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We present a method to reconstruct articulated 3D models from dynamic,
moving range scan sequences. The main contribution is a novel global regis-
tration algorithm to align all scans to a common pose, which gathers geom-
etry from all scans to reconstruct a full 3D model. Unlike other registration
algorithms, we express the surface motion in terms of a reduced, articulated
deformable model and solve for joints and skinning weights. This allows a
user to interactively manipulate the reconstructed 3D model to create new
poses and animations.

We express the global registration as an optimization of simultaneously
estimating the alignment and articulated structure for all scans. Compared
to a sequential registration approach, this estimates the correct articulated
structure that is based on the motion observed in all frames, resulting in a
more accurate registration. In addition, we employ a graph-based represen-
tation for the weight function, which can handle difficult topological cases
well. We show that we can reconstruct a variety of 3D models completely
automatically, without the use of markers, user-placed correspondences, a
segmentation, or a template. In addition, our algorithm can reconstruct rea-
sonable piecewise rigid approximations to non-rigid motion sequences as
well.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric Algorithms; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Surface Fitting

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Range scanning, articulated model,
non-rigid registration, animation reconstruction

ACM Reference Format:

Authors’ addresses: land and/or email addresses.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/09-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Our Method
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Fig. 1. Our method automatically reconstructs articulated, poseable mod-
els from a sequence of dynamic range scans.

1. INTRODUCTION

While 3D scanning has traditionally been focused on acquiring
static, rigid objects in the past, recent advances in real-time 3D
scanning has opened up the possibility of capturing dynamic, mov-
ing subjects. Range scanning has become both practical and cost-
effective, providing high-resolution, per-pixel depth images at high
frame rates. However, despite the many advances in acquisition,
many challenges still remain in the processing of dynamic range
scans to reconstruct complete, animated 3D models.

The first main challenge is to resolve the occlusion and missing
data that occur due to a limited view of a 3D subject from any single
viewpoint. Thus, scans taken from many different viewpoints must
be aligned and integrated together in order to reconstruct a com-
plete surface. This relates to the second challenge of tracking the
spatially varying movement of the scanned surface, which must be
performed accurately to obtain a good alignment. Since each range
scan is just a snapshot of surface geometry, no correspondences
are tracked between frames. Therefore, correspondences must be
estimated in the processing step by directly matching the surface
geometry. The third challenge is to improve the usability of the
reconstructed model, by not only enabling playback of the original
performance, but also to facilitate synthesizing new animations and
performances of the subject. The vision is to automatically recon-
struct detailed, poseable models that animators can directly plug
into existing software tools to create new animations.

We present an algorithm to address these challenges by recon-
structing a rigged, articulated 3D model from dynamic range scans.
Given a sequence of range scans of a moving subject, our algorithm
automatically aligns all scans to produce a complete 3D model.
This is accomplished without the assistance of markers, user-placed
correspondences, a template, or a segmentation of the surface. The
uniqueness of our method is that we perform the alignment by esti-
mating the parameters of a reduced, articulated deformation model.
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In contrast to methods that focus only on registration or reconstruc-
tion of the original recording, our method produces a 3D model that
can be interactively manipulated with no further post-processing.

Our algorithm automatically estimates the articulated model us-
ing an alternating optimization approach, similar to the pairwise
registration method of Chang and Zwicker [2009]. However, we
overcome the limitations of this previous work with the following
main contributions:

—We optimize the registration and articulated model parameters
simultaneously over all frames, allowing the algorithm to reduce
accumulation of registration error and fit parameters that prop-
erly reflect the surface movement observed in all frames.

—We replace the grid-based representation of the weights with a
graph-based representation, which allows adaptive sampling and
better handling of topologically difficult situations.

—We improve a robust registration technique to efficiently initial-
ize the registration between adjacent frames in the sequence.
This completely automates the registration process, without re-
quiring the user to tweak parameters or manually place corre-
spondences.

The main advantages of our method is that it can handle range scans
with fast motion and significant occlusion, and that it produces a
rigged 3D model. However, our method is mainly applicable to ar-
ticulated subjects, and may produce a rather crude approximation
of the surface geometry and motion for non-rigid cases. We demon-
strate the effectiveness of our algorithm by reconstructing several
synthetic and real-world datasets. We also present a simple exten-
sion of our algorithm to interactively manipulate the resulting 3D
model.

2. RELATED WORK

In this section, we review related work and point out the main dif-
ferences of our work from these methods.
Template-Based Reconstruction. A popular approach to recon-
struct deforming sequences of range scans is to fit a template to
the observed scan data. A template provides many advantages in
tracking and fitting the data, at the expense of requiring the user
to scan or model it in advance. Our work addresses the more gen-
eral problem of reconstructing the template automatically from the
range scans.

Many techniques rely on a few marker locations to automati-
cally fit a template model to the scanned point cloud data [Allen
et al. 2002; 2003; Anguelov et al. 2005; Pauly et al. 2005]. For the
specific case of deforming garments, the method by Bradley et al.
[2008] automatically tracks a few key locations to fit the template.
The pairwise registration approach by Anguelov et al. [2004] does
not require markers and is robust to the initial pose of the scan, but
it requires a template and uses a global optimization that is expen-
sive to compute. Markerless shape capture is also possible when
the range scan sequence has a high frame rate. For example, it is
possible to capture human faces by fitting a template face model
to a structured-light range scan video sequence [Zhang et al. 2004;
Weise et al. 2009]. The resulting face animation can be used to cre-
ate new animations or track novel sequences in real-time, but again
the template must be known in advance. Li et al. [2009] automati-
cally reconstruct a non-rigid range scan video sequence and repro-
duce the fine surface detail observed in the range scans. However,
this also requires a coarse template of the subject to be scanned
prior to the tracking step. Although our work is focused on articu-
lated subjects, the articulated assumption allows us to handle larger

temporal spacing between scans and produce a complete, rigged
model without using a template.

Templates are also used for estimating shape using multiview sil-
houette/video data or sparse marker data. These techniques signif-
icantly differ from our approach mainly because of the difference
in input data that is processed to reconstruct the geometry. While
we address shape capture from high-resolution 3D point clouds,
these approaches fit a template to multiview silhouettes [de Aguiar
et al. 2008; Vlasic et al. 2008; Gall et al. 2009] or a set of tracked
markers [Park and Hodgins 2006; 2008]. Also, while the surface
detail in our approach comes directly from the range scans, most
surface detail in these approaches come directly from the template,
or added as a post-process using dense normal maps computed by
shape from shading [Ahmed et al. 2008].
Templateless Registration and Reconstruction. To tackle the re-
construction problem without a template, many researchers have
considered modeling a dynamic range scan sequence as a surface
in four-dimensional space and time, rather than a single 3D surface
that changes its configuration over time. Mitra et al. [2007] use
kinematic properties of this 4D space time surface to track points
and register multiple frames of a rigid object. However, this tech-
nique requires the surface to be sampled densely in both space and
time, which is an assumption that our method does not require.
Süßmuth et al. [2008] and Sharf et al. [2008] explicitly model and
reconstruct the 4D space-time surface using an implicit surface rep-
resentation. However, they also require a dense sampling in space
and time. In addition, the latter method does not track points to pro-
duce correspondence between frames, and it is more appropriate for
filling in missing surface data not observed by the scanner.

A closely related work is the statistical optimization approach
by Wand et al. [2009]. This method employs a hierarchical ap-
proach to align a sequence of range scans. It gradually builds the
template shape as it solves for the alignment between the scanned
frames, while the motion of the surface is represented using an
adaptive, hierarchical displacement field. In our method, we simul-
taneously align all frames using an explicit piecewise rigid defor-
mation model. As we will show in the results section, our deforma-
tion representation is more compact and accurate for representing
articulated motion. In addition, our method is more robust to large
movements and produces a fully rigged, poseable 3D model, rather
than just reconstructing the original recorded motion sequence.

