Because we
need to solve for the weights, we define them on a regu-

Align Deform
Grid
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Frame

Aligned to
Input Frame

Grid on
Input Frame

Weights on
Input Frame

Look up
in Grid

Grid on
Reference

Figure 3: To look up the weights on any input frame, we
first align the reference to the frame and deform the grid
accordingly. We can then directly look up the weights in the
deformed grid.

lar volumetric grid enclosing the reference frame geome-
try [CZ09]. Thus, in this step we start the registration by (1)
sampling points on the reference to measure the alignment
of future frames, and (2) creating the grid and initializing
the weights on this grid.

We pick samples by subsampling the input points using
best-candidate sampling [Mit91]. We initialize the weights
by assigning binary weights (labels) on each grid point. This
is done by first picking B random locations on the reference
frame (where B is the total number of transformations) and
assigning each grid point the label of the closest location.
This provides a rough segmentation of the input geometry
into multiple parts, and will serve as a starting point for re-
fining the weights further in the optimization.

4.2. Initializing a New Frame
For each new frame, our goal is to align this new frame to
the reference. Although we could find the transformations
from the new frame to the reference frame, we also need
weights defined on this new frame to specify where each
transformation applies. However, we only define the weights
on the grid in the reference frame. We need some way to
determine the weights in the new frame using the grid of the
reference frame.

This is the purpose of the initialization step. The idea is
to first perform an alignment of the reference frame to the
new frame. This is done by solving for the transformations
that minimize the alignment distance of the reference frame
to the new frame. Then we deform the grid itself according
to these transformations, which overlays the grid with the
points in the new frame. Now we can directly look up the
weights in the new frame by finding the grid cell containing
each point and interpolating the weights of the cell’s vertices.
This procedure defines weights in the new frame, and now
we can include the new frame in the global registration.

Suppose that we have processed up to frame l. To perform
the alignment to the new frame l + 1, we take the transfor-
mations to the last frame l as a starting point to optimize
the transformations to the new frame l +1. The optimization
itself is the same as the global alignment (Section 4.3), ex-
cept that we solve for transformations T (l�l+1) from frame
l to frame l + 1, while the weights are still optimized for all
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Reference Frame 1 Frame 2 Frame 3 All Samples

....

Figure 4: We use sample points on all input frames to mea-
sure the global alignment. For each frame, we only keep the
samples that are from new geometry that has not been ob-
served in any previous frames.

frames.
When we apply the transformations to each grid point (ac-

cording to its weights), we essentially have a set of deformed
grid cells overlapping the new frame (see Figure 3). To look
up the weight for a point p, we (1) find the grid cell contain-
ing p and (2) solve for its trilinear coordinates within the cell
using Newton’s method.

Recall that we measure the alignment using sample points
(Section 3). To take into account the geometry of all pro-
cessed frames, we gather all sampled locations (of all pro-
cessed frames) onto the reference frame. This sample set S
is constructed to represent well-spaced locations throughout
the entire shape.

To increase performance, we remove overlapping sample
locations, as illustrated in Figure 4. We first initialize S to
be the samples on the reference frame. For the next frame,
we transform the samples of f to the reference frame and
remove points whose proximity to S is smaller than a thresh-
old. Then we add the remaining points to S. We repeat this
process for all remaining frames. For proximity, we use Eu-
clidean distance to the closest point in S, projected onto the
the tangent plane of the closest point [PG08]. For the thresh-
old we typically use 2–5 times the range scan sample spac-
ing.

Sometimes it is the case that a new scan is not sufficiently
close to the last scan. In this case, the alignment may con-
verge to an undesired local minimum. This is a failure mode
for the algorithm, and the user is given an option to retry the
alignment specifying different parameters. Also, often en-
tire parts of the object are occluded in the range scan. We
detect these parts automatically and remove their associated
transformations and weights from the subsequent optimiza-
tion [PG08].

