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Global Registration of Dynamic Range Scans
for Articulated Model Reconstruction
WILL CHANG
University of California, San Diego
and
MATTHIAS ZWICKER
University of Bern

We present a method to reconstruct articulated 3D models from dynamic,
moving range scan sequences. The main contribution is a novel global reg-
istration algorithm that aligns all scans to a common pose, and reconstructs
a full 3D model from the geometry of these scans. Unlike other registration
algorithms, we express the surface motion in terms of a reduced, articulated
deformable model and solve for joints and skinning weights. This allows
a user to interactively manipulate the reconstructed 3D model in order to
create new poses and animations.

We express the global registration as an optimization of simultaneously
estimating the alignment and articulated structure for all scans. Compared to
a sequential registration approach, the global registration estimates the cor-
rect articulated structure that is based on the motion observed in all frames,
resulting in a more accurate registration. In addition, we employ a graph-
based representation for the weight function, which is successful in han-
dling difficult topological cases well. We show that we can automatically
reconstruct a variety of 3D models, without the use of markers, user-placed
correspondences, a segmentation, or a template. In addition, our algorithm
also supports reconstructing reasonable piecewise rigid approximations to
non-rigid motion sequences.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric Algorithms; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Surface Fitting

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Range scanning, articulated model,
non-rigid registration, animation reconstruction
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Our Method

Input Range Scans Poseable, Articulated 3D Model

Fig. 1. Our method can automatically reconstruct articulated, poseable
models from a sequence of single-view dynamic range scans.

1. INTRODUCTION

While 3D scanning has traditionally been focused on acquiring
static, rigid objects in the past, recent advances in real-time 3D
scanning have opened up the possibility of capturing dynamic,
moving subjects. Range scanning has become both practical and
cost-effective, providing high-resolution, per-pixel depth images at
high frame rates. However, despite the many advances in acqui-
sition, many challenges still remain in the processing of dynamic
range scans to reconstruct complete, animated 3D models.

Our research vision is to automatically reconstruct detailed,
poseable models that animators can directly plug into existing soft-
ware tools and create new animations. The main challenge is to
resolve the occlusion and missing data that occur in range scans.
This is due to a limited view of a 3D subject from any single view-
point. Scans taken from many different viewpoints must be aligned
and integrated together in order to reconstruct a complete surface.
When the subject moves in each frame, we must also track the spa-
tially varying surface motion accurately to obtain a good alignment.
Since the tracking is not performed by the scanner, it must be es-
timated in the processing step by directly matching the surface ge-
ometry. An additional challenge is to improve the usability of the
reconstructed model by expressing the surface motion in terms of
a small set of parameters. This can allow animators to easily create
new animations and performances of the subject.

We present an algorithm to address these challenges by recon-
structing a rigged, articulated 3D model from dynamic range scans.
Given a sequence of range scans of a moving subject, our algorithm
automatically aligns all scans to produce a complete 3D model.
This is accomplished without the assistance of markers, user-placed
correspondences, a template, or a segmentation of the surface. Our
method is unique because we perform the alignment by estimating
the parameters of a reduced, articulated deformation model. In con-
trast to methods that focus only on registration or reconstruction of
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the original recording, our method produces a 3D model that can
be interactively manipulated with no further post-processing.

Our algorithm automatically estimates the articulated model us-
ing an alternating optimization approach inspired by the pairwise
registration method of Chang and Zwicker [2009]. Our contribu-
tions are:

—A global registration algorithm that optimizes the registration si-
multaneously over all frames,

—A novel registration formulation that produces a 3D model with
skinning weights learned from incomplete examples,

—An improved robust registration technique to automate the global
registration with coarse alignments of adjacent frames.

The main advantages of our method is that it can handle range scans
with fast motion and significant occlusion, and that it produces a
rigged 3D model. However, our method is mainly applicable to ar-
ticulated subjects, and it may produce a rough piecewise rigid ap-
proximation of the surface motion for non-rigid cases. We demon-
strate the effectiveness of our algorithm by reconstructing several
synthetic and real-world datasets. We also present a simple exten-
sion of our algorithm to interactively manipulate the resulting 3D
model.

2. RELATED WORK

Template-Based Reconstruction. A popular approach to recon-
struct deforming sequences of range scans is to fit a template to the
scan data. A template provides many advantages in tracking and
fitting the data, with the expense of requiring the user to scan or
model it in advance. Our work addresses the more general problem
of reconstructing the template automatically from the range scans.

Many techniques rely on tracked marker locations to automati-
cally fit a template model to the scanned point cloud data [Allen
et al. 2002; 2003; Anguelov et al. 2005; Pauly et al. 2005]. For the
specific case of deforming garments, the method by Bradley et al.
[2008] automatically tracks a few key locations to fit the template.
The pairwise registration by Anguelov et al. [2004] does not re-
quire markers and is robust to the initial pose of the scan, but it
requires a template and uses a global optimization that is expen-
sive to compute. Markerless shape capture is also possible when
the range scan sequence has a high frame rate. For example, it is
possible to capture human faces by fitting a template face model
to a structured-light range scan video sequence [Zhang et al. 2004;
Weise et al. 2009]. The resulting face animation can be used to cre-
ate new animations or track novel sequences in real-time, but again
the template must be known in advance. Li et al. [2009] automati-
cally reconstruct a non-rigid range scan video sequence and repro-
duce the fine surface detail observed in the range scans. However,
this also requires a coarse template of the subject to be scanned
prior to the tracking step. Although our work is focused on articu-
lated subjects, the articulated assumption allows us to track larger
temporal spacing between scans, therefore producing a complete,
rigged model without using a template.