Our method is partly inspired by the articulated motion capture
and reconstruction method of Pekelny and Gotsman [2008]. How-
ever, this method requires the user to manually segment a range
scan in advance, whereas we automatically solve for the segmenta-
tion using the motion observed in all frames.

The closest related work is the method by Chang and Zwicker
[2009], which solves for the alignment between a pair of range
scans by estimating the parameters of a reduced deformable model.
A possibility is to apply this method directly for multiple scans, us-
ing a sequential pairwise registration and accumulation approach.
However, in this case the correct articulated structure is not esti-
mated properly, because it considers the movement in only two
frames at a time (see Section 6.5). Also, unless a very high reso-
lution is used, the grid-based representation of the weights cannot
handle difficult topological cases with close or nearby surfaces. As
demonstrated in the results section, we significantly improve and
extend this original approach to handle multiple frames and diffi-
cult topological cases more effectively.
Unsupervised Pairwise Registration. While our work is designed
for handling multiple range scans, several methods for unsuper-
vised pairwise registration are related as well. The transformation
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sampling and optimization approach by Chang and Zwicker [2008]
is used in our work to initialize the registration between pairs of
adjacent frames. However, the original global optimization is too
slow to apply for an entire sequence of range scans. Therefore, we
improve the performance of this method by subsampling the ge-
ometry. The use of a graph to represent the deformation model in
our work is related to the approach by Li et al. [2008] and [Sum-
ner et al. 2007]. However, we define and solve for weights on the
graph nodes, as opposed to solving for a separate affine transfor-
mation at each node. The method by Huang et al. [2008] also uses
a graph, but they use it as an approximation of geodesic distances
in order to extract a set of geodesically consistent correspondences.
This approach is problematic when a large amount of surface data
is missing, which is not the case for our method.
Deformation Modeling from Examples. Our inverse kinemat-
ics system resembles that of FaceIK [Zhang et al. 2004] or
MeshIK [Sumner et al. 2005], which extrapolate a set of exam-
ples to match user constraints. However, the deformation model
that we produce is a parametric model that explicitly models parts
and joints, as opposed to a data-driven method that blends a set of
example meshes. Therefore, our interactive IK system does not use
the original examples at run-time, and only uses the reconstructed
deformation parameters (skinning weights and joints) to pose the
3D model.

Our deformation modeling approach is closer to the example-
based skeleton extraction work [Anguelov et al. 2004; Schaefer
and Yuksel 2007; de Aguiar et al. 2008]. However, while these ap-
proaches estimate the deformation parameters using a set of com-
plete examples that are already in correspondence, we estimate
them directly from incomplete range scan data.

3. ALGORITHM OVERVIEW

We first outline the basic structure of our articulated reconstruction
method. The input to our algorithm is a sequence of range scans,
where each frame of the sequence is denoted F0, . . . , Fn. The se-
quence is expected to be in temporal order so that there is sufficient
overlap between frames to align the scans. In addition, the user
specifies the maximum number of rigid parts B that the algorithm
should use to approximate the deformation of the surface.

The output of our algorithm is a set of sample points S (rep-
resenting the surface of the reconstructed subject), a set of rigid
transformations T (B transformations for each frame Fi), and a set
of weight vectorsW (one vector for each point in S). Each weight
vector has B real components, one for each rigid part, where each
component indicates the strength (or influence) of the correspond-
ing part.

Our strategy is to solve for the transformations and weights (on
each frame) that align all frames to a common pose. The optimiza-
tion is performed in alternating fashion, like the pairwise registra-
tion by Chang and Zwicker [2009]. Also, the transformations and
weights are optimized only using a subset of the points on each
frame (i.e. the sample set S) to improve the performance of the
optimization. Unlike the original pairwise technique which used a
regular grid to define the weights, we define the weights directly
on each sample in S. This simplifies the algorithm by removing the
overhead of translating between the locations of the surface sam-
ples and the grid cells. The regular grid connectivity, which was
needed for specifying smoothness constraints between weights, is
now replaced by a Euclidean k-nearest neighbor graph on the sam-
ple positions. This provides a more flexible structure to avoid sam-
pling issues and topological problems.

Algorithm 1: ARTICULATED GLOBAL REGISTRATION

Data: A sequence of range scans, denoted (F0, . . . , Fn)
Result: Sample set S of the completed surface, weightsW for

each sample x ∈ S, rigid transformations T for each
part for each frame

begin1
Compute the initial registration between each pair of2
adjacent frames (Section 4.1);
Subsample initial sample set S from F0, and construct a3
Euclidean k-nearest neighbor graph on S;
Flast ← F0;4
while Flast 6= Fn do5

Let Fnew be the next frame after Flast;6
Load and apply the initial registration result for7
Flast → Fnew (Section 4.1);
Check if any parts are occluded in Fnew (Section 4.5);8
OPTIMIZE T ,W (S,E, T ,W, F0, . . . , Fnew)9
(Algorithm 2);
Resample S from all frames (F0, . . . , Fnew) and10
construct ASG (Section 4.4);
Flast ← Fnew;11

return S,W, T ;12
end13

During the global registration, we solve for binary weights,
where one component is exactly 1 and the rest are 0. This is because
solving for smooth weights during registration leads to overfitting
of both transformations and weights [Chang and Zwicker 2009].
Therefore, a single rigid transformation directly transforms each
sample point x ∈ S, selected according to which weight compo-
nent is turned “on.” Later in a post-processing step, we can de-
termine smooth weights that blend the transformations using an
interpolation scheme, e.g. linear blend skinning (LBS) or dual-
quaternion linear blending (DLB). So unless otherwise noted, we
will use the terms “weight,” “binary weight,” and “label” inter-
changeably.

The basic structure of our method is shown in Algorithm 1. The
first step is to solve for an initial registration for each pair of ad-
jacent frames (F0, F1), (F1, F2), . . . , (Fn−1, Fn) (line 2). We use
the transformation sampling and optimization approach by Chang
and Zwicker [2008]. This method is used because it can align a
pair of scans while being robust to missing data and large motions.
In Section 4.1, we develop an improved version of this method to
speed up the optimization. The final output of this step is an initial
registration between adjacent frames, given as a set of rigid trans-
formations that are assigned to each point on the two frames.

The second step is to refine this initial registration and produce a
global registration of all frames to a common pose. The basic idea is
to optimize the transformations and weights simultaneously across
all frames to align them to a common reference pose. The frames
are introduced sequentially, one at a time, into the global registra-
tion (lines 5–11). For each frame, we load the initial registration
(line 7), handle occluded parts (line 8), optimize the transforma-
tions T and weightsW to simultaneously align the frames (line 9),
and update the sample set S (line 10).

During the global registration, some parts may entirely disappear
(and reappear) in several frames. To handle these cases, we check if
there are too few matching samples for each part. If this is the case,
then the part is marked as occluded and is subsequently excluded
from the optimization. Also, when a part reappears, perhaps in a
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different location, we have a strategy to track the part again during
the global registration. We will discuss this more in Section 4.5.

Now we describe each component of our algorithm in detail.
After performing the registration on the entire sequence, we can
resample the surface densely, reconstruct a mesh representing the
completed surface, and fit smooth skinning weights to obtain a final
polished reconstruction.

4. ALGORITHM DETAILS

4.1 Initialization

The algorithm by Chang and Zwicker [2008] finds a registration
between a pair of meshes (source mesh and target mesh). It con-
sists of two steps: (1) sampling rigid transformations that describe
the movement between the source and target, and (2) optimizing
the assignment of these transformations on each point of the source
and target, so that it produces the best alignment of the two meshes.
This optimization is a discrete labeling problem that is solved effi-
ciently using graph cuts [Boykov et al. 2001]. However, with range
scans that typically have thousands of points, this method is too
slow to process an entire range scan sequence with many frames.
Therefore, we simplify the method by solving the discrete opti-
mization only on a small subset of the points in each frame.