4.3. Global Registration
Once a frame is initialized, it is introduced into the global
registration step. This step optimizes for the best weights
(denoted W) and transformations (denoted T ) that simul-
taneously align all initialized frames to the reference frame.
The optimization objective has three terms: (1) Efit(T ,W),
which measures the alignment distance of all frames to the
reference, (2) Ejoint(T ), which constrains neighboring trans-

Reference Frame Frame 1 Frame 2 Frame 3

y  (x)2j
y  (x)3jx

T         (x)(1    Ref)
j

T         (y  (x))(3    Ref)
j 3j

T         (y  (x))(2    Ref)
j 2j

Minimize
Distances

Figure 5: To measure alignment, we compute distances be-
tween sample points x and target points yk j mapped to the
reference frame. Then, we optimize for the transformations
and weights minimizing the total distance.

formations to agree on a common joint location, and (3)
Eweight(W), which constrains the weights to be smooth and
to form contiguous regions. With weights α,β,γ for each
term, we write the entire objective as

argmin
T ,W

α Efit(T ,W)+β Ejoint(T )+ γ Eweight(W). (2)

Next, we describe each term in more detail and give details
of how we solve the optimization. During the optimization,
solving the weights in a continuous range leads to over-
fitting [CZ09]. To resolve this problem, we constrain the
weights to be binary, where only one component can be 1
and the rest are 0.
Fitting Objective Efit. The key idea for this term is to mea-
sure the alignment distance between all frames using the
sample points. For each sample point x on frame f , we
keep a list of target positions yk j(x) for each frame k and
each transformation j. Then, we use the transformations and
weights to map all positions to the reference frame. A good
fit will transform x and yk j(x) to the same location (Fig-
ure 5). We write this in the equation

Efit(T ,W) = ∑
x∈S

∑
Frames k

(3)

B

∑
j=1

w j(x)d
(

T ( f �Ref)
j (x),T (k�Ref)

j
(
yk j(x)

))
.

For each j, T ( f �Ref)
j (x) transforms x to the reference frame,

and T (k�Ref)
j

(
yk j

)
transforms yk j(x) to the reference frame.

Then, d(·, ·) measures the distance between the points, and
the weight w j “selects” one of the distances according to its
value. We can think of this as selecting because the weights
are binary. This is repeated for all frames k and all sample
points x to compute the total alignment distance.

For d(·, ·) we use a weighted sum of the point-to-point
and point-to-plane distance measures:

d(x,y) = ηpt ‖x−y‖2 +ηpl ((x−y) ·~ny)2 . (4)

For the point-to-plane distance, we also need the normal vec-
tor~ny of y. This vector is transformed to the reference frame
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Figure 6: On the left, we show hinge joints that are auto-
matically estimated. These joints are constrained in Ejoint as
shown on the right. This term constrains the transformed lo-
cations of u to agree on the same point by minimizing the
distance between the transformed locations.

as well. We typically set the weights to be ηpt = 0.2 and
ηpl = 0.8 for our experiments.
Joint Objective Ejoint. The joint term constrains neighbor-
ing transformations to agree on a common joint location in
order to avoid degenerate configurations. We define joint lo-
cations on the reference frame and constrain the transforma-
tions to map these locations to the same point in all frames
(see Figure 6, right side).

Our method supports detecting and constraining two types
of joints: 3 DOF ball joints and 1 DOF hinge joints. Detec-
tion is performed via solving a minimization problem [AKP∗04,
PG08]. For hinge joints, the solution will be a set of points
(on the reference frame) lying on the hinge axis. Solving
with SVD, we can detect hinges by examining if the ratio of
the smallest singular value to the sum of the singular values
is less than a threshold. If this is the case, then we truncate
the smallest singular value to zero and solve for the equation
of the line satisfying the system. If this is not the case, we
treat this joint as a ball joint and solve for its location, which
is a single point u. To our knowledge, the detection of hinge
joints in this manner has not been done before.

Once we have the joint locations and types, we constrain
all joints to agree on the joint location using the term Ejoint:

Ejoint(T ) = ∑
Frames f

∑
Joints (i, j)

(5)

∑
u∈Joint

∥∥∥T ( f �Ref)
i

−1
(u)−T ( f �Ref)

j

−1
(u)

∥∥∥2
.

In the case of a ball joint, there is only one point u where
transformations i and j are constrained, and for the case of
a hinge joint, and generate a set of points u along the hinge
axis and invidually constrain each point [KVD05].
Weight Objective Eweight. The binary weights transform
the problem into a discrete labelling problem, where we
try to find an optimal assignment of transformations (in-
terpreted as “labels”) to the grid cells. Thus, for Eweight
we just use a constant penalty when two neighboring cells

(c,d) have different weights. This is a simple form of the
Potts model, which is a discontinuity-preserving interaction
penalty [BVZ01].

4.3.1. Optimization
To solve the optimization, we divide the solver into two
phases and alternate between each phase until the solution
converges. In the first phase, we keep the weights fixed and
solve for the transformations, and in the second phase, we
keep the transformations fixed and solve for the weights.
This strategy works well in practice and produces a good
alignment within a few iterations [CZ09].