Templates are also used for estimating shape using multiview sil-
houette/video data [de Aguiar et al. 2008; Vlasic et al. 2008; Gall
et al. 2009] or sparse marker data [Park and Hodgins 2006; 2008].
Although these methods address the same problem of capturing
deformable geometry, they do not address how to process high-
resolution range scan data taken from just one or two views. Also,
while the surface detail in our work comes directly from the range
scans, most of the surface detail in these methods come directly

from the template, or it is added as a post-process using dense nor-
mal maps computed by shape from shading [Ahmed et al. 2008].
Templateless Reconstruction. To tackle the reconstruction prob-
lem without a template, many researchers have considered model-
ing a dynamic range scan sequence as a surface in four-dimensional
space and time, rather than a single 3D surface that changes its con-
figuration over time. Mitra et al. [2007] use kinematic properties
of this 4D space time surface to track points and register multi-
ple frames of a rigid object. Süßmuth et al. [2008] and Sharf et al.
[2008] explicitly model and reconstruct the 4D space-time surface
using an implicit surface representation. However, these techniques
require the surface to be sampled densely in both space and time,
which is an assumption that our method does not require. In ad-
dition, the latter method does not track points to produce corre-
spondence between frames, and it is more appropriate for filling in
missing surface data not observed by the scanner.

The algorithm by Wand et al. [2009] reconstructs an animated
3D model from range scan sequences without using a template.
Compared to the works mentioned above, this method is more ro-
bust to missing data in the scans. It aligns multiple frames by solv-
ing the surface motion in terms of an adaptive displacement field.
This motion representation handles smooth deformations well, but
our representation is more compact and accurate for representing
articulated motion. Wand et al. [2009] align and merge pairs of ad-
jacent frames in a hierarchical fashion, gradually building the tem-
plate shape hierarchically as well. In contrast, we simultaneously
align all frames at once using an explicit piecewise rigid deforma-
tion model. In addition, our method is more robust to large move-
ments and produces a fully rigged, poseable 3D model, rather than
just reconstructing the original recorded motion sequence.

Our method is partly inspired by the articulated motion capture
and reconstruction method of Pekelny and Gotsman [2008]. How-
ever, this method requires the user to manually segment a range
scan in advance, whereas we automatically solve for the segmenta-
tion using the motion observed in all frames.
Unsupervised Pairwise Registration. While our method is de-
signed for aligning multiple range scans, several methods for align-
ing a pair of scans are related to our work as well. A closely related
work is the method by Chang and Zwicker [2009], which solves for
the alignment between a pair of range scans by estimating the pa-
rameters of a reduced deformable model. A possibility is to apply
this method directly for multiple scans, using a sequential pairwise
registration and accumulation approach. However, in this case the
correct articulated structure is not estimated properly, because it
considers the movement in only two frames at a time. Also, un-
less a very high resolution is used, the grid-based representation of
the weights cannot handle difficult topological cases with close or
nearby surfaces. As we will demonstrate in the results section, we
overcome these limitations to handle multiple frames and difficult
topological cases effectively.

The transformation sampling and optimization approach by
Chang and Zwicker [2008] is used in our work to initialize the
registration between pairs of adjacent frames. However, this tech-
nique is too slow to apply for an entire sequence of range scans.
We improve the performance of this method by subsampling the
geometry. Our use of a graph to represent the deformation model
is related to the approach by Li et al. [2008] and [Sumner et al.
2007]. However, we solve for weights on the graph nodes, as op-
posed to solving for a separate affine transformation at each node.
The method by Huang et al. [2008] also uses a graph, but they use it
as an approximation of geodesic distances in order to extract a set of
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Algorithm 1: ARTICULATED GLOBAL REGISTRATION

Data: A sequence of range scans, denoted (F0, . . . , Fn−1)
Result: Sample set S of the completed surface, weightsW for

each sample x ∈ S, rigid transformations T for each
part for each frame

begin1
Compute the initial registration between each pair of2
adjacent frames (Section 4);
Subsample initial sample set S from F0, and construct a3
Euclidean k-nearest neighbor graph on S;
Flast ← F0;4
while Flast 6= Fn−1 do5

Let Fnew be the next frame after Flast;6
Load and apply the coarse initial registration result for7
Flast → Fnew (Section 4);
Handle missing parts in Fnew (Section 7);8
Optimize T ,W (S,E, T ,W, F0, . . . , Fnew)9
(Algorithm 2);
Resample S from all frames (F0, . . . , Fnew)10
(Section 6);
Flast ← Fnew;11

return S,W, T ;12
end13

geodesically consistent correspondences. However, this approach is
problematic when a large amount of surface data is missing.
Deformation Modeling from Examples. Our inverse kinemat-
ics system resembles that of FaceIK [Zhang et al. 2004] or
MeshIK [Sumner et al. 2005], which extrapolate a set of exam-
ples to match user constraints. However, the deformation model
that we produce is a parametric model that explicitly models parts
and joints, as opposed to a data-driven method that blends a set of
example meshes. Therefore, our interactive IK system does not use
the original examples at run-time and only uses the reconstructed
deformation parameters (skinning weights and joints) to pose the
3D model.