First, the sampling of the transformations is done exactly the
same as the original method. Next, we modify the discrete opti-
mization by restricting the optimization problem on a small num-
ber of points (e.g. 500-1000), uniformly sampled on the source and
target meshes. (Note: these sampled points are completely separate
from the sample set S used in the global registration.) To substi-
tute for the edges of the triangle mesh that were used for specifying
smoothness constraints, we use a k-nearest neighbor graph con-
structed on the sampled points, where k is typically 15. Finally,
the data, smoothness, and symmetric consistency terms in the opti-
mization are the same as the original method, but their evaluation
is simply restricted to the sampled points and the nearest neighbor
graph. One exception is the data term, where we compute the dis-
tance to the closest point among all points in the other frame (as
opposed to the closest sampled point in the other frame), in order
to get a more accurate measurement. Once we solve the labeling
problem on the sampled points, we can propagate these labels to all
remaining points of each frame by finding the closest sample and
assigning its label.

A comparison with the original method is shown in Figure 2.
Although we obtain a good alignment in both cases, the improved
method achieves a significant speedup. Also, the use of the graph
improves the connectivity between parts that may be disconnected
in the original mesh. In some cases, we even observed that this
produced a correct registration where the original method did not.

After initializing the registration between adjacent frames, the
solved transformations and labels are used as initial values for the
global registration discussed in the next section. Since the global
registration optimizes the alignment using a set of samples S, we
need to propagate the information to S. We discuss these details
further when we describe the sample set later in Section 4.4.

4.2 Global Registration

Once a frame is initialized, it is introduced into the global regis-
tration step. This step optimizes for the best transformations and
weights that simultaneously align all initialized frames. The op-
timization objective has three terms: (1) Efit(T ,W), which mea-
sures the alignment distance of all frames to the reference, (2)
Ejoint(T ), which constrains neighboring transformations to agree on

(a) Original Source and Target (b) Source Labels and Aligned Result
Using Original Method (1330.4 sec)

(c) Sampled Source and Target (d) Source Labels and Aligned Result
Using Improved Method (87.3 sec)

Fig. 2. Comparison between the original and improved initial registration
methods. The top row (a,b) shows the result with the original method, while
the bottom row (c,d) shows the result using a graph of 500 samples on each
frame. With the same parameters, the improved method produces a similar
alignment in a fraction of the original time.

Reference FrameFrame 1

. . .

Frame 2

Frame 3

Frame 4

Frame nT (1   Ref)
j

T (2   Ref)
j

T (3   Ref)
j

T (4   Ref)
j

T (n   Ref)
j

Reference Frame

Frame f Frame g

T (f    Ref)
j

T (f    Ref)
j

T (g    Ref)
j( )-1

T          (Ref    g)
j =

T          (Ref    g)
j

(a) Configuration of Transformations (b) Composition Between Frames

Fig. 3. Organizing the transformations for simultaneous registration. (a)
We solve for the set of transformations that align each input frame to the
reference frame F0. (b) We can transform between any pair of frames f

and g by first transforming from f to the reference and applying the inverse
transformation to g.

a common joint location, and (3) Eweight(W), which constrains the
weights to be smooth and to form contiguous regions. With weights
α, β, γ for each term, we write the entire objective as

argmin
T ,W

α Efit(T ,W) + β Ejoint(T ) + γ Eweight(W). (1)

Next, we describe each term and our optimization procedure in
more detail.

4.2.1 Organization of the Transformations. To organize the
transformations for each frame concisely, we designate one of the
frames as a reference frame and define rigid transformations rel-
ative to this reference1. This definition makes it easy to specify
and solve for the alignment for multiple frames. We use the nota-
tion T (f�Ref)

j to denote the jth transformation for frame Ff , which

1This is similar to the approach used by Neugebauer [1997] for registering
scans of rigid objects.
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transforms in the direction from frame f to the reference frame
(Figure 3a).

Each transformation T (f�Ref)
j is composed of a rotation R ∈

SO(3) and translation ~t ∈ R3. To apply the transformation to a
point x ∈ R3, we use the notation T (f�Ref)

j (x) = Rx+~t. We can
also transform between any two frames f to g by transforming first
to the reference frame and then applying the inverse transformation
to the desired frame (Figure 3b). This is expressed using an inverse
operator (·)−1 and a composition operator ◦, which corresponds to
the formula

T
(f�g)
j (x) =

(
T

(g�Ref)
j

−1
◦ T (f�Ref)

j

)
(x)

= R
(g�Ref)
j

> [(
R

(f�Ref)
j x+~t

(f�Ref)
j

)
−~t(g�Ref)

j

]
. (2)

Therefore, once we know the transformations that relate the pose of
each frame to the reference, we can transform any point (that has a
weight) from any source frame to any target frame.

4.2.2 Sample Set S and All-Samples Graph (ASG). The set
of samples S plays a key role in the global registration step. It
serves as a coarse representation of the reconstructed 3D model,
and it is used to optimize the alignment between the frames. Each
member of S, which we call a sample point, is a scanned point
x ∈ R3 selected from an input frame Ff . (In the subsequent text,
we will implicitly assume that the sample point x is associated
with the frame Ff .) Associated with each sample x is a vector of
weights wx = [wx1, wx2, . . . , wxB ]. During our optimization we
will solve for binary weights (labels), thus all components of wx

are 0 and only one component wxj∗ = 1. Here, we use j∗ to indi-
cate the index of the positive component.

In addition to the sample set S, we construct a graph structure
over S, which we call the all-samples graph (ASG). The connectiv-
ity of this graph serve as smoothness constraints that help the opti-
mization form large, contiguous parts. The graph is constructed by
forming the k-nearest neighbor graph on the sample set S. More
details on sampling S and constructing the ASG is discussed in
Section 4.4.

4.2.3 Fitting Objective Efit. The key idea for this term is to
measure the alignment distance between all frames using the sam-
ple points. For each sample point x on frame f , the weight wx as-
signed to x and the transformations T tell us the transformed loca-
tion of x on all other frames. Therefore, in this term, we transform
x to all other frames and measure how close it is to the scanned
data of these frames.

To measure the proximity of a transformed point x′ =

T
(f�g)
j (x) to frame Fg , we take the distance to the closest point

y
(g)
j in Fg . There are four important details to add to this basic

strategy. (1) Notice that the closest point will change depending on
which of the B transformations we use to transform x to frame
g. Therefore, we keep a separate closest point y(g)

j for each j. (2)
It may be the case that x′ may not have a corresponding point in
Fg due to missing data. To handle this case, for each sample point
x′ (i.e. transformed to frame g), we mark the corresponding target
point y(g)

j as invalid if (a) the distance between these points ex-
ceeds a threshold τd, (b) the angle between the normals exceeds a
threshold τn, or (c) the target point lies on the boundary and the dis-
tance exceeds a smaller threshold τb [Pekelny and Gotsman 2008].
(3) If the target point is invalid for the currently assigned label j∗
(which is the best approximation so far), then mostly likely the tar-
get point is actually missing in the frame. Therefore, we invalidate

Reference Frame Frame 1 Frame 2 Frame 3

y  2 y  3x

T         (x)(1    Ref)
j

Minimize
Distances

T         (y   )(2    Ref)
j j

(2)

(2)

T         (y   )(3    Ref)
j 3

(3)

(3)

Fig. 4. To measure alignment, we compute distances between sample
points x (yellow) and target points y

(g)
j (blue) transformed to the refer-

ence frame Fref. We add up these distances to measure the alignment of all
frames in the sequence. We optimize for the transformations and weights
that minimize this total distance.

all target positions y(g)
j for all j if y(g)

j∗ is invalid. (4) Finally, when
we construct S, we only add samples from each frame that is unob-
served in all previous frames. Therefore, for frames g previous to f
(i.e. g ≤ f ), we do not search for a target point in that frame, since
we expect it to be missing.

Given these corresponding points, we can precisely quantify the
alignment distance between the sample points of all frames. Math-
ematically, we measure the alignment distance using the following
expression:

Efit(T ,W) =
∑
x∈S

∑
Valid y

(g)
j∗

d
(
T

(f�Ref)
j∗ (x), T

(g�Ref)
j∗

(
y
(g)
j∗

))
. (3)

Here, we have computed the distance d(·, ·) between x and valid
corresponding target points y

(g)
j∗ on the reference frame (see Fig-

ure 4). The resulting values are summed up over all sample posi-
tions x and all frames g to compute the total alignment distance.

