
Global Registration of Dynamic Range Scans
for Articulated Model Reconstruction
WILL CHANG
University of California, San Diego
and
MATTHIAS ZWICKER
University of Bern

We present the articulated global registration algorithm to reconstruct artic-
ulated 3D models from dynamic range scan sequences. This new algorithm
aligns multiple range scans simultaneously to reconstruct a full 3D model
from the geometry of these scans. Unlike other methods, we express the
surface motion in terms of a reduced deformable model and solve for joints
and skinning weights. This allows a user to interactively manipulate the
reconstructed 3D model to create new animations.

We express the global registration as an optimization of both the align-
ment of the range scans and the articulated structure of the model. We em-
ploy a graph-based representation for the skinning weights that successfully
handles difficult topological cases well. Joints between parts are estimated
automatically and are used in the optimization to preserve the connectiv-
ity between parts. The algorithm also robustly handles difficult cases where
parts suddenly disappear or reappear in the range scans. The global reg-
istration produces a more accurate registration compared to a sequential
registration approach, because it estimates the articulated structure based
on the motion observed in all input frames. We show that we can automati-
cally reconstruct a variety of articulated models without the use of markers,
user-placed correspondences, segmentation, or template model.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric Algorithms; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Surface Fitting

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Range scanning, articulated model,
non-rigid registration, animation reconstruction

ACM Reference Format:

Authors’ addresses: land and/or email addresses.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/11-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Input Range Scans Poseable, Articulated 3D Model

Fig. 1. The articulated global registration algorithm can automatically re-
construct articulated, poseable models from a sequence of single-view dy-
namic range scans.

1. INTRODUCTION

While 3D scanning has traditionally focused on acquiring static,
rigid objects, recent advances in real-time 3D scanning have
opened up the possibility of capturing dynamic, moving subjects.
Range scanning has become both practical and cost-effective, pro-
viding high-resolution, per-pixel depth images at high frame rates.
However, despite the many advances in acquisition, many chal-
lenges still remain in the processing of dynamic range scans to re-
construct complete, animated 3D models.

Our research vision is to automatically reconstruct detailed,
poseable models that animators can directly plug into existing soft-
ware tools and use to create new animations. However, range scans
have much missing data due to a limited view of a 3D subject from
any single viewpoint at any point in time. To reconstruct a com-
plete model, we must track the movement of the subject in each
frame to align and integrate scans taken from different times and
viewpoints. In addition, the reconstructed model should be easy to
animate similar to how it actually moved in the range scans. Solv-
ing for a reduced set of parameters describing the surface motion
allows us to meet this goal and improve the usability of the model.

We present a new method, articulated global registration, to ad-
dress these challenges by reconstructing a rigged, articulated 3D
model from dynamic range scans. Given a sequence of range scans
of a moving subject, the algorithm automatically aligns all scans to
produce a complete 3D model. We formulate our approach as a sin-
gle optimization problem that simultaneously aligns partial surface
data and recovers the motion model. This is accomplished without
the assistance of markers, user-placed correspondences, a template,
or a segmentation of the surface. Our method is unique because we
perform the alignment by estimating the parameters of a reduced,
articulated deformation model. In contrast to methods that focus

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • W. Chang and M. Zwicker

only on registration or reconstruction of the original recording, our
method produces a 3D model that can be interactively manipulated
with no further post-processing. Our main contributions are:

—A global registration algorithm for articulated shapes that opti-
mizes the registration simultaneously over multiple frames,

—A novel registration formulation that produces a 3D model with
skinning weights learned from incomplete examples,

—An improved robust registration technique to automate the global
registration with initial pairwise alignments of adjacent frames.

Our method is useful because it does not require a template shape or
a predefined skeletal structure, it handles range scans with fast mo-
tion and significant occlusion, and it produces a rigged 3D model. It
is most useful when you cannot acquire a static pose of the subject.
In this case, the object moves continuously, and scans at any point
in time are incomplete. These situations are quite common unless
you have many cameras to cover the surface completely. The articu-
lated global registration is mainly applicable to articulated subjects.
When applied to non-rigid datasets, it produces a rough piecewise
rigid approximation of the surface motion.

We demonstrate the effectiveness of our algorithm by recon-
structing several synthetic and real-world articulated models. Ad-
ditionally, we present a simple extension of our algorithm to inter-
actively manipulate the resulting 3D model.

2. RELATED WORK

Template-Based Reconstruction. A popular approach to recon-
struct deforming sequences of range scans is to acquire a tem-
plate shape and fit it to the scan data. Some methods rely on
tracked marker locations to fit the template [Allen et al. 2002; 2003;
Anguelov et al. 2005; Pauly et al. 2005; Bradley et al. 2008], while
others utilize global optimization [Anguelov et al. 2004] or high
frame rate scan sequences [Zhang et al. 2004; Weise et al. 2009].
Using a template provides many advantages in tracking and fitting
the data, with the expense of requiring the user to scan or model
it in advance. Our work addresses the more general problem of re-
constructing a model without using a template.

Templates are also used for estimating shape using multiview
silhouette/video data [de Aguiar et al. 2008; Vlasic et al. 2008;
Gall et al. 2009] or sparse marker data [Park and Hodgins 2006;
2008]. Although these methods address the same problem of cap-
turing deformable geometry, they do not address how to process
high-resolution range scan data taken from just one or two views.

Most template based methods tend to recover surface detail only
from the template and not from the input data. Works by Ahmed
et al. [2008] and by Li et al. [2009] show that additional surface
details can be extracted from the input data.

The work by Li et al. [2009] is most similar to our method, al-
though it requires scanning a coarse template of the subject in ad-
vance. Other than the use of a template, their method assumes non-
rigid deformations, whereas we assume an articulated (piecewise
rigid) deformation model.

The difference between articulated global registration and more
general non-rigid registration algorithms is that the rigidity of sur-
face parts helps to improve the convergence of the registration when
there is fast motion between scans. This fact was first pointed out
by Huang et al. [2008], who show that rigid clustering of the sur-
face improves the convergence of non-rigid registration. We also
demonstrate this in our work (Figure 18) by comparing with the
more general non-rigid registration of Wand et al. [2009]. While

the non-rigid registration fails to converge when there is large mo-
tion, the articulated registration produces an accurate registration.
Templateless Reconstruction. To tackle the reconstruction prob-
lem without a template, many researchers have considered model-
ing a dynamic range scan sequence as a surface in four-dimensional
space and time, rather than a single 3D surface that changes its con-
figuration over time. Mitra et al. [2007] use kinematic properties
of this 4D space time surface to track points and register multi-
ple frames of a rigid object. Süßmuth et al. [2008] and Sharf et al.
[2008] explicitly model and reconstruct the 4D space-time surface
using an implicit surface representation. However, these techniques
require the surface to be sampled densely in both space and time,
which is an assumption that our method does not require. In addi-
tion, the method of Sharf et al. [2008] does not track points to pro-
duce correspondences between frames; it is more appropriate for
filling in missing surface data not observed by the scanner. Recently
Popa et al. [2010] reconstruct globally consistent mesh animations
from video based capture sequences. In contrast, our method does
not require video sequences nor does it rely on optical flow to com-
pute correspondences between frames.

The algorithm by Wand et al. [2009] reconstructs an animated
3D model from range scan sequences without using a template.
Compared to the works mentioned above, this method is more ro-
bust to missing data in the scans. It aligns multiple frames by solv-
ing the surface motion in terms of an adaptive displacement field.
This motion representation handles smooth deformations well, but
our representation is more compact and accurate for representing
articulated motion. Wand et al. [2009] align and merge pairs of ad-
jacent frames in a hierarchical fashion, gradually building the tem-
plate shape hierarchically as well. In contrast, we simultaneously
align all frames at once using an explicit piecewise rigid deforma-
tion model. In addition, our method is more robust to large move-
ments and produces a fully rigged, poseable 3D model, rather than
just reconstructing the original recorded motion sequence.

Our method is partly inspired by the articulated motion capture
and reconstruction method of Pekelny and Gotsman [2008]. How-
ever, this method requires the user to manually segment a range
scan in advance, whereas we automatically solve for the segmenta-
tion using the motion observed in all frames.

The articulated shape-from-silhouette (ASFS) algorithm [Che-
ung et al. 2003] is also similar to our method, because it recon-
structs an articulated 3D model without using a template. The
source of the data is 3D points extracted from multi-view video,
where the cameras cover the scene from nearly all angles. In
contrast, we reconstruct articulated models from single-view (or
double-view) range scan data that has much missing data. In addi-
tion, ASFS estimates body kinematics using a sequential approach
that models the joints one by one. The datasets are acquired by, for
example, asking the person to move his left arm while keeping the
rest of the body still (to find the position of the left shoulder joint).
We estimate body kinematics for all joints simultaneously, so we
do not require a dataset with such constrained movement.
Unsupervised Pairwise Registration. While our method is de-
signed for aligning multiple range scans, several methods for align-
ing a pair of scans are related to our work as well. A closely related
work is the method by Chang and Zwicker [2009], which solves for
the alignment between a pair of range scans by estimating the pa-
rameters of a reduced deformable model. A possibility is to apply
this method directly for multiple scans, using a sequential pairwise
registration and accumulation approach. However, in this case the
correct articulated structure is not estimated properly, because it
considers the movement in only two frames at a time. Also, un-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 3

less a very high resolution is used, the grid-based representation
of the weights cannot handle difficult topological cases with close
or nearby surfaces. In contrast, we use a graph based approach to
robustly handle multiple frames and bad topological cases.