Our deformation modeling approach is closer to the example-
based skeleton extraction work [Anguelov et al. 2004; Schaefer
and Yuksel 2007; de Aguiar et al. 2008]. However, while these ap-
proaches estimate the deformation parameters using a set of com-
plete examples that are already in correspondence, we estimate
them directly from incomplete range scan data.

3. ALGORITHM OVERVIEW

The input to our algorithm is a sequence of n range scans, where
the subject is moving in each scan. We denote this sequence as
F0, . . . , Fn−1. We also expect this to be in temporal order, so that
there is sufficient overlap between frames to align the scans.

The goal of our algorithm is to align all scans to a common pose
and express the surface motion using a reduced set of parameters.
We pose this problem as a skinning problem: finding transforma-
tions per frame and weights per vertex. When we apply these trans-
formations to each scan according to the weights, all scans should
be aligned with each other.

The basic structure of our method is shown in Algorithm 1.
The first step is to solve for a coarse initial registration for each
pair of adjacent frames (F0, F1), (F1, F2), . . . , (Fn−2, Fn−1) (line
2). We use the transformation sampling and optimization approach
by Chang and Zwicker [2008]. This method is used because it can
align a pair of scans while being robust to missing data and large

motions. We also improve the speed of this method so that it is
suitable for aligning multiple frames.

The second step is to refine this initial registration and produce
a global registration of all frames (lines 3–11). The main idea is
to optimize the transformations and weights simultaneously across
all frames to align them to a common reference pose. Since it is
costly to solve for weights on every point, we solve for weights on
a smaller subset of points called the sample set, denoted as S. The
first step in our algorithm is to create an inital sample set and con-
struct a graph on S to aid the optimization (line 3). Then, the frames
are introduced one at a time into the global registration (lines 5–11).
For each frame, we load and apply the coarse initial registration
(line 7), handle occluded parts (line 8), optimize the transforma-
tions T and weightsW to simultaneously align the frames (line 9),
and update the sample set S that is used for the optimization (line
10). After finishing the registration for the entire sequence, we re-
sample the surface densely and reconstruct a mesh of the completed
surface.

During the global registration, some parts may entirely disappear
(and reappear) in several frames. To handle these cases, we check if
there are too few matching samples for each part. If this is the case,
then the part is marked as occluded and is subsequently excluded
from the optimization. Also, when a part reappears, perhaps in a
different location, we have a strategy to track the part again during
the global registration.

4. COARSE INITIAL REGISTRATION

The first step is to solve for a coarse initial registration for each
pair of adjacent frames. Since the scans have missing data and their
poses can be far apart, the algorithm of Chang and Zwicker [2008]
is well suited for producing a robust registration. It consists of two
steps: (1) sampling rigid transformations from feature-based corre-
spondences between the scans, and (2) optimizing the assignment
of these transformations onto each vertex of the scans, so that it
produces the best alignment.

However, with range scans that typically have thousands of
points, this method is too slow to process an entire range scan se-
quence with many frames. To improve performance, we perform
the optimization on a small subset of the points in the scans, in-
stead of optimizing on all points. This makes sense for articulated
movement, where the number of unique transformations producing
the movement is small compared to the number of scanned points.

The details of the method are the same as originally described
by Chang and Zwicker [2008]. However, the optimization is re-
stricted to the small subset of points (e.g. 500-1000) uniformly
sampled from the scans. To substitute for the edges of the trian-
gle mesh that were used for specifying smoothness constraints, we
use a k-nearest neighbor graph constructed on the subset of points,
where k is typically 15. After the optimization, we propagate the
transformations assigned to the subset to all remaining points us-
ing nearest-neighbor interpolation. This finally produces the coarse
registration used as an initialization for the global registration.

A comparison of the optimization using all points versus using a
subset is shown in Figure 2. Although we obtain a good alignment
in both cases, the improved method achieves a significant speedup.
Also, the use of the graph improves the connectivity between parts
that may be disconnected in the original mesh.

5. GLOBAL REGISTRATION

The global registration step optimizes for the best transformations
and weights that simultaneously align all initialized frames. Be-
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(a) Source (blue) and Target (red)
21325 points total

(b) Alignment Using
All Points: 1330.4 sec

(c) Alignment Using
1000 Points: 87.3 sec

Fig. 2. Comparison showing performance improvement for the coarse ini-
tial registration. With the same parameters, optimizing on a subset of the
points produces a similar registration in a fraction of the time.

fore discussing the details of the algorithm, we first describe our
system of representing transformations and weights consistently
across multiple scanned frames.
Representing Transformations. We represent the surface motion
using a set of rigid transformations in each frame. We designate one
of the frames as a reference frame and define the transformations
relative to this reference1. Thus, each transformation moves a part
of the surface in frame Ff to align to the corresponding part in
the reference frame F0. We use the notation T (f�Ref)

j to denote the
jth transformation for frame Ff , which transforms in the direction
from frame f to the reference frame (Figure 3a).