An alternative to the above formula is to compute compute the
distance in frame Fg , as d(T (f�g)

j∗ (x),y
(g)
j ). However, this in-

volves a composition of the transformations, which makes it more
difficult to solve in the optimization step. This is because, since we
substitute a separate linearization for each transformation, a com-
position of transformations would result in a multiplication of two
linearized transformations, resulting in a less accurate approxima-
tion.

For d(·, ·) we use a weighted sum of the point-to-point and point-
to-plane distance measures:

d(x,y) = ηpt ‖x− y‖2 + ηpl ((x− y) · ~ny)
2 , (4)

where ~ny is the surface normal of y. This vector is transformed to
the reference frame in the error term as well. We use the weights
ηpt = 0.2 and ηpl = 0.8 for our experiments.

4.2.4 Joint Objective Ejoint. The joint term constrains neigh-
boring transformations to agree on a common joint location. This
term ensures that the parts stay connected to each other and not
drift apart. Our method supports automatically detecting and con-
straining two types of joints: 3 DOF ball joints and 1 DOF hinge
joints.

We define the joint locations in the reference frame Fref. A hinge
joint specifies that two transformations always agree on a line in
R3, which means that both transformations transform this line to
exactly the same location. We call this line the hinge axis, which
can be described using the parametric form u+t~v, where t ∈ R. In
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T  (u)i
-1

-1

Minimize
Distance

T  (u)j

T  = (R  ,t )i i i

T  = (R ,t )j j j

Reference Frame Input Frame

u

Hinge Joints

Fig. 5. Estimating and constraining joints in our optimization. (Left) we
show hinge joints that are automatically estimated. (Middle & Right) Ejoint
constrains the transformed locations of u to agree on the same point by
minimizing the distance between the transformed locations.

contrast to the hinge joint, a ball joint says that the transformations
agree only on a single point u ∈ R3. We can also express a ball
joint in the same form as the hinge joint, except that ~v = ~0. An
example of hinge joints detected for the robot model is illustrated
in Figure 5 (left).

Once we know these joint locations and types, we can constrain
the transformations to map the joint locations to the same place
(Figure 5, middle & right). Let us represent a joint between trans-
formations for label i and j using the tuple (uij , ~vij). We addition-
ally set a valid/invalid flag for each tuple, depending on whether
there actually is a joint between transformations i and j. Now, we
can constraint the joints using the term Ejoint:

Ejoint(T ) =
∑

All Ff

∑
Valid Joints
(uij ,~vij)

∑
t∈R3∥∥∥T (f�Ref)

i

−1
(uij + t~vij)− T (f�Ref)

j

−1
(uij + t~vij)

∥∥∥2. (5)

Here, we use 20 values of t in the range [−10s..10s] where s is
the mesh resolution (or grid sample spacing)2. In the case of a ball
joint, ~vij = 0, so this term constrains only one point uij . For a
hinge joint, it constraints a set of points along the hinge axis. The
inverse of the transformations are used in this term because the joint
locations are defined on the reference frame.

4.2.5 Detecting Joint Locations. Since we have multiple
frames, we estimate joint locations based on the solved transfor-
mations for each frame. But first, we first need to know which pairs
of transformations are likely to share a joint in between. To deter-
mine this, we examine the ASG to see which pairs of labels are
neighboring on this graph.

Consider the set of the edges E ′ in the ASG that have different
labels assigned to the end points. If we have a large number of edges
with labels i and j, this would indicate that transformations i and j
are likely to share a joint. On the contrary, a small number of edges
(or none) would indicate that the transformations are not related.
To determine which label pairs are significant, for each pair i, j we
count the number of edges e ∈ E ′ whose labels are i, j. Also, for
each label i, we count how many edges e ∈ E ′ are incident to i (i.e.

2A similar approach is also used by Knoop et al. [2005].

at least one endpoint is labeled i). The following ratios

# edges for i, j
# edges incident to i

and
# edges for i, j

# edges incident to j
(6)

give a measure of how dominant i, j are for labels i and j, respec-
tively. If either of these ratios exceeds a threshold (set to 15%), then
we take the pair i, j as a candidate for sharing a joint.

The edges also give a rough estimate of where we would expect
the joint location. For each i, j candidate, we compute the average
of all the endpoint locations (on the reference frame) of edges with
label i, j. This position, which we denote as uest, gives us a guess
of where the joint location is likely to be.

Once we have a set of candidate label pairs i, j and estimated
joint locations uest, we solve for the true joint locations u on the
reference frame using the transformations estimated so far at all
frames. This is done by performing a least-squares minimization
for each pair (i, j):

argmin
u∈R3

∑
All Frames Ff

∥∥∥T (f�Ref)
i

−1
(u)− T (f�Ref)

j

−1
(u)
∥∥∥2. (7)

For hinge joints, the solution will be a set of points (on the ref-
erence frame) lying on the hinge axis. When we solve the above
least-squares minimization using the SVD, we can detect hinges by
examining if the ratio of the smallest singular value to the sum of
the singular values is less than a threshold (set to 0.1 in our imple-
mentation). If this is the case, then we truncate the smallest singular
value to zero and solve for the equation of the line u′ + t~v′ satis-
fying the system. Finally, for the hinge joint parameters (u, ~v), we
take the point u on this line that is closest to uest and normalize
~v = ~v′/‖~v′‖.

If the joint is not a hinge, it will be a ball joint where we deter-
mine a single joint location u. In this case, we add an additional
regularization term λ ‖u − uest‖2 in the optimization, where λ is
typically 0.1 [Pekelny and Gotsman 2008]. This additional term
helps to pull the location closer to uest in case the joint is close to
being a hinge and admits multiple solutions.

4.2.6 Weight Objective Eweight. Constraining the solution to
solve for binary weights transforms the problem into a discrete
labeling problem, where we try to find an optimal assignment
of transformations (interpreted as “labels”) to the sample points
x ∈ S. The goal of the weight objective term is to ensure that
neighboring samples have a similar label, so that labels form large,
contiguous regions on the ASG. Therefore, for Eweight we use a sim-
ple constant penalty when two neighboring samples in S are as-
signed different labels. We express this using the formula

Eweight(W) =
∑

(x,y)∈E

I (wx 6= wy) , (8)

where I(·) is 1 if the argument is true and 0 otherwise, and E is
the set of all edges in the ASG. This is the Potts model, which is a
discontinuity-preserving interaction term [Boykov et al. 2001].

4.3 Optimization

To solve the optimization, we divide the solver into two phases and
alternate between each phase until the solution converges (see Al-
gorithm 2). In the first phase, we keep the weights fixed and solve
for the transformations (lines 4-11), and in the second phase, we
keep the transformations fixed and solve for the weights (lines 15-
23). This strategy works well in practice and produces a good align-
ment within a few iterations.
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Algorithm 2: OPTIMIZE T ,W (S,E, T ,W, F0, . . . , Fnew)
Data: Sample set S with associated labelsW , transformations

for all frames T , A list of edges E of the constructed
ASG, all initialized input frames F0, . . . , Fnew

Result: Optimized transformations and labels T ,W
begin1

Select a subset of frames to optimize the transformations2
(e.g. a sliding window of 1–10 frames);
while Not converged do3

begin (Phase 1: Solve for the transformations T )4
Re-estimate joint locations and types;5
while Not converged do6

Update the closest points y(g)
j∗ for all x ∈ S7

and frames Fg;
Construct the sparse matrices for Efit and Ejoint;8
Solve linear system and update9
transformations;
Check convergence criteria;10

end11
Handle reappearing parts in Fnew by aligning occluded12
label regions with unmatched surface points
(Section 4.5);
Check convergence criteria;13
if converged then break;14
begin (Phase 2: Solve for the labelsW)15

Update the closest points y(g)
j for all x ∈ S,16

frames Fg , and j ∈ [1..B];
Precompute Efit for each x ∈ S and j ∈ [1..B];17
Create a graph for Eweight using the edges E of the18
ASG;
Solve discrete labeling on this graph using19
α-expansion;
Discard labeled regions that are too small;20
Reuse unassigned labels by splitting regions with21
highest Efit error;
Update the labels for each x ∈ S;22

end23

end24

In our experiments, we observed that the transformations for a
frame does not change much after the first global registration pass
when the frame is first introduced. Therefore, we provide an option
in the global registration to solve for the transformations only on
the newest k frames that have been introduced to the global regis-
tration. We can think of this as solving for the transformations on
a sliding window of k frames. Lowering the value of k improves
the speed of the registration, while raising this value may produce
a more accurate registration at the cost of speed. Note that this only
affects the step for optimizing the transformations. The weights are
still optimized globally over all frames.