Before each iteration, we update the target positions
yk j(x) for each frame k and transformation j. These tar-
get positions are the corresponding locations used in Efit
for each sample point x. If we have ground-truth corre-
spondences, then we can have the same position yk j(x) for
all j. But in the absence of correspondences, we transform
each sample point x from frame f to k for each j (using

T (k�Ref)
j T ( f �Ref)

j

−1
) and take the closest point on frame k.

Some frames may not have a corresponding point due to
missing data. To handle this case, for each sample point x
(transformed to frame k), we invalidate the corresponding
target point yk j if (1) the distance between these points ex-
ceeds a threshold τd , (2) the angle between the normals ex-
ceeds a threshold τn, or (3) the target point lies on the bound-
ary and the distance exceeds a smaller threshold τb [PG08].
In particular, we mark all yk j(x) as invalid for all j if the
target position for the current positive weight is invalid.

For optimizing the first phase, we need to (1) find the
weights at each sample point x and (2) solve for the trans-
formations minimizing the terms α Efit(T ,W)+β Ejoint(T )
from Equation 2. Recall that, in order to look up the weights
in each frame, we must first use the current transformations
to map the weight grid to each frame (Section 4.2). Because
we look up the weights on deformed grid cells (whose lo-
cation depends on the transformations used to map them to
each frame), the weight values depend on the current trans-
formations. Therefore, after updating the transformations,
we transform the grid again and update the weights on each
frame.

Numerically, we solve the resulting non-linear least squares
problem using the standard Gauss-Newton algorithm. We
found that optimizing the transformations simultaneously
for many frames can be slow. To improve the performance
of our implementation, we provide an option to solve for the
transformations at a sliding window of frames. Typically we
have used a window of 5–10 frames in our experiments.

For the second phase, we constrain the weights to be bi-
nary (see Section 4.3) and solve the resulting discrete op-
timization of α Efit + γ Eweight using graph cuts [BVZ01,
BK04, KZ04]. Here we provide a value of Efit for each indi-
vidual grid cell c and each transformation j by summing the
distance over all sample points x that is contained within c.

submitted to Eurographics Symposium on Geometry Processing (2009)



6 paper1063 / Constructing Deformable Shapes from Range Scans

Furthermore, we can precompute this value for all cells and
all transformations to perform the optimization very quickly.

4.4. Updating Reference and Post-Processing
After the global alignment, we extend the weight grid to en-
close the points of the newly introduced frame. To update
the extent of the grid, we transform all scans to the refer-
ence frame and construct a new grid that contains all the
points. If the limits of the grid expand, we take care to per-
form bookkeeping for precomputed quantities such as the
weights of the points in each frame (Section 4.2) and Efit
(Section 4.3.1).

Finally, after finishing the registration of the entire se-
quence, we transform all scanned points to the reference
frame to build a complete point set of the shape. Here, we
remove redundant points using the same procedure outlined
in Section 4.2 for the sample points. We then reconstruct a
single surface from these points (and their associated nor-
mals) using the streaming wavelet surface reconstruction al-
gorithm [MPS08].

Also, since we use discrete weights during the optimiza-
tion, we also provide the option of solving for continuous
weights as a post-processing step [CZ09].

5. Experimental Results
We implemented our algorithm in C++ and tested it with sev-
eral real-world and synthetic datasets exhibiting articulated
motion. All of our results were produced on an Intel 2.4 GHz
Core 2 Duo using one core.

The car and robot datasets were acquired by Pekelny
and Gostman [PG08]. These datasets had a total 90 frames
each. The reconstruction results, shown in Figure 7 and Fig-
ure 9, demonstrate that we can obtain visually accurate re-
sults without a segmentation given by the user. Our method
also gives good results for a more deformable subject. We
generated 60 synthetic depth scans of a running man, where
the camera rotating around the man and the pose changes in
each frame. Even with the wide range of motion and occlu-
sion in these frames, we can reconstruct the entire surface,
shown in Figure 10. We also acquired scans of a bendable,
poseable pink panther toy which was moved to a different
pose in each scan. After aligning 16 frames, we were able
to reconstruct the surface and skinning weights, even though
the furry texture on the surface created a lot of noise in the
range scan (Figure 11). For these last two examples, we ap-
plied the weight smoothing step as a post-process to reduce
artifacts due to binary weights. Here, we applied a simple
uniform gaussian blur of fixed radius (2–5 grid cells) on the
weights. Also, in each dataset, the user often had to manu-
ally restart the alignment with different parameters, because
the initial alignment converged to the wrong solution. For
example, this happened for about 21 out of 90 frames for the
car dataset, and 23 out of 90 frames for the robot dataset.
The pink panther dataset required a restart for most frames,
because it moved too much between the frames.