Each T (f�Ref)
j consists of a rotation matrix R ∈ SO(3) and

translation vector ~t ∈ R3. To apply this transformation to a point
x ∈ R3, we notate T (f�Ref)

j (x) = Rx + ~t. We also express the

relative transformation T (f�g)
j between any two frames f to g by

transforming to the reference and then transforming to the desired
frame (Figure 3b). We express this as

T
(f�g)
j (x) =

(
T

(g�Ref)
j

−1
◦ T (f�Ref)

j

)
(x)

= R
(g�Ref)
j

> [(
R

(f�Ref)
j x+~t

(f�Ref)
j

)
−~t(g�Ref)

j

]
. (1)

Therefore, once we know the transformations on each frame, we
can transform between any two frames. This definition makes it
easy to specify and solve for the alignment for multiple frames.
Representing Weights. Although the transformations are applied
to each point, we do not solve for a separate transformation for
every point. This would result in too many transformations to solve
in the optimization. Instead, we associate the transformations to the
points indirectly by assigning weights to each point. Each weight
is a vector wx, where the j th component indicates the influence of
transformation j to the point x. This is analogous to “skinning” a
model.

In our method, we solve for binary weights, where one com-
ponent is exactly 1 and the rest are 0. This is because solving
for smooth weights during registration leads to overfitting of both
transformations and weights [Chang and Zwicker 2009]. Therefore,
all components of wx are 0 and only one component wxj∗ = 1.
Here, we use j∗ to indicate the index of the component with 1.

By changing the weights during the optimization, we can dy-
namically adjust where each transformation is being applied. Hav-
ing this level of indirection makes sense for an articulated subject,

1This is similar to the approach used by Neugebauer [1997] for registering
scans of rigid objects.

Reference FrameFrame 1

. . .

Frame 2

Frame 3

Frame 4

Frame nT (1   Ref)
j

T (2   Ref)
j

T (3   Ref)
j

T (4   Ref)
j

T (n   Ref)
j

Reference Frame

Frame f Frame g

T (f    Ref)
j

T (f    Ref)
j

T (g    Ref)
j( )-1

T          (Ref    g)
j =

T          (Ref    g)
j

(a) Configuration of Transformations (b) Composition Between Frames

Fig. 3. Organizing the transformations for simultaneous registration. (a)
We solve for the set of transformations that align each input frame to the
reference frame F0. (b) We can transform between any pair of frames f

and g by first transforming from f to the reference and applying the inverse
transformation to g.

where a small number of transformations can express the move-
ment of the surface.

We apply some additional improvements to this basic idea. First,
we solve for the weights on a small subset of points, instead of solv-
ing a weight for every point. This reduces the number of variables
in the optimization and makes it more efficient. We call this sub-
set the sample set S. Each member of S, which we call a sample
point, is a scanned point x ∈ R3 selected from an input frame Ff .
In the subsequent text, we will implicitly assume that the sample
point x is associated with the frame Ff . After we have determined
the weights for S, we extrapolate weights to the rest of the points
using a nearest-neighbor-like interpolation.

Second, when the frames are registered, many samples from dif-
ferent frames will overlap. Since there is no need to define the same
weight multiple times on the same location, we resample S to re-
move overlapping locations. This further improves the efficiency in
the optimization.

Finally, in addition to the sample set S, we construct a k-nearest
neighbor graph on S, which we call the all-samples graph (ASG).
The connectivity of this graph serves as smoothness constraints that
help the optimization form large, contiguous parts.

5.1 Optimization Objective

The optimization objective has three terms: (1) Efit(T ,W), which
measures the alignment distance between all, (2) Ejoint(T ), which
constrains neighboring transformations to agree on a common joint
location, and (3) Eweight(W), which constrains the weights to form
contiguous regions. With weights α, β, γ for each term, we write
the entire objective as

argmin
T ,W

α Efit(T ,W) + β Ejoint(T ) + γ Eweight(W). (2)

Fitting Objective Efit. In this term, we measure the alignment dis-
tance between all frames using the sample points. For each sample
point x ∈ S, we transform it to all other frames and measure how
close it is to the scanned data of these frames. The distance mea-
sure we use is the distance to the closest correponding point in the
other frame. For example, for a point x in frame f , we measure its
alignment distance to frame g by transforming it to frame Fg (using
T

(f�g)
j∗ (x)) and finding the closest corresponding point y(g)

j∗ ∈ Fg .
Here, j∗ is the index of the transformation assigned to x, i.e. the
component of wx with 1. Once we have the corresponding point,
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Reference Frame Frame 1 Frame 2 Frame 3

y  j* y  j*x

T         (x)(1    Ref)
j*

Minimize
Distances

T         (y   )(2    Ref)
j* j*

(2)

(2)

T         (y   )(3    Ref)
j* j*

(3)

(3)

Fig. 4. To measure alignment, we compute distances between sample
points x (yellow) and corresponding points y(g)

j∗ (blue) transformed to the
reference frame Fref. We add up these distances to measure the alignment of
all frames in the sequence. We optimize for the transformations and weights
that minimize this total distance.

we compute the total alignment distance using the formula

Efit(T ,W) =
∑
x∈S

∑
Valid y

(g)
j∗

d
(
T

(f�Ref)
j∗ (x), T

(g�Ref)
j∗

(
y
(g)
j∗

))
. (3)

Here we have computed the distance d(·, ·) between x (in Ff ) and
its corresponding point y(g)

j∗ , where both points have been trans-
formed to the reference frame (see Figure 4). The resulting values
are summed up over all sample positions x and all frames g to com-
pute the total alignment distance. For d(·, ·) we use a weighted sum
of the point-to-point and point-to-plane distance measures:

d(x,y) = ηpt ‖x− y‖2 + ηpl ((x− y) · ~ny)
2 , (4)

where ~ny is the surface normal of y. When this distance is used
in Equation 3, since we transform y to the reference frame as
T

(g�Ref)
j∗ (y), we transform the surface normal to the reference as

well, using only the rotational part of the transformation. We use
the weights ηpt = 0.2 and ηpl = 0.8 for our experiments.