Also, during the global optimization we try to detect if previ-
ously occluded parts have reappeared in the new frame (line 12).
We discuss how we handle these cases in Section 4.5.
Optimizing the Transformations. For optimizing the first
phase, we solve for the transformations minimizing the terms
α Efit(T ,W) + β Ejoint(T ) from Equation 1, while keeping the
weights fixed. Since the target positions y(g)

j corresponding to each
sample x ∈ S changes depending on the transformations, we use
an iterative approach in the spirit of ICP [Besl and McKay 1992]

and alternate between updating the transformations and the corre-
sponding target positions until convergence. Since the weights are
fixed, only the non-zero weight components will contribute to the
Efit in this step. Therefore, we only need to update the target posi-
tions y(g)

j∗ for the currently assigned label j∗ at each sample x.
We perform the optimization using the Gauss-Newton algorithm,

linearizing the objective function in each iteration by substituting
a linearized form of each rigid transformation. Specifically, each
rigid transformation g = (R,~t) ∈ SE(3) is linearized about the
current estimated transformation gk (k here is the index of the iter-
ation in the Gauss-Newton algorithm) using the formula (I+ ξ̂)gk,
where ξ̂ ∈ se(3) is a twist matrix [Ma et al. 2003]. For linearizing
the inverse of a rigid transformation, we substitute gk−1(I − ξ̂).
Also, when linearizing the point-to-plane term, we simplify it fur-
ther by applying only gk to the normal vector ~ny, instead of ap-
plying the additional rotational part of ξ̂ to ~ny. These manipula-
tions transform the objective into a sparse linear system of equa-
tions, which we solve using TAUCS [Toledo 2003]. To complete
the Gauss-Newton iteration, we apply the exponential map to con-
vert the linearized solution parameters back to rigid transforma-
tions, and we multiply these to the current estimates gk to update
the solution.

To solve for the transformations on a limited number of frames,
we can simply remove the variables/constraints (and also not up-
date target points) involving transformations from frames outside
of the set of interest. This can significantly reduce the time needed
to perform this step.
Optimizing the Weights. For the second phase, we solve for the
weights of each sample point x that minimize the terms α Efit +
γ Eweight, while keeping the transformations fixed. Since we con-
strain the weights to be binary, we are essentially determining a
label j∗ for each sample point that minimize the total error. We
solve this discrete labeling problem using the α-expansion algo-
rithm [Boykov et al. 2001; Boykov and Kolmogorov 2004; Kol-
mogorov and Zabih 2004]. Here, we use the ASG directly to spec-
ify smoothness constraints between points.

Unlike the transformations, we solve for the weights always over
all frames. This means that we need to compute the Efit term over
all frames and all labels. Since the transformations are kept fixed in
this stage, we can precompute Efit to save computation time during
the optimization. Here, we compute the distance using Equation 4,
for all samples x, all labels j, and all frames g. We then store the
distance values in a hash table for quick look-up during the opti-
mization.

After the optimization, it may be the case that some labels are
only assigned to a few sample points, or other labels may not be
assigned at all. In the first case, we can discard these labels to obtain
a solution that is simpler and not substantially different from the
original solution. In our implementation, we discard a label if the
percentage of samples assigned to that label is less than some small
threshold (set to 1% in our implementation). In the second case, we
reuse the unassigned labels by splitting the regions with the highest
registration error in half, introducing the new label in one of these
halves [Chang and Zwicker 2009]. This process is continued until
the highest registration error is below a threshold (typically 0.1s),
or until there are no remaining labels.
Checking for Convergence. We have placed the convergence
check (Algorithm 2, lines 13-14) right after solving for the transfor-
mations, because the optimization is usually able to refine the trans-
formations further after the weights have changed. To detect if the
optimization for the transformations has converged, we monitor the
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Reference Frame 1 Frame 2 Frame 3 All Samples

....

Fig. 6. We use sample points on all input frames to measure the global
alignment. For each frame, we only keep the samples that are from new
geometry that has not been observed in any previous frames.

change of the objective function by examining the value of the min-
imized residual. We apply the criterion |Fk − Fk+1| < ε(1 + Fk)
(where ε = 1.0 × 10−6) and stop the iteration if this condition
is met. We also have a maximum number of iterations, typically
set to about 20–30 iterations, and stop if we exceed this maximum
number. In our experiments, we observed that in most cases the
optimization converges in about 10–15 iterations. However, the op-
timization may enter an oscillating mode, where the closest points
in each iteration of the T-step switch back and forth indefinitely be-
tween a few points. Because of this, convergence is not guaranteed;
but in practice we have not encountered any major problems.

In the next few sections, we discuss remaining details of the al-
gorithm involving the sample set S and handling occlusion.

4.4 Sample Set and All-Samples Graph (ASG)

Our purpose in using the sample set is to sparsely represent the
entire observed surface, while minimizing the redundancy of ge-
ometric information. This will maximize the performance of the
optimization, while still giving an accurate registration of the sur-
faces. Our approach is to select a well-distributed set of points in
each registered frame and merge all of the sets together. During
the merging step, we minimize redundancy in S by removing over-
lapping points. This sampling and merging process is performed
every time a new frame is added to the global registration, so that
any changes in the registration or newly observed parts of the sur-
face are incorporated into S. Once S has been sampled, we assign
weights to each sample point in S based on the weights of the pre-
viously used sample set. Finally, we construct the ASG (a k-nearest
neighbor graph on S), taking care to remove undesired connections
between separate parts. We discuss these steps in detail in the sec-
tions below.
Creating the Sample Set and ASG. We first uniformly sample
a set of points Uf in each frame f using the best-candidate tech-
nique [Mitchell 1991]. We pick a fixed fraction of the points, where
this fraction is a user-specified parameter. The user may adjust it
lower to compute the registration faster, or higher to obtain a more
precise alignment.

At the beginning of the global registration, S is simply equal
to U0. However, when a new frame is added, we resample S to
obtain a new set of samples, S ′. This resampling is performed by
merging all Uf using a sequential strategy. Starting with S ′ = U0,
we iterate through each successive Uf and determine (1) which
points are not overlapping with the currently selected samples S ′,
and (2) we determine the weights of each x ∈ Uf using the weights
of the previous sample set S. Then, we add all non-overlapping
samples that have a valid weight to S ′, and repeat this until we
have processed all frames.

Once the new sample set S ′ has been created, we construct the
ASG on S ′ by transforming all samples to the reference frame
and computing the k-nearest neighbor graph of the samples, us-
ing k = 15. To prevent undesired smoothness constraints between
separate (but spatially near) parts, we measure the length of each
edge in all frames and discard edges that stretch too much. We ob-
served that pruning edges between connected parts may bias the
discrete labeling optimization and prevent changes in the boundary
location. Since this may cause the optimization to converge to the
wrong local minimum, we keep all edges between parts that are
connected by a joint. Finally, S ′ and its graph replace the old sam-
ple set S and its graph to begin the registration process for the next
frame in the sequence.
Finding Overlap and Extrapolating Weights. For resampling
S to create S ′, we apply the strategies outlined by Pekelny and
Gotsman [2008] to remove the redundant overlapping samples
and extrapolate the weights. To detect overlapping samples, we
first transform S ′ to frame Ff . Then, for each x ∈ Uf , we
find the closest point y in S ′, and we compute the point-to-
point distance dpt = ‖x − y‖ and the point-on-plane distance
dOnPl =

√
‖x− y‖2 − ((x− y) · ~ny)2. Finally, x is determined

to be overlapping with S ′ if these distances are smaller than a user-
given threshold τs. Here, we threshold using dpt if the surface nor-
mals differ by more than 90 degrees; otherwise we threshold using
dOnPl.