The transformation sampling and optimization approach by
Chang and Zwicker [2008] is used in our work to initialize the
registration between pairs of adjacent frames. However, this tech-
nique is too slow to apply for an entire sequence of range scans.
We improve the performance of this method by subsampling the
geometry. Our use of a graph to represent the deformation model
is related to the approach by Li et al. [2008] and [Sumner et al.
2007]. However, we solve for weights on the graph nodes, as op-
posed to solving for a separate affine transformation at each node.
The method by Huang et al. [2008] also uses a graph, but they use it
as an approximation of geodesic distances in order to extract a set of
geodesically consistent correspondences. The use of geodesic dis-
tances can make this approach problematic when a large amount of
surface data is missing.
Deformation Modeling from Examples. Our inverse kinemat-
ics system resembles that of FaceIK [Zhang et al. 2004] or
MeshIK [Sumner et al. 2005], which extrapolate a set of exam-
ples to match user constraints. However, the deformation model
that we produce is a parametric model that explicitly models parts
and joints, as opposed to a data-driven method that blends a set of
example meshes. Therefore, our interactive IK system does not use
the original examples at run-time and only uses the reconstructed
deformation parameters (skinning weights and joints) to pose the
3D model.

Our deformation modeling approach is closer to the work on
example-based skinning [James and Twigg 2005; Kavan et al.
2008] and skeleton extraction [Anguelov et al. 2004; Schaefer and
Yuksel 2007; de Aguiar et al. 2008]. However, while these ap-
proaches estimate the deformation parameters using a set of com-
plete examples that are already in correspondence, we estimate
them directly from incomplete range scan data.

3. ALGORITHM OVERVIEW

The goal of our algorithm is to align a set of dynamic range scans
and express the surface motion using a reduced set of parameters.
We pose this problem as a skinning problem: finding transforma-
tions per frame and weights per vertex. When we apply these trans-
formations to each scan according to the weights, all scans should
be aligned with each other. We expect the range scans to be in tem-
poral order, so that there is sufficient overlap between frames to
align the scans.

The basic structure of our method is shown in Algorithm 1. The
core of our method is the articulated global registration (lines 3–
10). The main idea is to optimize the transformations and weights
simultaneously across all frames to align them to a common ref-
erence pose. The optimization operates on a central data structure
we call the dynamic sample graph (DSG). The DSG is formed on a
subset of points sampled from the input scans. We select the points
such that they form a uniform sampling of the complete surface.
The DSG is dynamic because it continually incorporates more sur-
face data from new scans as they are added to the optimization.
The main advantage of the DSG is that it removes redundancies
in the input range scans and, hence, makes the global registration
tractable.

To give an overview of Algorithm 1, we start by precomputing
an initial pairwise registration for each pair of adjacent frames (line
2, Section 4). Next, we create the initial DSG (line 3, Section 6).
Then, each frame is introduced into the global registration one at

Algorithm 1: ARTICULATED GLOBAL REGISTRATION

Data: A sequence of range scans (F0, . . . , Fn−1)
Result: Dynamic sample graph of the completed surface,

weightsW for each sample point, rigid
transformations T for all parts and frames

begin1
Compute initial pairwise registration (Section 4);2
Precompute DSG sample candidates (Section 6);3
i← 0;4
while Fi 6= Fn−1 do5

Apply pairwise registration of Fi, Fi+1 (Section 6);6
Detect occluded parts in Fi+1 (Section 7);7
Perform global registration of {F0, . . . , Fi+1}8
(Algorithm 2);
Update DSG (Section 6);9
i← i+ 1;10

Resample the DSG densely and reconstruct surface mesh11
(Section 8.1);
return DSG,W, T ;12

end13

a time (lines 5–10). For each frame, we apply the initial pairwise
registration (line 6, Section 6) which gives an initial alignment of
the new frame to the surface registered so far. We then detect oc-
clusions and disocclusions of surface parts in the new frame (line 7,
Section 7) and optimize the transformations and weights to simulta-
neously align all frames (line 8, Section 5.3). Lastly we update the
DSG (line 9, Section 6) to incorporate new samples from the new
frame, and we move on to the next frame. After finishing the entire
sequence, the final post-processing step is to resample the surface
densely and reconstruct a mesh of the completed surface (line 11,
Section 8.1).

4. INITIAL PAIRWISE REGISTRATION

In a preprocessing step, we solve for an initial pairwise registra-
tion for each pair of adjacent frames. Since the scans have missing
data and their poses can be far apart, the algorithm of Chang and
Zwicker [2008] is well suited for producing a robust registration. It
consists of two steps. First, we sample rigid transformations from
feature-based correspondences between the scans. Second, we op-
timize the assignment of these transformations onto each vertex of
the scans, such that applying the transformations produces an align-
ment of the scans while preserving their shape.

The details of the method are the same as originally described
by Chang and Zwicker [2008]. However, with range scans that typ-
ically have tens of thousands of points, it is too slow to process
an entire range scan sequence with many frames. To improve per-
formance, we restrict the optimization to a small subset of points
(typically a few thousand) sampled uniformly from each scan us-
ing best-candidate sampling [Mitchell 1991]. This makes sense for
articulated movement, where the number of unique transforma-
tions producing the movement is small compared to the number of
scanned points. We build a k-nearest neighbor graph with k = 15
on the subset of points to specify the smoothness constraints nec-
essary for the optimization [Chang and Zwicker 2008].

After the optimization, we propagate the transformations as-
signed to the subset to all points using nearest neighbor interpo-
lation. This produces the initial pairwise registration that we will
use as an initialization for the global registration.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • W. Chang and M. Zwicker

(a) Source (blue) and Target (red)
21325 points total

(b) Alignment Using
All Points: 1330.4 sec

(c) Alignment Using
1000 Points: 87.3 sec

Fig. 2. Performance comparison for the initial pairwise registration. Op-
timizing on a subset of the points in (c) produces a similar registration as
(b), but only takes a fraction of the time. The color variation in (b) and (c)
visualizes how the transformations are assigned to the surface.

A comparison of the optimization using all points versus using a
subset is shown in Figure 2. Although we obtain a good alignment
in both cases, the improved method achieves a significant speedup.

5. GLOBAL REGISTRATION

The central part of our method is the optimization of transforma-
tions and weights that simultaneously align all frames. We first de-
scribe our deformation model in more detail.

5.1 Deformation Model

Transformations. We represent the surface motion using a set of
rigid transformations in each frame. We designate the first frame as
the reference frame and define the transformations relative to this
reference [Neugebauer 1997]. Each transformation moves a part
of the surface in frame f to align to the corresponding part in the
reference frame. To aid our method, the user specifies a maximum
number of rigid transformations B used to approximate the surface
motion.

We use the notation T (f�Ref)
a to denote the ath transformation

for frame f , which transforms in the direction from frame f to the
reference frame (Figure 3a). Each T (f�Ref)

a transforms points x ac-
cording to the formula T (f�Ref)

a (x) = R
(f�Ref)
a x+~t

(f�Ref)
a , where

R is a rotation matrix and~t is a translation vector. We also express
the relative transformation T (f�g)

a between any two frames f, g by
first transforming from frame f to the reference and then transform-
ing from the reference to frame g (Figure 3b).
Weights. We associate the transformations to the points indirectly
by assigning weights to each point. By changing the weights during
the optimization, we can dynamically adjust where each transfor-
mation is being applied.

In our method, we solve for binary skinning weights. Thus, each
point is associated with exactly one transformation. We take this
approach because solving for smooth weights during registration
leads to overfitting of both transformations and weights [Chang and
Zwicker 2009]. Using binary weights essentially divides the points
into rigid parts: sets of points that have the same weight.
Dynamic Sample Graph (DSG). We introduce the dynamic sam-
ple graph (DSG) to efficiently represent the skinning weights and
make the optimization over all frames tractable. The DSG consists
of sample points selected from each frame, edges between samples
to form a graph, and a weight per sample. The goal of the opti-
mization is to solve for weights and transformations that align the
sample points to all frames simultaneously. We use the edges of the

(a) Configuration of Transformations (b) Composition Between Frames

Reference FrameFrame 1

. . .

T (1 Ref)
j

T (2 Ref)
j

T (3 Ref)
j

T (4 Ref)
j

T (n Ref)
j

Frame 2

Frame 3
Frame 4

Frame n

T (f Ref)
j T (g Ref)

j()-1
T (Ref g)

j =

T (f Ref)
jT (Ref g)

j

Reference Frame

Frame f Frame g

Fig. 3. (a) We solve for the set of transformations that align each input
frame to the reference frame. (b) We can transform between any pair of
frames f and g by first transforming from f to the reference and applying
the inverse transformation to g.

Frame 0
(reference) All Samples

Frame i Frame i + 1 Frame i + 2
DSG

Fig. 4. Initially the vertices of the dynamic sample graph (DSG) are uni-
formly sampled from the reference frame. As we introduce more frames (i,
i+ 1, i+ 2), we add samples only from parts of the surface that are miss-
ing in previous frames. On the right side of the arrow, we show all sample
points and the DSG on the reference frame. Our sample selection strategy
minimizes redundancy and yields a uniform sampling of the whole surface.