We add some more important details for computing the closest
corresponding point.

(1) It may be the case that x may not have a corresponding point
in Fg due to missing data. We use well-known heuristics to detect
these cases, and we mark the corresponding point y(g)

j as invalid.
The three heuristics we use are [Pekelny and Gotsman 2008]:

—The distance between these points exceeds a threshold τd,
—The angle between the normals exceeds a threshold τn,
—The corresponding point lies on the boundary, and the distance

exceeds a smaller threshold τb.

(2) Notice that the closest point will change depending on which
transformation we use to transform x to frame g. Therefore, we
maintain a separate closest point y(g)

j for each j. These are used to
evaluate the alignment distance per transformation when we opti-
mize the weights. However, if the closest point for component j∗
is invalid, then most likely there is no corresponding point in the
frame. In this case we invalidate all corresponding y

(g)
j for all j.

(3) Finally, we do not find a closest corresponding point when
g ≤ f ; i.e. we only match closest points forward in the se-
quence and not backwards. Thus, we match corresponding points
for roughly n2/2 pairs of frames, instead of all n2 pairs.
Joint Objective Ejoint. The joint term constrains neighboring trans-
formations to agree on a common joint location. It ensures that the

T  (u)i
-1

-1

Minimize
Distance

T  (u)j

T  = (R  ,t )i i i

T  = (R ,t )j j j

Reference Frame Input Frame

u

Hinge Joints

Fig. 5. Estimating and constraining joints in our optimization. (Left) we
show hinge joints that are estimated automatically. The bars represent the
hinge axes. (Middle & Right) Ejoint constrains the transformed locations
of u to agree on the same point by minimizing the distance between the
transformed locations.

parts stay connected to each other and do not drift apart. We sup-
port automatically detecting and constraining two types of joints: 3
DOF ball joints and 1 DOF hinge joints.

We define the joint locations in the reference frame Fref. A hinge
joint specifies that two transformations are connected along a line
in R3, which means that both transformations transform this line to
exactly the same location. We call this line the hinge axis, which
can be described using the parametric form u + t~v, where t ∈ R.
A ball joint says that the transformations connect on a single point
u ∈ R3. We express a ball joint in the same form as the hinge,
except that ~v = ~0. An example of hinge joints detected for the
robot model is illustrated in Figure 5 (left).

Once we know these joint locations and types, we can constrain
the transformations to map the joint locations to the same place
(Figure 5, middle & right). Let us represent a joint between trans-
formations for parts i and j using the tuple (uij , ~vij). We addition-
ally set a valid/invalid flag for each tuple, depending on whether
there actually is a joint between transformations i and j. In the ob-
jective, we constrain the joints using the term Ejoint:

Ejoint(T ) =
∑

All Ff

∑
Valid Joints
(uij ,~vij)

∑
t ∈ [−10s..10s]∥∥∥T (f�Ref)

i

−1
(uij + t~vij)− T (f�Ref)

j

−1
(uij + t~vij)

∥∥∥2. (5)

Here, we use 20 values of t spread in the range [−10s..10s] where
s is the mesh resolution (or grid sample spacing)2. For a hinge joint,
this constrains a set of points along the hinge axis. In the case of
a ball joint, we set ~vij = 0, so this term constrains only one point
uij . Inverses of the transformations are used in this term because
the joint locations are defined on the reference frame.
Detecting Joint Locations. To detect joints and estimate their
locations, we first find which pairs of transformations (i, j) are
likely to share a joint in between, and we determine the ex-
act location using the transformations T (1�Ref)

i , T
(2�Ref)
i , ... and

T
(1�Ref)
j , T

(2�Ref)
j , ... that we have solved for each frame.

We use the connectivity of the ASG to find pairs of transforma-
tions (i, j) likely to have a joint. If there are many edges in the
ASG where one end has weight corresponding to transformation i

2A similar approach is used by Knoop et al. [2005].
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and the other end with weight j, then these transformations neigh-
bor each other and are likely to share a joint in between. On the
other hand, if there are no such edges, then most likely there is not
a joint between these transformations. To help our discussion, let
an edge in the ASG be incident to transformation i if one of its end
points x ∈ S has weight wxi = 1. If either of the following ratios
exceeds a threshold (set to 15%):

# edges incident to both i, j
# edges incident to i

,
# edges incident to both i, j

# edges incident to j
(6)

we take the pair i, j as a candidate for sharing a joint. Also, the
average of all endpoints of edges incident to both i, j gives a rough
estimate of the joint location. This average is computed on the ref-
erence frame, and we denote it as uest.

Once we have a set of candidate pairs (i, j) and estimated joint
locations uest, we solve for joint locations u on the reference frame
based on the solved transformations. We perform a least-squares
minimization for each pair (i, j):

argmin
u∈R3

∑
All Frames Ff

∥∥∥T (f�Ref)
i

−1
(u)− T (f�Ref)

j

−1
(u)
∥∥∥2. (7)

We solve this minimization using the SVD. During this process,
we determine if the joint is a hinge by examining if the ratio of
the smallest singular value to the sum of the singular values is less
than a threshold (set to 0.1). If this is the case, then we truncate
the smallest singular value to zero and solve for the equation of
the line u′ + t~v′ satisfying the system. Finally, for the hinge joint
parameters (u, ~v), we take the point u on this line that is closest to
uest and normalize ~v = ~v′/‖~v′‖.