To extrapolate the weights from the original set S to the new
samples Uf , we first partition all the samples x ∈ S into separate
sets Vj for each label j, and transform these sets into frame Ff .
To determine the label for a new sample point x ∈ Uf , we first
compute the distance from x to the closest point yj of each set
Vj , using Equation 4. These distances (there will be one for each
label j) are then inverted and normalized to give a score for that
label, and the label with the maximum score is taken as the label
for the new point x. However, if this label is marked as occluded for
this frame, or the maximum score is not greater than three times the
upper quartile (median of the largest half) of all scores, we consider
it an ambiguous case and mark the label as invalid.
Propagating the Initial Registration. The result of the initial reg-
istration between adjacent frames Fi and Fi+1 from Section 4.1 is
a set of transformations and their assignment to each point in Fi

and Fi+1. Since the global registration works only with weights
defined on a separate sample set S, we need to propagate this ini-
tial registration information to S.

At the very beginning of the global registration where we pro-
cess the first pair of frames F0 and F1, S is simply equal to U0.
Therefore, we can directly copy over the labels and the transfor-
mations from the initial registration. Since the global registration
works with at most B labels, we take care to only use the top B
transformations (in the initial registration between F0 and F1) that
have the largest regions. When a transformation for a sample point
x ∈ U0 is invalid (not in the top B), the transformation of the clos-
est point y ∈ F0 that has a valid transformation is used.

In the case where we want to initialize adjacent frames Fi and
Fi+1 where i > 0, the situation is different. First, the points in S
are not necessarily from Fi because we remove overlapping sam-
ples when resampling S. Also, weights are already defined on S as
well, so the problem is to determine what should be the initial trans-
formation for each label j, where the transformations are extracted
from the initial registration between Fi and Fi+1.

Our strategy to handle this case is to (1) transform S to frame
Fi, and (2) for each sample x ∈ S with label j, we find its closest
corresponding point y in Fi (using the strategy outlined in Sec-
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tion 4.2.3) and find the transformation that was assigned to y in
the initial registration. Now, when we make a list of these transfor-
mations for all sample points having label j, usually there is more
than one unique transformation. However, we want to determine a
single rigid transformation for each labeled region j. Therefore, we
blend these transformations using DLB [Kavan et al. 2008], where
each transformation is weighted according to the fraction of sam-
ples among label j that has the transformation.

This strategy produces a slightly different result from the original
registration, but it was sufficiently close in practice. Also, since the
transformations are specified relative to a reference frame in the
global registration (see Section 4.2.1), we take care to express the
transformation properly by inverting and multiplying it with the
transformations of frame Fi.

4.5 Treating Occlusion

When a part of the surface is partially occluded or completely miss-
ing in a frame, the transformation for this part may have few or no
valid correspondences constraining it in the optimization. In these
cases, it may not be possible to solve for the rigid transformation
of that part in that particular frame. In our algorithm, we automati-
cally detect if this happens and exclude these transformations from
the optimization. We perform this occlusion check right after we
initialize a new frame (see Algorithm 1).

To decide if a part is occluded, we update the closest points for
this frame after the initialization. Then, we count the number of
target positions y

(g)
j for each label. If this number falls below a

small threshold (either below 5 points, or below 5% of the total
number of samples for that label), then we consider the label as
occluded for this frame.

To handle occluded parts when optimizing for the transforma-
tions, we remove the variables and constraints involving these oc-
cluded labels from the objective term. Instead, we guess a reason-
able transformation based on the joint constraints with neighboring
transformations. If there are no neighbors, we use the value from
the last frame; if there is exactly one, we copy its value; and if there
are two or more, we solve for the transformation that best fits all
joint constraints [Pekelny and Gotsman 2008].

For optimizing the weights, the situation is more involved. Since
the weights are optimized globally over all frames, we cannot re-
move a label entirely from the optimization just because it was oc-
cluded in some frames. Therefore, we must decide on an appropri-
ate Efit value when it involves a frame with an occluded label.

There are several possibilities to handle this case. We could use
the guessed transformation to compute a value of Efit, but this ap-
proximation could be wildly inaccurate in some cases. Alterna-
tively, we could use a constant error value, but deciding on an ap-
propriate value is problematic. A zero error or very low error could
cause the occluded label to be assigned to completely unrelated lo-
cations, because it produces a lower error than the actual “correct”
label. On the other hand, a high value may discourage from as-
signing this label to actual “correct” locations, e.g. where the sur-
face of the occluded part is partially visible in the frame. In our
experience, the best solution is to use the error value of the cur-
rent label assigned to the sample. If the current label is occluded
as well, then we use the minimum error among all unoccluded la-
bels at that sample. This prevents the occluded label from replacing
“correct” labels, since this value plus the extra penalty of violating
the smoothness constraint is greater than the error of assigning the
original label. At the same time, this does not penalize cases where
the occluded label should be assigned to the sample. This heuristic
worked well for most cases in our experiments, except for a handful

of instances where the occluded label was assigned to a completely
unrelated location.
Reappearing Parts. When an occluded part suddenly reappears in
a new frame, we need to start tracking it again. Otherwise, the al-
gorithm could mistakenly treat it as “new” surface geometry, thus
duplicating the part multiple times in the reconstruction. Now, if
the part happens to reappear nearby its last approximated location,
then the algorithm will be able to find a sufficient number of clos-
est points and automatically track the part again. However, if the
part reappears in a completely different location, we need a dif-
ferent strategy since there will not be enough closest point corre-
spondences. Note that this is not handled by our initialization step,
because it can only align parts that appear in both the source and
target.

To detect this case, we observe that a large number of scanned
points in the frame will not “overlap” with the sample set S after
initializing and optimizing the transformations. If the number of
such unmatched points exceeds a threshold (10% of the total points
in the frame), we attempt to align the occluded parts with these un-
matched points. This is performed after each optimization of the
transformations (Algorithm 2, line 12). Here, we use the same pro-
cedure to optimize for the transformations (Section 4.3), but with
some changes where

—we optimize only for the occluded transformations,
—we set the closest point threshold τd and normal angle threshold
τn much higher (Section 4.2.3),

—and we increase the weight of the Ejoint (β in Equation 1) to be
very high.

After this, we run the occlusion detection routine once more to
check if we have obtained a sufficient number of target points to
start tracking the part again.

5. POST-PROCESSING

After we have aligned all frames, and we can reconstruct a triangle
mesh of the entire model. To do this, we just resample the set S with
a small sample distance τs, where we use all of the points in each
frame to resample S (instead of taking the uniform subsamples Uf

as candidates). This results in a dense sample set S, which we use
to reconstruct a surface mesh using the streaming wavelet surface
reconstruction algorithm by Manson et al. [2008] (kindly provided
by the authors). Since our algorithm produces binary weights, there
may be deformation artifacts at boundaries between parts. To re-
duce these artifacts, we can solve or interpolate smooth skinning
weights as a post-processing step. However, we do not apply this
smoothing step in our results, so that we can give a clearer picture
of the reconstruction quality using our binary weight pipeline.

6. EXPERIMENTAL RESULTS

6.1 Reconstruction

We implemented our algorithm in C++ and tested it with sev-
eral real-world and synthetic datasets exhibiting articulated mo-
tion. The car and robot datasets were acquired by Pekelny and
Gotsman [2008] using a Vialux Z-Snapper depth camera. These se-
quences were created by animating the physical model, while cap-
turing each frame from a different viewpoint. Each sequence has
90 frames, and consists of 5 and 7 parts, respectively.