DSG to impose smoothness constraints when optimizing for the
weights.

Not all sample points are from a single frame. Some are from
frame 1, some from frame 2, and so on. As we incorporate each
frame into the registration, we add samples to the DSG only from
surface parts that are missing in all previous frames. At the same
time, we select the samples to provide uniform and adequate cov-
erage of the entire surface seen so far. This idea is illustrated in
Figure 4. We discuss details on how to sample the points and form
the edges of the DSG later in Section 6.

5.2 Optimization Objective

The optimization objective quantifies the quality of the align-
ment using three error terms: (1) Efit(T ,W), which measures the
alignment distance between the DSG samples and all frames, (2)
Ejoint(T), which constrains neighboring transformations to agree
on a common joint location, and (3) Eweight(W), which constrains
the weights of neighboring points to be the same. With coefficients
α, β, γ for each term, we write the entire objective as

argmin
T ,W

α Efit(T ,W) + β Ejoint(T) + γ Eweight(W). (1)

Fitting Objective Efit. This term measures the alignment distance
of the DSG to all frames. For each sample, we measure its align-
ment distance to other frames by transforming it to the frame and
finding the closest corresponding point. Given the closest corre-
sponding point, the total alignment distance is given by the formula

Efit(T ,W) =
∑
x

∑
Fg

d
(
T

(f(x)�Ref)
j(x) (x), T

(g�Ref)
j(x)

(
y
(g)

j(x)

))
. (2)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 5

Frame 0 (reference) Frame i Frame i+1 Frame i+2

x

Minimize
Distances

y j(x)
(i+1)

T ()
(i+1 Ref)
j(x) y j(x)

(i+1)

y j(x)
(i+2)

y j(x)
(i+2)T ()

(i+2 Ref)
j(x)

T (x)
(i Ref)
j(x)

Fig. 5. To measure alignment, we compute distances between samples
(yellow) and their closest corresponding points (blue) on the reference
frame. Adding up these distances measures the alignment of all frames.
We optimize for the transformations and weights that minimize this total
distance.

Here, Fg denotes the frame g, d(·, ·) is a distance measure, x is the
position of each sample, f(x) is the index of the frame from which
the sample was selected, j(x) is the index of the transformation as-
signed (as a weight) to the sample, and y

(g)

j(x) is the sample’s clos-
est corresponding point in frame g when transformed according to
transformation j(x). This formula computes the distance between
the sample its corresponding point, but both points have been trans-
formed to the reference frame (illustrated in Figure 5). The result-
ing values are summed up over all sample positions and all frames
g to compute the total alignment distance.

We design the distance d(x,y) to be robust under missing data
and outliers. This distance measure first determines whether the
correspondence is valid according to three criteria. If it passes, we
include their distance in Efit; otherwise their distance is 0 and not
included in the term. We compute d using the formula

d(x,y) =

{
ηpt ‖x− y‖2 + ηpl ((x− y) · ~ny)

2 if x,y is valid
0 otherwise.

(3)

Here, x is the sample, y is its corresponding point, and ~ny is the
surface normal of y also transformed to the reference frame. We
use the weights ηpt = 0.2 and ηpl = 0.8 for our experiments.

The three criteria for a correspondence to be valid is as follows.
(1) Assume that the sample x is from frame f(x). If y is from

frame g that was added before frame f(x), i.e., when g < f(x),
then y is automatically invalid. To see this, whenever we add a
new frame, we add samples to the DSG only from surface parts
that are missing in all previous frames (for details see Section 6).
Therefore, for g < f(x), no sample added from frame f(x) will
have a corresponding point in any frame g.

(2) Because of scanner occlusion, a sample x from frame f may
not have a corresponding point in frame g even when g > f .
Adapting the strategy from Pekelny and Gotsman [2008], we use
thresholding to detect this case. The corresponding point y is in-
valid when

—the Euclidean distance ‖x− y‖ exceeds a threshold τd,
—the angle between their normals exceeds a threshold τn,
—or the distance exceeds a smaller threshold τb when y lies on the

boundary of Fg .

(3) When we optimize the weights (see Section 5.3), the weight
value j(x) itself becomes a variable, not a fixed constant. There-
fore, we compute a separate closest point y(g)

a for each potential

T (u)a
-1

-1

Minimize
Distance

T (u)b

T = (R ,t)a a a

T = (R ,t)b b b

Reference Frame Input Frame

u

Hinge Joints

Fig. 6. (Left) Hinge joints (shown as bars) are estimated automatically.
(Middle & Right) The joint constraint constrains the distance between trans-
formed joint locations so that the joint stays intact.

transformation T (f�g)
a (x). Now, consider the current weight j(x)

assigned to the sample point. If the closest point for this current
weight is invalid, we set all closest points y(g)

a invalid for all trans-
formations a.

The reason for this strategy is that, if the closest point for the
current weight is invalid, then the corresponding surface for that
sample is most likely missing in frame g. However, by coincidence
one of the other transformations may move x very close to the
range scan, but to a completely wrong location. As a result, the
weight optimization will prefer to assign this incorrect transforma-
tion. Our strategy prevents this problem by conservatively declaring
that there is no valid corresponding point for any transformation if
the transformation of the current weight does not yield a valid cor-
respondence.
Joint Objective Ejoint. The joint term constrains neighboring trans-
formations to agree on a common joint location. It ensures that the
parts stay connected to each other and do not drift apart. We sup-
port automatically detecting and constraining two types of joints: 3
DOF ball joints and 1 DOF hinge joints. First, we will explain the
definition of the joint constraints. Then, we will explain how the
joint parameters are computed.

We define the joint locations in the reference frame. A hinge
joint specifies that two transformations are connected along a hinge
axis, which means that both transformations transform the axis to
exactly the same location. An example of hinge joints detected for
the robot model is illustrated in Figure 6 (left). A ball joint says that
the transformations connect on a single point u ∈ R3.

Once we know these joint locations and types, we can constrain
the transformations to map the joint locations to the same place
(Figure 6, middle & right). We constrain the joints using the for-
mula

Ejoint(T) =
∑

All Fi

∑
Valid Joints

(a,b)

∑
t ∈ [−10s..10s]∥∥∥T (i�Ref)

a

−1
(uab + t~vab)− T (i�Ref)

b

−1
(uab + t~vab)

∥∥∥2.
(4)

Here, u+t~v is used as the parametric form for the hinge joint, with
u as the location of the joint, v as the direction of the hinge axis,
and a scalar t to generate points along the hinge axis. Since a joint
is a pairwise relation, joint parameters are specified for pairs of
transformations (a, b) using the notation uab and ~vab). For a hinge

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • W. Chang and M. Zwicker

No Joints Ball Joints Only Ball and Hinge Joints

Fig. 7. (Left) Removing the joint constraint causes the registration to fail.
(Middle) Using only ball joints, we obtain an acceptable registration. How-
ever, there are too many degrees of freedom, causing slight misregistrations
(red ovals). (Right) Using both ball and hinge joints produces the most ac-
curate registration.

joint, this formula constrains a set of 20 points along the hinge axis
using t in the range of [−10s..10s] and the point spacing s of the
range scanning grid [Knoop et al. 2005]. In the case of a ball joint,
we set ~vab = 0, so this term constrains only one point uab. In-
verses of the transformations are used in this term because the joint
locations are defined on the reference frame.

Figure 7 illustrates the benefit of using the joint constraint in the
optimization. The joints help to preserve the connectivity between
each part. In addition, restricting the degrees of freedom appropri-
ately using the hinge joints helps the optimization to converge to
the correct local minimum.
Detecting Joint Locations. To detect joints and estimate their lo-
cations, we first find which pairs of transformations (a, b) are likely
to share a joint in between, and then we determine the location us-
ing the transformation values that we have solved for each frame.

We use the edges of the DSG to find pairs of transformations
(a, b) likely to have a joint. We restrict our attention to boundary
edges: edges that have different weights assigned to each end. If
there are many boundary edges in the DSG where one end has
weight corresponding to transformation a and the other end with
weight b, then these transformations neighbor each other and are
likely to share a joint in between. On the other hand, if there are
no such edges, then most likely there is not a joint between these
transformations. To help our discussion, let a boundary edge in the
DSG be incident to transformation a if one of its end points x ∈ S
has weight j(x) = a. If either of the following ratios exceeds a
threshold (set to 15%):

edges incident to both a, b
bdy edges incident to a

,
edges incident to both a, b

bdy edges incident to b
(5)

we take the pair a, b as a candidate for sharing a joint. We then aver-
age all endpoints of edges incident to both a, b to obtain an estimate
uest ∈ R3 of the joint location. Since we will define joint locations
on the reference frame, we compute uest on the reference frame by
transforming the DSG samples to the reference. This estimate of
the joint location serves to regularize the optimization below and to
prune unreasonable estimates of the joint location.

Once we have a set of candidate pairs (a, b) and estimated joint
locations uest, we solve for joint locations u on the reference frame
based on the solved transformations. We perform a least-squares
minimization for each pair (a, b) [Cheung et al. 2003]:

argmin
u∈R3

∑
All Fi

∥∥∥T (i�Ref)
a

−1
(u)− T (i�Ref)

b

−1
(u)
∥∥∥2 + λ ‖u− uest‖2

(6)

The first term aims to find the location u that stays fixed under
the transformations, and the second term helps to pull the location
closer to uest in case the joint is close to being a hinge and admits
multiple solutions.