If the joint is not a hinge, it is a ball joint and we determine a
single joint location u. In this case, we add an additional regular-
ization term λ ‖u−uest‖2 in the optimization, where λ is typically
0.1 [Pekelny and Gotsman 2008]. This additional term helps to pull
the location closer to uest in case the joint is close to being a hinge
and admits multiple solutions.
Weight Objective Eweight. Constraining the solution to solve for bi-
nary weights transforms the problem into a discrete labeling prob-
lem, where we try to find an optimal assignment of transformations
to the sample points x ∈ S. The goal of the weight objective is to
constrain neighboring samples to have a similar weight. This way,
sets of samples with the same weight form well-connected and con-
tiguous regions on the ASG.

We use a simple constant penalty when two neighboring weights
are different:

Eweight(W) =
∑

(x,y)∈E

I (wx 6= wy) , (8)

where I(·) is 1 if the argument is true and 0 otherwise, and E is
the set of all edges in the ASG. This is known as the Potts model, a
discontinuity-preserving interaction term widely used for labeling
problems [Boykov et al. 2001].

5.2 Optimization

To perform the optimization, we divide the solver into two phases
and alternate between each phase until the solution converges (see
Algorithm 2). In the first phase, we keep the weights fixed and solve
for the transformations (lines 4-11), and in the second phase, we
keep the transformations fixed and solve for the weights (lines 15-
23). This strategy works well in practice and produces a good align-
ment within a few iterations. Also, we try to detect if previously
disappeared parts have reappeared in the new frame (line 12).

Algorithm 2: OPTIMIZE T ,W (S,E, T ,W, F0, . . . , Fnew)
Data: Sample set S with associated weightsW ,

transformations for all frames T , A list of edges E of
the constructed ASG, all initialized input frames
F0, . . . , Fnew

Result: Optimized transformations and weights T ,W
begin1

Select a subset of frames to optimize the transformations2
(e.g. a sliding window of 1–10 frames);
while Not converged do3

begin (Phase 1: Solve for the transformations T )4
Re-estimate joint locations and types;5
while Not converged do6

Update the closest points y(g)
j∗ for all x ∈ S7

and frames Fg;
Construct the sparse matrices for Efit and Ejoint;8
Solve linear system and update9
transformations;
Check convergence criteria;10

end11
Handle reappearing parts in Fnew by aligning missing12
parts with unmatched surface points (Section 7);
Check convergence criteria;13
if converged then break;14
begin (Phase 2: Solve for the weightsW)15

Update the closest points y(g)
j for all x ∈ S, all16

frames Fg , and all j;
Precompute Efit for all x ∈ S and all j;17
Create Eweight using the edges E of the ASG;18
Solve discrete labeling using α-expansion;19
Discard parts that are too small;20
Reuse unassigned weight components by splitting21
regions with highest Efit error;
Update the weights for each x ∈ S;22

end23

end24

In our experiments, we observed that the transformations for a
frame does not change much after the frame is first introduced and
optimized. Therefore, we solve for the transformations only on the
newest w frames that have been optimized. We can think of this as
a “sliding window” in which to optimize the transformations. Low-
ering the value of w improves the speed of the registration, while
raising this value may produce a more accurate registration at the
cost of speed. Note that this only affects optimizing the transforma-
tions; the weights are always optimized using all frames.
Optimizing the Transformations. For optimizing the first
phase, we solve for the transformations minimizing the terms
α Efit(T ,W) + β Ejoint(T ) from Equation 2, while keeping the
weights fixed. Since the location of the closest corresponding points
y
(g)
j depend on the transformations, we use an iterative approach

in the spirit of the iterative closest point (ICP) algorithm [Besl and
McKay 1992]. We first keep the transformations fixed and com-
pute the closest points, then we keep the corresponding points y(g)

j

fixed and optimize the transformations, and we repeat this alterna-
tion until convergence. Also, we update the closest points only for
component j∗, because only this component affects the error in this
phase, and the weights are kept fixed.
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Reference Frame 1 Frame 2 Frame 3 All Samples

....

Fig. 6. We represent the vertex weight function using sample points taken
from all input frames. For each frame, we only keep samples that are not
overlapping with samples from previous frames.

We perform the optimization using the Gauss-Newton algorithm,
linearizing the objective function in each iteration by substituting a
linearized form of each rigid transformation. To solve for the trans-
formations on a limited number of frames, we can simply remove
the variables/constraints (and also not update closest points) involv-
ing transformations from frames outside of the set of interest. This
significantly reduces the time to perform this phase.
Optimizing the Weights. For the second phase, we solve for the
weights of each sample point x that minimize the terms α Efit +
γ Eweight, while keeping the transformations fixed. Since we con-
strain the weights to be binary, we are essentially determining
j∗ for each sample point that minimize the total error. We solve
this discrete optimization problem using the α-expansion algo-
rithm [Boykov et al. 2001; Boykov and Kolmogorov 2004; Kol-
mogorov and Zabih 2004]. Here, we use the ASG directly to spec-
ify smoothness constraints between points. To save computation
time during the optimization, we precompute Efit and store the val-
ues in a hash table for quick access. We precompute and store the
summand of Efit for all samples x, all j, and all frames g.