The reconstruction results using our algorithm are shown in Fig-
ures 7 and 8. The top row shows some of the input frames in the
sequence. Notice that there is a significant amount of occlusion in
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Fig. 7. Reconstruction results for the robot dataset.

some of the frames. The second row shows the labeled sparse sam-
ple set S used by our algorithm, and the third row shows the dense
sample set obtained using a smaller τsample in the post-processing
step. There are still some holes on the surface, which are locations
that were occluded in all input frames, or locations where the al-
gorithm could not extrapolate the label (Section 4.4). The fourth
row shows the reconstructed mesh using the algorithm by Manson
et al. [2008], with labels on each vertex obtained by taking the la-
bel of the nearest point in the dense sample set. Since we meshed
a single, closed surface in the pose of the reference frame, there
are some stretching artifacts on the boundary between neighboring
parts. This could be corrected by meshing each part separately, or
by meshing the surface in a pose where the parts are further apart.
Finally, the fifth row shows the estimated joint locations. Hinge
joints are represented by a short stick, where ball joints are repre-
senting using a sphere.

The reconstruction results for the robot and car datasets are good,
demonstrating that we can obtain an accurate registration without
a segmentation given as input by the user. For the car dataset, our
algorithm preferred a simpler configuration of 4 parts, instead of
creating a separate part for the small rotating base in the middle.
We think that this is a reasonable reconstruction of the car, because
the surface for the rotating base is quite small.

To test our algorithm on a more deformable subject, we acquired
sequences of a bendable, poseable pink panther toy. These se-
quences were acquired using a Konica Minolta VI-910 laser scan-
ner. Each sequence has 40 frames consisting of 10 parts each. In the

In
pu

t F
ra

m
es

S
pa

rs
e 

S
am

pl
e 

S
et

D
en

se
 S

am
pl

e 
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Fig. 8. Reconstruction results for the car dataset.

first sequence, we animated the toy with small motions while cap-
turing each frame at a different viewpoint. In the second sequence
we created larger motions of the toy while changing the viewpoint.
In addition, the furry texture on the toy created a significant amount
of noise on the scanned surface. The reconstruction results, shown
in Figures 9 and 10, are very good for both the small-motion and
the large-motion case, except for some minor stretching artifacts on
the reconstructed mesh, at the boundary between parts.

Finally, we generated synthetic depth sequences of a walking
man, where the camera is rotating around the subject. These se-
quences were created by capturing the Z-buffer of an OpenGL ren-
dering, and the modelview and projection matrices were inverted to
convert the depth values into 3D coordinates. To test the effect of
occlusion in our algorithm, we captured the first sequence using a
single camera, and the second sequence using two cameras which
were 90◦ apart. Since the frames were very close to each other,
we did not use the initialization step for these sequences. Also, we
reduced the sliding window size from 5 frames (for the first ∼10
frames) down to 1 frame (for the rest of the sequence).

The reconstruction results are shown in Figures 11 and 12. The
first sequence was less successful due to the large amount of oc-
clusion of the arms. In particular, both the left arm and right arm
disappear during a front view and reappear in a back view, caus-
ing alignment errors in the middle of the sequence. This resulted in
a “larger” left hand, because the algorithm did not align the hand
well and added extra points for this part. Also, in some of these
frames, the arm and hand partially appeared but was not tracked,
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Fig. 9. Reconstruction results for the first Pink Panther dataset (small-
motion case).

and this resulted in some “floating parts.” Nevertheless, the recon-
structed mesh and segmentation nicely captures the overall shape
and motion of the subject.

In the second walking man dataset acquired with two virtual
cameras, the arm and hand do not disappear completely, and so
the algorithm is able to track all parts accurately for the entire se-
quence. This results in a very accurate reconstruction (especially
for the hands). However, the stretching artifacts on the recon-
structed mesh (fourth row) are more noticeable. This happens in
the region where the torso and arm connect together, and also the
hip region where the surface stretches significantly.

6.2 Parameters

The main parameters of our algorithm are the the number of trans-
formationsB, weights for each term in the optimization and thresh-
olds that control sampling and closest point computation. Although
the user needs to specify the number of transformations to approx-
imate the motion, the algorithm may settle on a smaller number
of transformations if the registration error is small enough. An al-
ternative strategy would be to have the user specify a maximum
alignment error ε and make the algorithm add part labels until the
alignment error is accurate within this ε. We did not explore this
alternative, but this ε parameter would be similar to directly speci-
fying the number of transformations.
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Fig. 10. Reconstruction results for the second Pink Panther dataset (large-
motion case).

We expressed many parameters relative to the grid sample spac-
ing s, which is the average distance between samples in each frame.
For the weights of each term in Equation 1, we used α = 1, β be-
tween 0.1 and 1.5, and γ either 0.5s or s. For the uniform subsam-
pling Uf (Section 4.4), we specified a fraction of points to sample
for the entire sequence, typically between 6% and 20% depending
on the density of the scans. For the sample spacing parameter τs,
we used a value between 2s and 5s depending on how dense we
wanted the sparse sample set to be. Finally, for determining if the
closest point is valid (Section 4.2.3), we used τd = 10s, τn = 45◦,
and τb = s. This changes when we match reappearing parts, for
which we used τd between 50s and 100s, τn between 45◦ and 80◦,
and β = 100. In our experiments, we experimented with a few
different parameter settings but did not seriously optimize the pa-
rameters to give a better result.

6.3 Performance

The performance of our implementation using a single core of an
Intel Xeon 2.5 GHz processor is reported in Table I. In the robot
and car datasets, the most time-consuming part was the initializa-
tion, but in the other cases it was the global registration. The global
registration step can execute faster if a smaller sliding window is
used, with the trade-off of having a less accurate registration. Like
most ICP-based algorithms, the most time-consuming part is the
closest point computation, which can typically take 30% of the to-
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Fig. 11. Reconstruction results for the synthetic Walking Man dataset
taken using a single virtual camera.

Table I. Performance statistics for our experiments. The timings
are expressed in seconds, and the bottom row reports the average

execution time per frame in each sequence.
Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5→ 1 5→ 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples 4,970 2,672 4,077 4,203 8,305 8,539
Edges in ASG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Resampling ASG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02

tal time. Note that the times in the initialization step reported in
Table I do not include the preprocessing time to compute spin im-
ages and estimate the principal curvature frame at each vertex.

6.4 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-
posing and animating the reconstructed model. To demonstrate this,
we implemented a tool to perform inverse kinematics on the recon-
structed model. In this system, the user specifies point constraints
interactively by drawing boxes around a region of interest. Then,
the user is able to select one of the constraint boxes and drag it
around on the screen to manipulate the model. To perform IK, we
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Fig. 12. Reconstruction results for the synthetic Walking Man dataset
taken using two virtual cameras.

Reconstructed
Model

User Specified
Constraints

Novel Poses

Fig. 13. Reposing the reconstructed robot. By using the solved weights
and the hinge joints, our optimization can satisfy point constraints given by
the user.

use the transformation optimization (Section 4.3) to solve for the
rigid transformations of each part that best satisfy the constraints.
The details of the optimization are exactly the same as before, ex-
cept that the joint locations are fixed, and the correspondences are
given by the user. By running the optimization in a separate back-
ground thread, we were able to interactively manipulate the recon-
structed model in real-time. Figure 13 shows examples of different
poses of the robot created by our system.
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(a) Result Using
Sequential Registration

(b) Result Using
Simultaneous Registration

Fig. 14. Comparing sequential and simultaneous registration. (a) As indi-
cated by the large red circle on the upper body area, the sequential strategy
gives an unreliable estimate of the articulated structure, because it only uses
the movement observed in one frame. This leads to an imprecise registra-
tion, for example, in the left arm indicated by the smaller circle. (b) The
simultaneous strategy can correctly estimate the structure that fits the move-
ment observed in all frames. The registration is more precise, as well as the
estimated surface geometry.