We first try to detect hinge joints using this minimization. We
initially set λ = 0 and solve the least-squares problem using the
SVD. The joint is a hinge if the ratio of the smallest singular value
to the sum of the singular values is less than a threshold (set to 0.1).
If this is the case, we truncate the smallest singular value to zero
and solve for the equation of the line u′+ t~v′ satisfying the system.
The final hinge joint parameter u is the point on this line that is
closest to uest, and ~v is the normalized line direction ~v′/‖~v′‖.

If the joint is not a hinge, it is a ball joint and we determine
a single joint location u with ~v = 0. In this case, we solve the
minimization once again, but with λ = 0.1 to pull the solution
nearby the estimated location.

Finally, we perform a sanity check after solving for the joint lo-
cation. If the distance between the solved and estimated locations
exceeds the length of a hinge (‖u−uest‖ > 20s), we consider it an
unreasonable estimate and discard the joint.
Weight Objective Eweight. Constraining the solution to solve for bi-
nary weights transforms the problem into a discrete labeling prob-
lem, where we try to find an optimal assignment of transformations
to the sample points x ∈ S. The goal of the weight objective is to
constrain neighboring samples to have a similar weight. This way,
sets of samples with the same weight form well-connected and con-
tiguous regions on the DSG.

We use a simple constant penalty when two neighboring weights
are different:

Eweight(W) =
∑

(x,y)∈E

I (j(x) 6= j(y)) , (7)

where E is the set of all edges in the DSG, and I(·) is 1 if the
argument is true and 0 otherwise. This is known as the Potts model,
a discontinuity-preserving interaction term widely used for labeling
problems [Boykov et al. 2001].

5.3 Optimization

To perform the optimization, we divide the solver into two phases
and alternate between each phase until the solution converges (see
Algorithm 2). In the first phase, we keep the weights fixed and solve
for the transformations (lines 6-10), and in the second phase, we
keep the transformations fixed and solve for the weights (lines 16-
22). This strategy works well in practice and produces a good align-
ment within a few iterations. Also, we try to detect if previously
disappeared parts have reappeared in the new frame (line 12).

In our experiments, we observed that the transformations for a
frame do not change much after the frame is first introduced and
optimized. Therefore, we solve for the transformations only on the
newest c frames that have been optimized. We can think of this as
a “sliding window” in which to optimize the transformations. Low-
ering the value of c improves the speed of the registration, while
raising this value may produce a more accurate registration at the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 7

Algorithm 2: OPTIMIZE T ,W (DSG, T ,W, F0, . . . , Fi+1)
Data: Dynamic sample graph (DSG), associated weightsW ,

transformations for all frames T , and all initialized
input frames F0, . . . , Fi+1

Result: Optimized transformations and weights T ,W
begin1

Select a subset of frames to optimize the transformations2
(e.g. a sliding window of 1–10 frames);
while Not converged do3

begin (Phase 1: Solve for the transformations T)4
Re-estimate joint locations and types;5
while Not converged do6

Update the closest points y(g)

j(x) for all x ∈ S7
and all Fg , where g ∈ [0 .. i+1];
Construct the sparse matrices for Efit and Ejoint;8
Solve linear system and update9
transformations;
Check convergence criteria;10

end11
Detect reappearing transformations in Fi+1 by12
aligning occluded parts with unmatched surface points
(Section 7);
Check convergence criteria;13
if converged then break;14
begin (Phase 2: Solve for the weightsW)15

Update the closest points y(g)
a for all samples x,16

all Fg , and all transformations a, where
g ∈ [0 .. i+1] and a ∈ [0 .. B − 1];
Precompute Efit for all x and for all a;17
Create Eweight using the edges of the DSG;18
Solve discrete labeling using α-expansion;19
Discard parts that are too small;20
Reuse unassigned weight components by splitting21
regions with highest Efit error;
Update the weights for each sample x;22

end23

end24

cost of speed. Note that this only affects optimizing the transforma-
tions; the weights are always optimized using all frames.
Phase 1: Optimizing the Transformations. For optimizing the
first phase, we solve for the transformations minimizing the terms
α Efit + β Ejoint from Equation 1, while keeping the weights fixed.
Since the location of the closest corresponding points depend on
the transformations, we use an iterative approach in the spirit of
the iterative closest point (ICP) algorithm [Besl and McKay 1992]
(line 6–10 in Algorithm 2). We first keep the transformations fixed
and compute the closest points, then we keep the corresponding
points fixed and optimize the transformations, and we repeat this
alternation until convergence.

We perform the optimization using the Gauss-Newton algorithm,
linearizing the objective function in each iteration by substituting a
linearized form of each rigid transformation. To solve for the trans-
formations on a limited number of frames, we can simply remove
the variables/constraints (and also not update closest points) involv-
ing transformations from frames outside of the set of interest. This
significantly reduces the time to perform this phase.
Phase 2: Optimizing the Weights. For the second phase, we solve
for the weights of each sample point x that minimize the terms

α Efit + γ Eweight from Equation 1, while keeping the transforma-
tions fixed. Since we constrain the weights to be binary, we are
essentially solving for the assignment of transformations for each
sample point that minimizes the total error. We solve this discrete
optimization problem using the α-expansion algorithm [Boykov
et al. 2001; Boykov and Kolmogorov 2004; Kolmogorov and Zabih
2004]. Here, the edges of the DSG directly specify smoothness con-
straints between sample points. To save computation time during
the optimization, we precompute Efit in the DSG and store the val-
ues in a 2-dimensional hash table for quick access. Specifically, we
precompute and store the summand d(x,y) of Efit separately per
sample x and per transformation a, summed over all frames g.

The initial values of the weights are taken from the initial pair-
wise registration (Section 6). When there is no initial pairwise reg-
istration available, the weights are initialized so that the entire scan
is a single rigid part. A splitting strategy (described next) automat-
ically divides the model into multiple parts.

After the optimization, it may be the case that some transforma-
tions are applied to too few samples of the DSG. If the number of
points for a rigid part is less than 5 or 1% of the total number of
sample points, then we remove the rigid part from the DSG and re-
place the weight of its points with the weight of the closest point
from a different part. This results in “unused” transformations that
are not assigned to any samples.

Instead of just throwing away these unused transformations, we
can reintroduce them in a different location to reduce registration
error. We split the region with the highest registration error in half
and introduce the unused transformation by replacing the weights
in one of these halves [Chang and Zwicker 2009]. This adds more
degrees of freedom, allowing the optimization to refine the align-
ment further for the region.

Specifically, we compute an average registration error for each
rigid part by averaging the fitting objective (Equation 2) for the
points of each part separately. We then split the part with the highest
error by randomly selecting two seed points and dividing according
to which seed is closer. We leave one of the new parts as is, but
we replace the weights of the points in the other with an unused
transformation. This splitting process is continued until the highest
registration error is below a threshold 0.4s, or there are no unused
transformations left.
Checking for Convergence. We perform a convergence check
(Algorithm 2, lines 13-14) after solving for the transformations.
To detect if the optimization for the transformations has converged,
we monitor the change of the objective function by examining the
value of the minimized residual. Denoting the total error residual at
iteration ι as Eι, we apply the criterion |Eι − Eι+1| < ε(1 + Eι)
(where ε = 1.0 × 10−6) and stop the optimization immediately if
this condition is met. In our experiments, we observed that in most
cases the optimization converges in about 3–5 iterations. However,
the optimization may enter an oscillating mode, where the closest
points switch back and forth indefinitely between a few points. Be-
cause of this, convergence is not guaranteed; so we limit the maxi-
mum number of iterations to 7 in practice. Despite the lack of con-
vergence, we have not encountered any major problems in practice.

6. MAINTAINING THE DYNAMIC SAMPLE GRAPH

The dynamic sample graph (DSG) is an important component that
is involved in all stages of our algorithm. In this section, we discuss
the details about how we manage the DSG, including how to trans-
fer the initial pairwise registration (Section 4) into a format compat-
ible with the DSG, how to update the DSG with new samples when
a frame is added, and how to interpolate the sparse weight function

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • W. Chang and M. Zwicker

defined on the vertices of the DSG. Note that precomputing the
DSG sample candidates happens only once in the entire algorithm
(line 3, Algorithm 1). Applying the initial pairwise registration is a
completely separate event that happens before each global registra-
tion (line 6, Algorithm 1). Finally, updating the DSG happens after
each global registration (line 9, Algorithm 1).
DSG Sample Candidates. The samples of the DSG are taken from
points in each frame. To determine the DSG samples efficiently, for
each frame f we precompute a random set of candidate points to be
included in the DSG. To help our discussion, let us use the symbol
Uf to denote the set of candidate points in frame f .

To precompute Uf for each frame f , we find an approximately
“maximal” sampling of each frame based on a sample distance τs
specified by the user. The goal of this maximal sampling is to sam-
ple the points of frame f so that there are no more points in the
scan farther than τs to the sampled subset. Thus, τs controls the
resolution (or point density) in the DSG.