Reference Frame Weight Grid Reconstruction

In
pu

t F
ra

m
es

A
ss

ig
ne

d 
W

ei
gh

ts
R

ec
on

st
ru

ct
io

n

Figure 7: Reconstruction results for the robot dataset.

The performance of our implementation is reported in Ta-
ble 1. The computational cost of our method was moderate,
requiring about 4–6 minutes to align each frame. This in-
cludes the time for initializing each frame (including manual
restarts) and simultaneous registration. Our algorithm has
several parameters affecting the behavior of the optimiza-
tion. The main parameters are the the number of transforma-
tions B, the resolution of the grid, weights α = 1,β = 1,γ = s
adjusting the relative influence of each term in the opti-
mization (Section 4.3), and the thresholds τd = 15s,τn =
45◦,τb = s that determine if a target point is valid (Sec-
tion 4.3.1). Several of these parameters are expressed as a
multiple of the range scan grid spacing s. The parameters
that influenced the optimization most were the weight of the
joint term β (varied between 0 and 1), the angle between
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Robot Car RunMan PP
Bones 7 5 15 17
Grid Cells 32327 30630 23638 14824
Frames 90 90 60 16
Points 845208 484907 819464 314286
Samples 4595 2785 5080 9584
Setup 10.03 6.57 10.14 6.88
Init Frame 87.23 56.31 117.04 149.51
Global 94.01 129.71 137.95 75.88
Update 39.96 46.51 33.93 10.60
Total (sec) 231.24 239.10 299.06 242.87

Table 1: Performance statistics for our experiments. Tim-
ings (in seconds) represent the average time spent per frame
in each stage.

normals τn (varied between 15◦ and 45◦), and the distance
threshold τd (varied between 10s and 40s).

It is very useful to reconstruct the skinning weights asso-
ciated with each object based on the range scans. To demon-
strate this, we implemented a tool to perform inverse kine-
matics on the reconstructed shape model. In this system, the
user specifies point constraints on the model, and we use our
optimization of the transformations (Section 4.3.1) to sat-
isfy these constraints. The result was an interactive tool for
the user to intuitively re-pose and animate the reconstructed
subject. Figure 8 shows examples of different poses of the
robot created by our system. Please see the accompanying
video for a recorded live session of the IK system in use.

6. Limitations and Future Work
We would like to investigate ways of reducing the param-
eters and automating the system. Our system is not robust
to large motion in the input frames, requiring manual inter-
vention to restart the alignment with different parameters.
The registration could be automated further by incorporating
techniques to track large motions in range scans. Also, other
parameters could be estimated automatically. For example,
we could automatically estimate the number of transforma-
tions by starting with a single transformation and splitting
regions to lower the total error.

The grid used to define the weights is not aware of the sur-
face topology. For example, the grid had trouble separating
the spinning platform on the car model (the small blue rotat-
ing part in Figure 9), or between the two legs of the running
man model (middle column, last row in Figure 10). Using a
higher resolution for the grid improved the results, but did
not resolve the situation when different parts come in con-
tact. We believe one promising avenue for future work is to
replace the grid with a more flexible structure. For exam-
ple, we can define weights on the sample points directly and
construct a graph between nearby sample points. Care must
be taken to properly interpolate these weights on all scanned
points while respecting the object’s topology.

Also, it would be interesting to adapt this method for com-
pletely non-rigid examples. There should be a middle ground

User Specified
Constraints

Novel
Poses

Reconstructed
Model

Figure 8: Reposing the reconstructed robot. By using the
solved weights and the hinge joints, our optimization can
satisfy point constraints given by the user.

between specifying a separate transformation on every sam-
ple point [SSP07] and solving for the weights at each sample
point as we do.

7. Conclusion
We have presented a method to reconstruct a deformable
shape from a set of range scans. From a set of dynamic range
scans, we solve for the skinning weights and transformation
matrices of the linear blend skinning (LBS) model that best
align all input scans to a common reference pose. For this
purpose, we formulated a simultaneous optimization for all
input frames to minimze registration error. The advantage
of our method is that it does not rely on markers, an ini-
tial segmentation, or template information to construct the
model. Finally, we have demonstrated that the reconstructed
skinning weights are useful for animating and re-posing the
reconstructed object.
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Figure 9: Reconstruction results for the car dataset.
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Figure 10: Reconstruction results for the Running Man
dataset.
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Figure 11: Reconstruction results for the Pink Panther
dataset.
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