6.5 Sequential Registration vs. Simultaneous
Registration

To illustrate the benefit of performing simultaneous registration,
we compare our algorithm with a sequential registration pipeline.
In a sequential registration method, we optimize each frame of the
sequence one-by-one, accumulate new samples directly on the ref-
erence frame, and discard the frame before moving on to the next.
Therefore, this strategy is essentially a pairwise registration that is
applied repeatedly for each frame, because it only uses correspon-
dences between the accumulated samples and the current frame for
estimating both transformations and weights.

The main problem with the sequential registration approach
is that it cannot reliably estimate the articulated structure (i.e.
weights) based on the movement observed in just one frame. This
complicates the situation further for occlusion detection and recov-
ery, which rely on a reliable estimate of the articulated structure. A
comparison between the sequential and simultaneous strategies is
shown in Figure 14. Here, we have used the two strategies to align
40 robot frames, and we display the sparse ASG which roughly
shows the estimated geometry. On the left, we can see that the se-
quential strategy did not produce a correct labeling. As a result,
the registration was imprecise, and “extra” surfaces appear where
the parts were not aligned properly (for example, on the left arm).
On the right, we show a result obtained by simultaneous registra-
tion, where we kept the same parameters, used a 1-frame window
for optimizing the transformations, and used the correspondences
from all frames to optimize the weights. The result has a correct la-
beling that reflects the movement in all frames, and the registration
and estimated geometry are precise.

6.6 Grid-Based Weights vs. Graph-Based Weights

To compare the benefit of using a graph for defining the weight
function vs. using a grid, we implemented the simultaneous regis-
tration using a grid and compared the results. First, we found that
the performance of the graph-based registration is much faster, be-
cause the grid-based method has an additional overhead of translat-
ing the weights from the grid to the samples. For processing the 90
frame robot sequence, the global registration took a total of 144.00
seconds per frame using the grid strategy, but it only took 28.36

(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Fig. 15. Comparing grid-based and graph-based weight representations.
These images show the represented weight function, deformed into different
poses according to the optimized transformations and weights. Notice the
deformation artifacts with the grid-based representation, which is absent in
the graph-based representation.

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Fig. 16. Articulated registration on the hand-2 and popcorn tin datasets
used by Wand et al. [2009]. Our algorithm is able to produce coarse ap-
proximations of the non-rigid motion exhibited in these datasets.

seconds per frame for the graph based strategy (excluding initial-
ization time).

Second, the graph-based representation dealt robustly with
topology issues. An example of this is shown in Figure 15, where
we display the grid and graph deformed according to the optimized
weights and transformations. Unlike the graph based solution on
the right, the grid based solution on the left shows many artifacts.
This is because when the resolution of the grid is too coarse, a sin-
gle grid cell overlaps multiple separate parts. In this example, there
are several grid cells that overlap a little with both the right leg and
the left leg of the robot. As a result, different weights are assigned
to either side of the cell, so the cell “stretches” apart, causing the
artifact that we see. This stretching behavior makes it difficult to
look up weights for the scanned points inside this cell, and so we
“lose” points in these situations. In contrast, for the graph-based
strategy, since we define weights directly on each sample, it does
not suffer from this issue. Furthermore, we can prune edges of the
graph based on the optimized motion, so it can handle topologically
difficult cases robustly.

6.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the deformable re-
construction method by Wand et al. [2009]. For the car, robot, and
pink panther datasets, their method was not able to fully recon-
struct these sequences because there was too much motion between
the frames. Instead, they were able to reconstruct only some subse-
quences of these datasets. This is because they rely only on a local
optimization using closest points, whereas our method uses a ro-
bust initialization that is able to automatically handle frames with
large motion.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



14 • W. Chang and M. Zwicker

(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Fig. 17. Registration for a grasping hand sequence [Weise et al. 2007],
where the hand starts from an open pose and gradually closes to a grasp-
ing pose. Shown are the input data (displayed as a red color mesh) and
the sparse ASG. Our algorithm tracks the hand well in the first part of the
animation, where most of the surface is visible. In (c), the surface of the fin-
gers start to gradually disappear, and the middle segment of the index finger
starts to lose track and rotate backwards. In (d), the algorithm loses track
of the middle and ring fingers, because most of these fingers are occluded
(except for the fingertips).

We also tested our algorithm on several examples from Wand
et al. [2009]. Figure 16 (right) shows reconstructions of the hand-
2 and popcorn tin datasets, and Figure 17 shows a result for the
grasping hand (hand-1) dataset. These sequences exhibit non-rigid
motion, especially the popcorn tin dataset. Our algorithm can suc-
cessfully capture the overall shape and produce a coarse articulated
motion of the subject. However, we see that it does not reproduce
fine details in the surface deformation.

7. SUMMARY AND CONCLUSION

We have presented a method to reconstruct an articulated shape
from a set of range scans. From a sequence of range scans, we
solve for the division of the surface into parts (weights) and the
motion for each part (transformations) to align all input scans. For
this purpose, we first improved a transformation sampling and as-
signment strategy to obtain a robust initialization of the registration
between pairs of adjacent frames in the sequence. Then, we formu-
lated a simultaneous registration for all input frames to minimize
registration error. This optimization included joint constraints that
preserves the connectivity of each part, and automatically handles
cases where parts are occluded or they reappear. We demonstrated
that we can reconstruct a full 3D articulated model without relying
on markers, an user-provided segmentation, or a template. Finally,
we have demonstrated that the reconstructed model is deformable
and can be interactively manipulated into new poses using a simple
extension of our optimization algorithm.

A limitation of our method is that there needs to be enough over-
lap between adjacent frames in the range scan sequence to obtain
a good alignment. For example, if one frame captures the surface
on the front of the object, and the next frame has the surface from
the back of the object, then there will be not enough overlap to
match these frames together in the registration. This means that the
order of the range scans in the sequence should maintain a reason-
able amount of overlap between every adjacent pair of frames. A
temporal ordering of the scans, for example, would produce a se-
quence with a reasonable amount of overlap. Sometimes even this
is not enough when there is severe occlusion. For example, our al-
gorithm loses track of the fingers in the hand sequence because of
too much missing data, as shown in Figure 17.

Another shortcoming of our ICP-based registration is the han-
dling of “slippable” parts such as cylinders. For example, the fin-
gers of a hand example shown in Figure 17 have cylindrical symme-
try, and the ICP registration could converge into a state where the
segments of the fingers are “twisted” or rotated about the axis of
symmetry (Figure 17c). Although hinge joints could disambiguate

cylindrical symmetries, we found that it was difficult to estimate
accurate hinge joints in this case.

Currently our method is applicable for reconstructing articu-
lated subjects and coarsely capturing non-rigid subjects. However,
it would be interesting to adapt our algorithm for high-quality non-
rigid reconstruction. For this case, estimating “flexible” transfor-
mations would be appropriate, for example, estimating affine trans-
formations with additional surface displacements. Also, it would
be useful to find a way to optimize for smooth weights with-
out causing overfitting. We believe that there should be a middle
ground between solving for separate transformation for every sam-
ple point [Li et al. 2008] and our method of solving for the weight
at each sample point.

Our algorithm does not estimate scale, so it cannot handle the
range scans where the scale of the object changes. While this was
not a problem for any of our examples, automatically estimating
scale changes could help capture regions that are stretching.

We would also like to reduce the parameters in our algorithm.
An alternative to specifying various thresholds is to use robust er-
ror metric similar to the work of Nishino and Ikeuchi [2002]. In
this case, the outliers would automatically be identified during the
optimization, without a need to specify hard thresholds.

Finally, we would like to investigate ways of improving the per-
formance of the algorithm. In particular, since our method estimates
the weights and transformations for all frames simultaneously, we
need to keep all of the input scans in memory. We would like to de-
velop a streaming version of our algorithm that reduces the memory
requirements and allows us to process longer sequences. In addi-
tion, once a reasonable segmentation is obtained, only the trans-
formations need to be solved for each frame. We believe that this
could be implemented in real-time to be used for markerless motion
capture applications.
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