We use a modified version of the best-candidate sampling algo-
rithm [Mitchell 1991] to generate a maximal sampling according
to τs. To do this, we keep track of the average distance of the best
candidate over the last 100 trials, and we keep adding samples until
the averaged distance falls below 0.57τs (the constant was deter-
mined empirically). Although this is only approximate, it is simple
to implement and much faster than checking the “maximal” criteria
every time we add a sample.
Applying the Initial Pairwise Registration. Each time we intro-
duce a new frame into the global registration, we need to find an
initial value for the transformation of each rigid part of the DSG.
We can use the initial pairwise registration between the new frame
and the previous frame for this purpose. However, we need to trans-
late the alignment information so that it applies to the rigid parts of
the DSG instead of the points of the scan.

For each rigid part of the DSG, we determine its initial trans-
formation by blending the corresponding transformations from the
initial pairwise registration. For each sample point in the rigid part,
we find the closest point in the previous frame and store the trans-
formation assigned to that point in the initial registration. This re-
sults in a list of transformations for the rigid part. Then, we uni-
formly blend all transformations in the list using Dual Quaternion
Linear Blending (DLB) [Kavan et al. 2008] to produce a single ini-
tial transformation. Although the blending produces a slightly dif-
ferent transformation than the original values, this strategy worked
well in practice.

In the case of the first two frames, the DSG has just been created
and the samples do not have any weights. At this point the DSG
is exactly a subset of the reference frame, so we directly copy the
transformations from the initial registration, while limiting the total
number of unique transformations to the maximum B.
Updating the DSG. At the very beginning of the algorithm, the
initial set of samples in the DSG is exactly URef. However, after we
finish optimizing each new frame in the global registration, we up-
date the DSG to incorporate more surface data from the new frame
and to reflect changes in the registration. During this process, we
select the samples so that they give uniform and adequate coverage
of the entire surface seen so far. To do this effectively, we actually
resample the DSG from scratch in each update. This is because the
global registration changes the alignment of all frames, and certain
samples that were not redundant before may become redundant and
need to be removed.

To start, we create a new and empty DSG and initialize its sam-
ples to URef. Then, for each frame f , we add points from the set
of sampled points Uf to the DSG that (1) do not overlap with the

points added so far and (2) have a valid weight interpolated from
the old DSG [Pekelny and Gotsman 2008].

First, to decide overlap, we transform the current points in the
(new) DSG to frame f . Then, a point from Uf overlaps with the
DSG if the distance to the closest DSG point is less than τs. To
make this more robust to registration error, if the surface normals
of the two points differ by less than 90◦, we first project the point
(from Uf) onto the plane of the DSG point (using the DSG point’s
surface normal) and then compute the distance. This is useful to
prevent forming multiple layers of the surface, which may occur
due to registration error.

Second, to interpolate the weight values from the old DSG, we
first transform the old DSG to frame f and divide it into rigid parts.
To determine the weight for a point in the new DSG, we compute
the closest distance between the point and each rigid part (of the old
DSG). We convert these distances to scores by normalizing them to
sum to 1. The weight of the point is the transformation of the part
with the highest score, but only if the highest score is greater than
three times the upper quartile (median of the largest half) of all
scores. Otherwise, we consider it an ambiguous case, and a valid
weight cannot be determined for the point. Also, the weight is in-
valid if the highest scoring transformation is marked as occluded
for frame f (more details about occlusion in Section 7).

After the resampling is complete, we form edges on the new
DSG. We transform it to the reference frame and compute the k-
nearest neighbor graph of its samples (k = 15). To prevent unde-
sired edges between separate (but spatially near) parts, we discard
edges that stretch in length more than twice when transformed to
each frame. However, if the edge is between parts that share a joint,
we do not discard the edge. This is because discarding these “joint
edges” may bias the discrete labeling optimization and cause the
boundary between parts to get “stuck” in particular locations. Af-
ter forming the edges, we finally discard the old DSG and replace
it with the new one. This concludes the updating process for the
DSG.

7. HANDLING OCCLUSION

In range scan sequences, it is often the case that large parts of the
object are occluded in some scans and reappear later. We detect if
rigid parts are completely occluded in a frame, adjust the optimiza-
tion procedure to deal with missing parts, and detect when parts
reappear to reintroduce them into the optimization.
Detecting Occluded Parts. When a part of the surface is partially
or completely occluded in a frame, the transformation for this part
may have few or no valid correspondences constraining it in the
optimization. In these cases, it may not be possible to solve for the
rigid transformation of that part. In our algorithm, we automatically
detect this and exclude these parts from the optimization (line 7 of
Algorithm 1).

First, we update the closest corresponding points for each DSG
sample and determine their validity according to the three criteria
of the robust distance measure (Equation 3). As before, let us parti-
tion the DSG into its rigid parts. For each rigid part, if the number
of points in the part that have a valid corresponding point falls be-
low a threshold (5, or 10% of the part), then we mark the part’s
transformation as “occluded” for the new frame. The correspond-
ing rigid part is considered “occluded” as well.
Excluding Occluded Transformations in the Optimization. We
need to handle occluded transformations and parts when we solve
for the transformations (Phase 1) and weights (Phase 2) in Algo-
rithm 2. In Phase 1, we do not solve for occluded transformations.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 9

F21 F22 F23 F24

In
pu

t F
ra

m
es

A
lig

nm
en

t

Matching Reappearing Leg

Fig. 8. Matching a reappearing leg. (Left) The right leg disappears in
frame 22 and 23, and it reappears in a different location in frame 24. The
top row shows the input frames, and the bottom row shows the alignment
performed without handling the reappearing leg. (Right Square) The top
left shows the points in frame 24 that are unmatched by the DSG. We align
the occluded parts to these unmatched points. The top right highlights the
correspondences found by matching the DSG with the unmatched points.
Finally, the bottom row shows the alignment result, shown with unmatched
points (left) and input frame (right).

Instead, we substitute a value computed based on the joint con-
straints with neighboring parts. If there are no neighbors, we use
the value from the last frame; if there is exactly one, we apply the
relative transformation to the neighbor derived from the last unoc-
cluded frame; and if there are two or more, we solve for the trans-
formation that best fits all joint constraints [Pekelny and Gotsman
2008].

While we can simply exclude transformations in Phase 1, we
cannot do the same for optimizing the weights in Phase 2 because
we are always optimizing the weights on all frames simultaneously.
The problem is that every DSG sample x needs a distance error
value d(x,y) for all transformations and all frames. A reasonable
error value is needed for all samples when a transformation is oc-
cluded in a certain frame.

For the occluded transformation’s error, we use the error value of
the current transformation j(x) for each sample x. If transforma-
tion j(x) is also occluded, we use the minimum error value among
all non-occluded transformations. If we had used a zero error, the
optimization would tend to assign the occluded transformation to
the samples. Also, too high a value would cause the optimization
to not assign the occluded transformation to any samples at all. Our
strategy takes the middle ground and works well in practice.
Detecting Reappearing Parts. When an occluded part suddenly
reappears in a new frame, we need to start tracking it again. Other-
wise, the algorithm could mistakenly treat it as new surface geom-
etry, thus duplicating the part multiple times in the reconstruction.
We detect and handle this case during the global registration (line
12 of Algorithm 2). Note that detecting reappearing parts cannot
be handled by our initial pairwise registration, because it can only
align parts not occluded in both the source and target.

To detect if an occluded part is reappearing in the new frame
i + 1, we first transform the DSG to frame i + 1 and determine
the weights of the frame’s sample points Ui+1 using the weight
interpolation in a separate step (discussed in Section 6). If a valid
weight cannot be determined (i.e. it is an ambiguous case where
the highest score is less than three times the upper quartile of all
scores, or the highest scoring transformation is occluded), then we
consider the point to be “unmatched” and add it to a set M of un-

In
pu

t F
ra

m
es

R
ec

on
st

ru
ct

ed
 M

es
h

E
st

im
at

ed
 J

oi
nt

s

Fig. 9. Reconstruction results for the Robot dataset.

matched points. If there is a sufficient number of unmatched points
(|M | > 0.05|Ui+1|), we interpret this as an indication that a previ-
ously occluded part is reappearing. Therefore, we attempt to match
these points by aligning them with transformations that were pre-
viously marked as occluded for frame i+ 1.

Here, we use the same procedure as Phase 1 of Algorithm 2 to
solve for the values of the occluded transformations (Section 5.3).
However, we expect unmatched points to be far away from the cur-
rent position of the DSG. Thus, we adjust the optimization where

—we only solve for the values of the occluded transformations by
aligning occluded parts of frame i+ 1 to M ,

—we set thresholds to higher values: τd = 50s and τn = 45◦,
—and we increase the weight of the joint constraint to β = 1000.

These modifications ensure that we obtain an alignment even when
the points in M are far away from the DSG, while the higher value
of β prevents the optimization from falling into local minima. Fig-
ure 8 shows an example where a reappearing part in the robot se-
quence is detected and registered. After solving for the occluded
transformations, we run the occlusion detection routine once more
to update each transformation’s occlusion status, and then we con-
tinue on with the optimization.

8. EXPERIMENTAL RESULTS

8.1 Reconstruction

We implemented our algorithm in C++ and tested it with several
real-world and synthetic datasets exhibiting articulated motion. Af-
ter we have aligned all frames, we reconstruct a triangle mesh from
a dense sampling of the DSG. We use the streaming wavelet surface
reconstruction algorithm by Manson et al. [2008].