After the optimization, it may be the case that some transforma-
tions are applied to very few sample points. If the number of sample
points for a transformation is less than 1% of the total number of
sample points, then we remove the transformation completely and
substitute different weights (taken from the nearest samples). This
is useful for cleaning up noise in the solution.

We further reduce the registration error by reusing transforma-
tions that are not applied to any sample points. Consider dividing S
into regions grouped according to the weight assigned to the sam-
ples. We compute the total registration error for each region by
summing the value of Efit for all samples in the region. To reduce
error, we split the region with the highest registration error in half
and introduce the unused transformation by replacing the weights
in one of these halves [Chang and Zwicker 2009]. This introduces
more degrees of freedom, allowing the optimization to refine the
alignment further for the region. The splitting is performed like the
k-means algorithm, with two randomly selected samples in the re-
gion. To aid our method, the user also specifies a maximum number
of rigid transformations B that should be used to approximate the
surface motion. The splitting process is continued until the highest
registration error is below a threshold (typically 0.1s), or we have
reached the maximum number of transformations.
Checking for Convergence. We perform the convergence check
(Algorithm 2, lines 13-14) right after solving for the transforma-
tions, because the optimization is usually able to refine the trans-
formations further after the weights have changed. To detect if
the optimization for the transformations has converged, we mon-
itor the change of the objective function by examining the value of
the minimized residual. Denoting the total error residual at itera-
tion k as Ek, we apply the criterion |Ek − Ek+1| < ε(1 + Ek)

(where ε = 1.0 × 10−6) and stop the iteration if this condition
is met. We also have a maximum number of iterations, typically
set to about 20–30 iterations, and stop if we exceed this maximum
number. In our experiments, we observed that in most cases the
optimization converges in about 10–15 iterations. However, the op-
timization may enter an oscillating mode, where the closest points
switch back and forth indefinitely between a few points. Because
of this, convergence is not guaranteed; but in practice we have not
encountered any major problems.

6. CREATING AND MAINTAINING THE SAMPLE
SET AND ASG

The sample set S is an important component that is involved in
all stages of our algorithm. We initially create it by uniformly
sampling a set of points Uf in each frame f . We sample a fixed
fraction of the points in each frame using the best-candidate tech-
nique [Mitchell 1991]. In subsequent stages of the algorithm, we
need to transfer the coarse initial registration into a format com-
patible with S, merge samples from each frame by removing over-
lapping points, and interpolate weights using S. In this section, we
discuss remaining details about how we perform these operations.
Applying Coarse Registration to S. After computing the coarse
initial registration, we need a mechanism to apply this alignment
information in a format compatible with S. The coarse registration
result aligning frame Fi to Fi+1 gives a transformation for every
vertex of Fi. However, we represent the alignment indirectly using
weights on the sparse sample set S. We need to reduce the set of
transformations so that we can apply a single transformation per
weight component.

First, we divide S into regions grouped according to weight. For
each region, we extract a single transformation from the coarse reg-
istration. For each point x in the region, we find the closest point
y in Fi and store (in a list) the transformation that was assigned to
y in the coarse registration. This results in a list of transformations
for the region. Finally, we uniformly blend all transformations in
the list using DLB [Kavan et al. 2008] to produce a single trans-
formation. We apply this transformation to the region’s points to
reproduce the coarse alignment.

In practice, this may produce a slightly different result from the
coarse registration, but the differences were negligible. Also, since
the transformations are specified relative to a reference frame, we
take care to express the transformations properly to fit this format.

There is one exception to this procedure: when we apply the
coarse registration of the first two frames F0 and F1. At this point
in the algorithm, S has just been created using the points in F0 (i.e.
S = U0), and the samples do not have any weights. In this case, S
is exactly a subset of F0, so we directly copy the transformations
from the coarse registration while making sure to limit the total
number of unique transformations to the maximum B.
Maintaining the Sample Set and ASG. After applying the coarse
registration for the new frame Fi+1, the algorithm moves into the
global registration phase to align Fi+1 to the rest of the frames.
After each global registration, we update S to reflect any changes
in the registration.

We update S by resampling it completely from scratch. This is
because the global registration changes the alignment of all frames
simultaneously. This can result in samples that did not overlap be-
fore, but overlap now and need to be removed. Also, samples from
new frames need to be added to S.

We resample S by sequentially adding the points from each Uf

to S, starting from U0. During this process, we detect and re-
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move overlapping points in Uf that overlap with the current points
in S [Pekelny and Gotsman 2008]. For detection, we first trans-
form all points currently in S to frame Ff . For each x ∈ Uf , we
find the closest point y in S and compute dpt = ‖x − y‖ and
dOnPl =

√
‖x− y‖2 − ((x− y) · ~ny)2. We consider x to be over-

lapping if these distances are smaller than a user-given threshold
τs; we threshold dpt if the surface normals differ by more than 90
degrees, otherwise we threshold dOnPl. This process removes redun-
dant samples and improves the efficiency of the algorithm.