The car and robot datasets were acquired by Pekelny and Gots-
man [2008] using a Vialux Z-Snapper depth camera. These se-
quences were created by animating the physical model while cap-
turing each frame from a different viewpoint. Each sequence has 90
frames, and consists of 4 and 7 parts, respectively. The results are
shown in Figures 9 and 10. The top row shows some of the input
frames in the sequence. Notice that there is a significant amount of
occlusion in some of the frames. The middle row shows the recon-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • W. Chang and M. Zwicker
In

pu
t F

ra
m

es
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Fig. 10. Reconstruction results for the Car dataset.

In
pu

t F
ra

m
es

R
ec

on
st

ru
ct

ed
 M

es
h

E
st

im
at

ed
 J

oi
nt

s

Fig. 11. Reconstruction results for the Pink Panther dataset with faster
input motion.

structed mesh using the algorithm, with weights obtained by inter-
polating the weights on the sample set. The bottom row shows the
estimated joint locations, where hinge joints are represented by a
short bar and ball joints by a sphere. Both the reconstruction results
and the weight estimation are faithful to the input data.

To test our algorithm on a more deformable subject, we acquired
two range scan sequences of a furry pink panther toy using a Kon-
ica Minolta VI-910 laser scanner. We animated one sequence with a
slower motion, and another sequence with a faster motion. Recon-
struction results are shown in Figure 11. Although the furry texture
caused noise on the scanned surface, we obtained a reasonable re-
construction of both the surface geometry and the weights.

Finally, we tested our algorithm on synthetic depth scans of a
walking man, where the camera is rotating around the subject. To
test the effect of occlusion in our algorithm, we captured two se-
quences, one using a single virtual camera, and the other using two
virtual cameras 90◦ apart. The reconstruction results are shown in
Figure 12. The results from both datasets are reasonable, but the
first sequence was less successful due to the large amount of oc-
clusion of the arms. With two virtual cameras, we obtained a bet-

In
pu

t F
ra

m
es

R
ec

on
st

ru
ct

ed
 M

es
h

E
st

im
at

ed
 J

oi
nt

s

(a) Using
1 Camera

(b) Using
2 Cameras

Fig. 12. Reconstruction results for the synthetic Walking Man dataset. On
the right, (a) and (b) show a comparison of the reconstruction using scans
from one and two virtual cameras.

3.5

0.0

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

Frame Number

D
is

ta
nc

e

Walkman reconstruction error (2 cameras)

Max Dist
Min Dist
Avg Dist
3 * Std Dev

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Frame Number

D
is

ta
nc

e

Walkman reconstruction error (1 camera)
Max Dist
Min Dist
Avg Dist
3 * Std Dev

Fig. 13. Reconstructed point cloud and error plot for the walkman dataset.
(Left) Visualization of the distance between the ground truth mesh and re-
constructed point cloud. The distance is in units of grid sample spacing.
(Middle) Noise on the reconstructed surface is caused by registration error.
The zoomed-in shoulder region shows points from different surface layers.
(Right) Plot of the registration error per frame. The peaks in the top graph
correspond to times where the algorithm loses track of the surface (the arms)
due to occlusion in the data.

ter reconstruction that was able to reproduce the fine detail of the
hands.

8.2 Validation with Ground Truth Data

To validate our method, we compared our reconstruction results
with the original (i.e. ground truth) mesh and animation data that
was used to generate the synthetic walkman dataset. Figure 13 (left)
visualizes the registration error between the ground truth mesh and
the reconstructed point cloud. For each vertex in the ground truth
mesh, we computed the distance to the closest point in the point
cloud. On the right, the graphs show the min, max, average, and
standard deviation of these distances for each frame.

The peaks of the graph in Figure 13 (top right) correspond to
frames where the surface is not visible and the algorithm loses
track. When the surface is visible (as with the case of 2 cameras),
the algorithm is able to track the surface well. The reconstructed

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 11

0100200
−50050100

0

50

100

150

200

250

300

z axis
x axis

Reconstructed skeleton
(Red: Reference, Blue: Reconstructed)

y
ax

is

0 20 40 60 80 100 120
0.8

0.85

0.9

0.95

1
Rotation angle comparison for lower leg

Frame NumberC
os

in
e

of
 r

ot
at

io
n

an
gl

e

0 20 40 60 80 100 120
0

50

100

150

200
Translation magnitude comparison for lower leg

Frame NumberM
ag

ni
tu

de
 o

f t
ra

ns
la

tio
n

Fig. 14. Comparison between a reconstructed skeleton and the reference
skeleton used to animate the synthetic walkman dataset. Both the recon-
structed skeleton and transformations closely resemble the reference data.

surface is often noisier than the scan data. This is because the sur-
faces are not registered perfectly, causing the points to be sampled
from multiple surface layers (Figure 13 middle). This causes noise
in both the point cloud and the reconstructed triangle mesh.

We also compared the quality of the reconstructed animation
with the ground truth data. Figure 14 shows a comparison between
the ground truth skeleton and the reconstructed skeleton (made
using the solved joint locations and relations, discussed in Sec-
tion 5.2). The plot on the right compares the numerical values of
the transformations for the lower right leg. Here, red indicates the
ground truth data, and blue indicates the reconstructed data. The re-
sults for other parts were similar. The transformations for the lower
torso and the head deviated the most because they were segmented
differently compared to the ground truth.

8.3 Parameters

The parameters of our algorithm are summarized in Tables I and II,
where Table 1 shows the data dependent parameters and Table 2
lists the parameters that have the same value for all datasets. We ex-
pressed many parameters relative to the sample spacing s, which is
the average distance between neighboring points on the range scan-
ning grid. This parameter can be computed automatically for each
dataset. There are many parameters overall, but the user can keep
most of them fixed and change only a few parameters to process a
new dataset. We summarize all of them in the tables for reference.

For the variable-valued parameters in Table I, we found that the
algorithm was insensitive to the value of B, given that an adequate
number is given. However, the algorithm was sensitive to the value
of the weight of the Ejoint term β, the weight of the Eweight term γ,
and the minimum distance τs between samples in the DSG. For
these parameters, appropriate values were found through experi-
mentation. We set β based on how the joint constraint was affecting
the registration: we relaxed β if neighboring parts seemed too stiff,
or strengthened β if parts were drifting apart. For γ, we lowered
its value if the weight optimization was consolidating the parts too
much, or we raised the value if the weight optimization divided in
the DSG into too many small parts. Finally, the value of τs con-
trols the resolution of the DSG; this parameter trades slower per-
formance for a small increase in reconstruction accuracy. However,
if τs is too large, then the reconstruction may fail entirely. In our
experiments, we experimented with different parameter settings but
did not exhaustively optimize the parameters to give a better result.

For the fixed value parameters in Table II, there were two ex-
ceptions where changing the value produced a better result. For
the pink panther dataset with faster input motion, we adjusted the
weight value β for the term Ejoint to 10 when matching reappearing

Table I. Data dependent parameters. Distances are given in units
of world space coordinates.

Description Car PP Popcorn Robot Spock Walking
Sample spacing s 0.0125 1 2 1 0.4 1
Min dist. τs in DSG 2s 5s 10s 2.5s 10s 2.5s
Max num. of partsB 7 10 5 7 7 16
Ejoint weight β 1.0 1.0 3.0 1.0 2.0 1.0
Eweight weight γ 0.1s 0.5s 5.0s 0.1s 1.0s 0.1s

Table II. Fixed value parameters. Distances are given in units
of world space coordinates. A number of parameters are

specified relative to the sample spacing s.
Description Value
Matching closest points (Section 5.2)
Max correspondence distance τd 10s
Max corresponding normal angle τn 45◦
Max boundary correspondence distance τb 1s
Weight for normals when matching closest points 2s
Detecting and constraining joints (Section 5.2)
Min incident edge ratio for detecting joints 0.15
Max distance between estimated and solved joint locations 20s
Number of frames required for estimating hinge joints 3
Hinge joint threshold on the singular values 0.1
Number of samples used to constrain hinges 20
Length of hinge joint constraint 10s
Optimization (Section 5.3)
Efit weight α 1.0
Sliding window size c for transformation optimization 5
Optimizing weights (Section 5.3)
Max number of samples for a rigid part to be removed 5
Max fraction of samples for a rigid part to be removed 0.01
Min average error for splitting a region 0.4s
Solver control (Section 5.3)
Max iterations for the optimization 7
Max iterations for solving the transformations 30
DSG parameters (Section 6)
Reduced τs for generating the final shape 0.5 τs
Nearest neighbors k for DSG 15
Maximum stretch factor for pruning an edge 2.0
Maximum length of an edge 4 τs
Occlusion handling parameters (Section 7)
Max number of correspondences for a rigid part to be occluded 5
Max fraction of correspondences for a rigid part to be occluded 0.1
Min ratio of remaining geometry to trigger reappearing part match 0.05
Weight for Ejoint for matching reappearing parts 1000
Max correspondence distance for matching reappearing parts 50s
Max corresponding normal angle for matching reappearing parts 45◦

parts. This was because the value of 1000 was too stiff to correctly
align a reappearing part in one frame of the sequence. Also, for the
robot dataset, we lowered the minimum average error for splitting a
region to 0.2s. This caused the implementation to split regions more
easily, resulting in better convergence of the weight optimization.

8.4 Performance

We performed our experiments using a single core of an Intel Xeon
2.5 GHz processor. The timing results are reported in Table III. In
the robot and car datasets, the most time-consuming part was the
initialization, but in the other cases it was the global registration.
The global registration step can execute faster if a smaller sliding
window is used, with the trade-off of having a less accurate reg-
istration. To improve performance when processing the walkman
dataset, we started the registration with a 5-frame sliding window,
and after 30 frames we changed to a 1-frame sliding window (de-
noted as “5 → 1”). Like other closest point matching algorithms,
the most time-consuming part is the closest point computation,
which can typically take 30% of the total time. Note that the times
in the initialization step reported in Table III do not include pre-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • W. Chang and M. Zwicker

Table III. Performance statistics for our experiments. All the
timings are in units of seconds. The bottom row reports the average

execution time per frame in each sequence.
Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5→ 1 5→ 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples in DSG 4,970 2,672 4,077 4,203 8,305 8,539
Edges in DSG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Updating DSG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02

Reconstructed
Model

User Specified
Constraints

Novel Poses

Fig. 15. Reposing the reconstructed robot. Using the solved weights and
the hinge joints, we can perform interactive IK on the reconstructed model.

processing time to compute spin images and estimate the principal
curvature frame at each vertex.

8.5 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-
posing and animating the reconstructed model. To demonstrate this,
we implemented a tool to perform inverse kinematics on the model.
The user can specify point constraints interactively by drawing
boxes around a region of interest. Then, the user is able to select
one of the constraint boxes and drag it around on the screen to ma-
nipulate the model. To perform IK, we use the transformation opti-
mization (Section 5.3) to solve for the rigid transformations of each
part that best satisfy the constraints. The details of the optimization
are exactly the same as before, except that the joint locations are
fixed and the correspondences are given by the user. By running
the optimization in a separate background thread, we were able to
interactively manipulate the reconstructed model in real-time. Fig-
ure 15 shows examples of different poses of the robot created by
our system.

8.6 Sequential Registration vs. Simultaneous
Registration

To illustrate the benefit of performing simultaneous registration,
we compare our algorithm with a sequential registration pipeline.
In a sequential registration method, we optimize each frame of the
sequence one-by-one, accumulate new samples directly on the ref-
erence frame, and discard the frame before moving on to the next.
This strategy is essentially a pairwise registration that is applied re-

(a) Results Using Sequential Registration (b) Results Using Simultaneous Registration

Fig. 16. Comparing sequential and simultaneous registration. (a) The se-
quential strategy gives an unreliable estimate of the articulated structure,
because it only uses the movement observed in two frames at a time. This
leads to an imprecise registration (marked as red ovals). (b) The simulta-
neous strategy can correctly estimate the weights that reflect the movement
observed in all frames. The registration is more precise, as well as the esti-
mated surface geometry.

peatedly for each frame, because it only performs the registration
between the accumulated samples and the current frame.

The main problem with the sequential registration approach
is that it cannot reliably estimate the articulated structure (i.e.
weights) based on the movement observed in just two frames at a
time. This complicates the situation further for occlusion detection
and recovery, which rely on a reliable estimate of the articulated
structure.

A comparison between the sequential and simultaneous strate-
gies is shown in Figure 16. Here, we used the two strategies to align
each dataset and display the DSG that roughly shows the recon-
structed geometry. On the left, we can see that the sequential strat-
egy did not produce the correct weights. As a result, the registration
was imprecise, and “extra” surfaces appear where the parts were
not aligned properly (for example, on the left arm of the robot). On
the right, we show the result using simultaneous registration using
the same parameters. The registration is more accurate, and the al-
gorithm produced correct weights that reflect the movement of all
frames.

We compared the sliding window strategy with a full global reg-
istration strategy on the car and pink panther datasets. Note that the
sliding window only applies when solving for the transformations
(Phase 1 of Algorithm 2). We always solve simultaneously on all
frames when solving for the weights (Phase 2 of Algorithm 2); in
this sense our algorithm always performs a “true” global registra-
tion regardless of the sliding window size.

Figure 17 shows a comparison of the results using the two strate-
gies. There was not much difference between the results, but the
running times suffered significantly with the full global strategy.
The running time for the car dataset increases more than it does for
the pink panther dataset because it has a greater number of frames.

8.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the non-rigid re-
construction method by Wand et al. [2009]. For the car, robot, and
pink panther datasets, their method was not able to reconstruct the
entire sequence because there was too much motion between the
frames. This is because they rely only on a local optimization using
closest points, whereas our method uses a robust initial pairwise
initialization that is able to automatically handle frames with large
motion. Also, having rigid parts in the optimization helps the reg-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 13

(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Fig. 19. Registration for a grasping hand sequence [Weise et al. 2007], where the hand starts from an open pose and gradually closes to a grasping pose.
Shown are the input data (displayed as a red color mesh) and the sparse DSG. Our algorithm tracks the hand well in the first part of the animation, where most
of the surface is visible. In (c), the surface of the fingers start to gradually disappear, and the middle segment of the index finger starts to lose track and rotate
backwards. In (d), the algorithm loses track of the middle and ring fingers, because most of these fingers are occluded (except for the fingertips).

Pink Panther (40 frames) Car (90 frames)

Sliding Window Full Global Reg
34.4 min 11.2 hrs58.5 min 5.64 hrs

Sliding Window Full Global Reg

Efit = 331403 Efit = 331637 Efit = 51154 Efit = 49576

0.0

1.4

0.0

2.5

Fig. 17. Comparing transformation optimization with a 5-frame sliding
window vs. a full global registration. The bottom row reports the final total
value of Efit and visualizes the distance from each DSG sample point to an
input scan (in units of s2, squared sample distance).

istration to converge to the correct solution. An example of this is
shown in the top row of Figure 18. In this example, an initial pair-
wise registration between the frames was not used, and the regis-
tration was performed as-is. Our method (right) produces a correct
registration, while their method (middle) fails for this pair.

We also tested our algorithm on several examples from Wand
et al. [2009]. Figure 18 (middle and bottom) shows reconstructions
of the hand-2 and popcorn tin datasets, and Figure 19 shows a re-
sult for the grasping hand (hand-1) dataset. These sequences exhibit
non-rigid motion, especially the popcorn tin dataset. Our algorithm
can capture the overall shape and produce a coarse articulated mo-
tion of the subject. However, it does not reproduce the fine non-
rigid details of the surface deformation.

9. SUMMARY AND CONCLUSION

We have presented the articulated global registration algorithm,
which reconstructs an articulated 3D model from a set of range
scans. We solve for the division of the surface into parts (weights)
and the motion for each part (transformations) to align all input
scans. For this purpose, we used an improved robust registration to
solve for an initial pairwise registration between adjacent frames in
the sequence. Then, we formulated a simultaneous registration of
all input frames to minimize registration error. This optimization
included joint constraints that preserves the connectivity between
parts and automatically handled cases when parts are disappear or

[Wand et al. 2009] Our Method

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Source and Target

Fig. 18. (Top) Comparison between the non-rigid registration of Wand
et al. [2009] and articulated registration on two pink panther frames. While
the non-rigid registration fails, the articulated registration succeeds even
without an initial pairwise registration between these frames. (Middle and
Bottom) Articulated registration on the hand-2 and popcorn tin datasets
used by Wand et al. [2009]. Our algorithm is able to produce coarse ap-
proximations of the non-rigid motion exhibited in these datasets.

reappear. We demonstrated that we can reconstruct a full 3D ar-
ticulated model without relying on markers, a segmentation, or a
template. Finally, we demonstrated that the reconstructed model is
deformable and can be interactively manipulated into new poses
using a simple inverse-kinematics extension of our optimization al-
gorithm.

A limitation of our method is that there needs to be enough over-
lap between adjacent frames in the range scan sequence to obtain
a good alignment. For example, if one frame captures the surface
from the front, and the next frame captures the surface from the
back, there will be not enough overlap to match these frames to-
gether in the registration. This means that the order of the range

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • W. Chang and M. Zwicker

scans in the sequence should maintain a reasonable amount of over-
lap between adjacent pairs of frames. A temporal ordering of the
scans, for example, would produce a sequence with a reasonable
amount of overlap. However, even this is not enough when there
is severe occlusion. For example, our algorithm loses track of the
fingers in the hand sequence because of too much missing data, as
shown in Figure 19.

Another shortcoming of our ICP-based registration is the han-
dling of “slippable” parts such as cylinders. For example, the fin-
gers of the hand example in Figure 19 have cylindrical symmetry,
so the ICP registration can converge into a state where the segments
of the fingers are “twisted” or rotated about the axis of symmetry
(Figure 19c). Although hinge joints could disambiguate cylindri-
cal symmetries, we found that it was difficult to estimate accurate
hinge joints in this case.

Currently our method is applicable for reconstructing articu-
lated subjects and coarsely capturing non-rigid subjects. However,
it would be interesting to adapt our algorithm for high-quality non-
rigid reconstruction. For this case, estimating “flexible” transfor-
mations would be appropriate, for example, estimating affine trans-
formations with additional surface displacements. Also, it would be
useful to find a way to optimize for smooth weights without caus-
ing overfitting. We believe that there should be a middle ground
between solving for a separate transformation for every sample
point [Li et al. 2008] and our method of solving for the weight
at each sample point.

We would also like to reduce the parameters in our algorithm.
An alternative to specifying various thresholds is to use a robust
error metric similar to the work of Nishino and Ikeuchi [2002]. In
this case, the outliers would automatically be identified during the
optimization, without a need to specify hard thresholds. Also, the
user currently needs to specify the maximum number of transfor-
mationsB to approximate the motion. An alternative strategy could
have the user specify a maximum alignment error ε and change the
algorithm to add additional transformations until the alignment er-
ror is within ε.

Finally, we would like to investigate ways of improving the per-
formance of the algorithm. In particular, since our method estimates
the weights and transformations for all frames simultaneously, we
need to keep all of the input scans in memory. We would like to de-
velop a streaming version of our algorithm that reduces the mem-
ory requirements and allows us to process longer sequences. In ad-
dition, if we can detect when reasonable weights have been ob-
tained, we can skip the weight optimization step to save time in the
algorithm. We believe that an improved version of our algorithm
along these lines can be implemented for real-time markerless mo-
tion capture applications.

ACKNOWLEDGMENTS
We thank M. Wand for providing comparisons and useful feedback,
S. Buss for helpful discussions, and the members of the UCSD
graphics lab for their feedback. We also wish to thank Y. Pekelny
and C. Gotsman for sharing the car and robot datasets, T. Weise for
the grasping hand dataset, O. Schall for the hand-2 dataset, and P.
Fong for the popcorn tin dataset. Additional thanks to G. Debunne
for providing the libQGLViewer library, D. M. Mount and S. Arya
for the ANN library, Y. Boykov, O. Veksler, R. Zabih for an imple-
mentation of their graph cuts algorithm, M. Matsumoto for SFMT,
S. Toledo for TAUCS, and J. Manson for surface reconstruction
software.

REFERENCES

AHMED, N., THEOBALT, C., DOBREV, P., SEIDEL, H.-P., AND THRUN,
S. 2008. Robust fusion of dynamic shape and normal capture for high-
quality reconstruction of time-varying geometry. In CVPR.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2002. Articulated body de-
formation from range scan data. ACM SIGGRAPH 21, 3, 612–619.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of human
body shapes: reconstruction and parameterization from range scans. In
ACM SIGGRAPH. 587–594.

ANGUELOV, D., KOLLER, D., PANG, H., SRINIVASAN, P., AND THRUN,
S. 2004. Recovering articulated object models from 3d range data. In
Uncertainty in Artificial Intelligence Conference (UAI).

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS,
J., AND DAVIS, J. 2005. Scape: shape completion and animation of peo-
ple. In ACM SIGGRAPH. 408–416.

ANGUELOV, D., SRINIVASAN, P., PANG, H.-C., KOLLER, D., THRUN,
S., AND DAVIS, J. 2004. The correlated correspondence algorithm for
unsupervised registration of nonrigid surfaces. In NIPS.

BESL, P. J. AND MCKAY, H. 1992. A method for registration of 3-d shapes.
IEEE TPAMI 14, 2, 239–256.

BOYKOV, Y. AND KOLMOGOROV, V. 2004. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in vision. IEEE
TPAMI 26, 9 (September), 1124–1137.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate en-
ergy minimization via graph cuts. IEEE TPAMI 23, 11, 1222–1239.

BRADLEY, D., POPA, T., SHEFFER, A., HEIDRICH, W., AND

BOUBEKEUR, T. 2008. Markerless garment capture. ACM SIGGRAPH.
CHANG, W. AND ZWICKER, M. 2008. Automatic registration for articu-

lated shapes. Comput. Graph. Forum (Proceedings of SGP) 27, 5, 1459–
1468.

CHANG, W. AND ZWICKER, M. 2009. Range scan registration using re-
duced deformable models. Comput. Graph. Forum (Proceedings of Eu-
rographics) 28, 2, 447–456.

CHEUNG, G. K. M., BAKER, S., AND KANADE, T. 2003. Shape-from-
silhouette of articulated objects and its use for human body kinematics
estimation and motion capture. In CVPR. 77–84.

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., SEIDEL, H.-
P., AND THRUN, S. 2008. Performance capture from sparse multi-view
video. ACM SIGGRAPH.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P. 2008.
Automatic conversion of mesh animations into skeleton-based anima-
tions. Comput. Graph. Forum (Proceedings of Eurographics) 27, 2, 389–
397.

GALL, J., STOLL, C., DE AGUIAR, E., THEOBALT, C., ROSENHAHN, B.,
AND SEIDEL, H.-P. 2009. Motion capture using joint skeleton tracking
and surface estimation. In CVPR.

HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J. 2008. Non-
rigid registration under isometric deformations. Comput. Graph. Forum
(Proceedings of SGP) 27, 5, 1449–1457.

JAMES, D. L. AND TWIGG, C. D. 2005. Skinning mesh animations. In
ACM SIGGRAPH.

KAVAN, L., COLLINS, S., ZÁRA, J., AND O’SULLIVAN, C. 2008. Geo-
metric skinning with approximate dual quaternion blending. ACM Trans-
actions on Graphics 27, 4.

KNOOP, S., VACEK, S., AND DILLMANN, R. 2005. Modeling joint con-
straints for an articulated 3d human body model with artificial correspon-
dences in icp. In IEEE-RAS Conference on Humanoid Robots.

KOLMOGOROV, V. AND ZABIH, R. 2004. What energy functions can be
minimized via graph cuts? IEEE TPAMI 26, 2, 147–159.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Global Registration of Dynamic Range Scans for Articulated Model Reconstruction • 15

LI, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust single
view geometry and motion reconstruction. In SIGGRAPH ASIA.

LI, H., SUMNER, R. W., AND PAULY, M. 2008. Global correspondence
optimization for non-rigid registration of depth scans. Comput. Graph.
Forum (Proceedings of SGP) 27, 5, 1421–1430.

MANSON, J., PETROVA, G., AND SCHAEFER, S. 2008. Streaming surface
reconstruction using wavelets. Comput. Graph. Forum (Proceedings of
SGP) 27, 5, 1411–1420.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribution ray
tracing. ACM SIGGRAPH.

MITRA, N. J., FLÖRY, S., OVSJANIKOV, M., GELFAND, N., GUIBAS,
L. J., AND POTTMANN, H. 2007. Dynamic geometry registration. In
Symposium on Geometry Processing. 173–182.

NEUGEBAUER, P. J. 1997. Reconstruction of real-world objects via simul-
taneous registration and robust combination of multiple range images.
International Journal of Shape Modeling 3, 1/2, 71–90.

NISHINO, K. AND IKEUCHI, K. 2002. Robust simultaneous registration of
multiple range images. In ACCV.

PARK, S. I. AND HODGINS, J. K. 2006. Capturing and animating skin
deformation in human motion. ACM SIGGRAPH.

PARK, S. I. AND HODGINS, J. K. 2008. Data-driven modeling of skin and
muscle deformation. ACM SIGGRAPH.

PAULY, M., MITRA, N. J., GIESEN, J., GROSS, M. H., AND GUIBAS, L. J.
2005. Example-based 3d scan completion. In Symposium on Geometry
Processing. 23–32.

PEKELNY, Y. AND GOTSMAN, C. 2008. Articulated object reconstruction
and markerless motion capture from depth video. Comput. Graph. Forum
(Proceedings of Eurographics) 27, 2, 399–408.

POPA, T., SOUTH-DICKINSON, I., BRADLEY, D., SHEFFER, A., AND

HEIDRICH, W. 2010. Globally consistent space-time reconstruction.
Comput. Graph. Forum (Proceedings of SGP) 29, 5, 1633–1642.

SCHAEFER, S. AND YUKSEL, C. 2007. Example-based skeleton extrac-
tion. In Symposium on Geometry Processing. 153–162.

SHARF, A., ALCANTARA, D. A., LEWINER, T., GREIF, C., SHEFFER, A.,
AMENTA, N., AND COHEN-OR, D. 2008. Space-time surface recon-
struction using incompressible flow. ACM SIGGRAPH ASIA.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded deforma-
tion for shape manipulation. In ACM SIGGRAPH.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIC, J. 2005.
Mesh-based inverse kinematics. In ACM SIGGRAPH.

SÜSSMUTH, J., WINTER, M., AND GREINER, G. 2008. Reconstructing
animated meshes from time-varying point clouds. Comput. Graph. Forum
(Proceedings of SGP) 27, 5, 1469–1476.

VLASIC, D., BARAN, I., MATUSIK, W., AND POPOVIĆ, J. 2008. Articu-
lated mesh animation from multi-view silhouettes. ACM SIGGRAPH.

WAND, M., ADAMS, B., OVSJANIKOV, M., BERNER, A., BOKELOH, M.,
JENKE, P., GUIBAS, L., SEIDEL, H.-P., AND SCHILLING, A. 2009. Ef-
ficient reconstruction of non-rigid shape and motion from real-time 3d
scanner data. ACM Transactions on Graphics 28.

WEISE, T., LEIBE, B., AND GOOL, L. J. V. 2007. Fast 3d scanning with
automatic motion compensation. In CVPR.

WEISE, T., LI, H., GOOL, L. J. V., AND PAULY, M. 2009. Face/off: live
facial puppetry. In Symposium on Computer Animation. 7–16.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. 2004. Space-
time faces: high resolution capture for modeling and animation. In ACM
SIGGRAPH.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