After the resampling is complete, we construct the ASG by trans-
forming all samples to the reference frame and computing the k-
nearest neighbor graph of the samples, with k = 15. To prevent
undesired smoothness constraints between separate (but spatially
near) parts, we measure the length of each edge in all frames and
discard edges that stretch in length more than 2 times. We observed
that pruning edges between connected parts may bias the discrete
labeling optimization and prevent changes in the boundary loca-
tion. This may cause the optimization to converge to the wrong lo-
cal minimum, so we keep all edges between parts that have a joint.
Interpolating Sample Weights. When resampling S, we need to
transfer the weights from the old sample set to the new one. To
do this, we interpolate the weights in S using a nearest-neighbor
like approach [Pekelny and Gotsman 2008]. We first transform all
points in S to frame Ff . Then, we partition them into separate sets
Vj for each transformation j. To determine the weight of a new lo-
cation p, we compute the distance of p to the nearest point in each
Vj . The set Vj∗ with the closest distance wins: the binary weight of
p is assigned 1 in component j∗. In some cases, the distances are
too close to declare a clear winner. We compute a score by invert-
ing all distances, and then normalizing them to add up to 1. If the
maximum score is not greater than three times the upper quartile
(median of the largest half) of all scores, we consider it an am-
biguous case and mark the weight as invalid. The weight is also
invalid if the winning transformation j∗ is flagged as occluded for
this frame.

7. HANDLING MISSING PARTS

When a part of the surface is partially or completely missing in a
frame, the transformation for this part may have few or no valid
correspondences constraining it in the optimization. In these cases,
it may not be possible to solve for the rigid transformation of that
part. In our algorithm, we automatically detect this and exclude
these parts from the optimization (line 8 of Algorithm 1).

As before, let us divide S into parts (i.e. regions) grouped ac-
cording to weight. To decide if a part is occluded, we update the
closest points for this frame after loading and applying the coarse
registration (line 4 of Algorithm 1). Then, we count the number of
target positions y(g)

j for each part. If this number falls below a small
threshold (either below 5 points, or below 5% of the total number
of samples for that part), then we consider the part as missing for
this frame.

Instead of optimizing for the transformation of this part, we sub-
stitute a value computed based on the joint constraints with neigh-
boring parts. If there are no neighbors, we use the value from the
last frame; if there is exactly one, we copy the neighbor’s value;
and if there are two or more, we solve for the transformation that
best fits all joint constraints [Pekelny and Gotsman 2008].

While we can simply exclude transformations when optimizing
them, we cannot do the same for optimizing the weights. Here, the
algorithm must solve a binary weight for each sample to minimize
the registration error. The question is, what should be the “regis-
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Fig. 7. Reconstruction results for the Robot dataset.

tration error” for applying a transformation that is missing in the
frame? We need to assign some reasonable value for this case so
that the weights are not optimized erroneously. We cannot assign a
zero error, because the optimization will prefer to assign the weight
for the missing transformation. It also cannot be too high, because
the optimization will prefer to not assign the weight to any samples.

Recall that when we optimize the weights (Section 5.2), we com-
pute and store the summand of Efit for all samples x, all j, and all
frames g. Suppose that for some sample x, transformation j is miss-
ing in frame g. For the error value of transformation j, we simply
use the error value of transformation j∗. If j∗ = j (i.e. j∗ is also
missing), we use the minimum error value among all non-missing
transformations. This heuristic worked well for most cases in our
experiments, except for a handful of instances where the missing
transformation was assigned to a completely unrelated location.
Reappearing Parts. When an occluded part suddenly reappears
in a new frame, we need to start tracking it again. Otherwise, the
algorithm could mistakenly treat it as new surface geometry, thus
duplicating the part multiple times in the reconstruction. Now, if the
part happens to reappear nearby its last seen location, then the algo-
rithm will be able to find a sufficient number of closest points and
automatically track the part again. However, if the part reappears in
a completely different location, we need a different strategy since
there will not be enough closest point correspondences. Note that
this is not handled by our initialization step, because it can only
align parts that appear in both the source and target.

To detect this case, we observe that a large number of scanned
points in the frame will not overlap with the sample set S after ini-
tializing and optimizing the transformations. If the number of such
unmatched points exceeds a threshold (10% of the total points in
the frame), we attempt to align the occluded parts with these un-
matched points. This is performed after each optimization of the
transformations (Algorithm 2, line 12). Here, we use the same pro-
cedure to optimize for the transformations (Section 5.2), but with
some changes where

—we optimize only for the occluded transformations,
—we set the closest point threshold τd and normal angle threshold
τn much higher,
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Fig. 8. Reconstruction results for the Car dataset.

—and we increase the weight of the Ejoint (β in Equation 2) to be
very high.

After this, we run the occlusion detection routine once more to
check if we have obtained a sufficient number of target points to
start tracking the part again.

8. EXPERIMENTAL RESULTS

8.1 Reconstruction

We implemented our algorithm in C++ and tested it with several
real-world and synthetic datasets exhibiting articulated motion. Af-
ter we have aligned all frames, we reconstruct a triangle mesh from
a dense sampling of S produced using a small sample distance τs.
We use the streaming wavelet surface reconstruction algorithm by
Manson et al. [2008].

The car and robot datasets were acquired by Pekelny and Gots-
man [2008] using a Vialux Z-Snapper depth camera. These se-
quences were created by animating the physical model while cap-
turing each frame from a different viewpoint. Each sequence has
90 frames, and consists of 4 and 7 parts, respectively. The results
are shown in Figures 7 and 8. The top row shows some of the input
frames in the sequence. Notice that there is a significant amount
of occlusion in some of the frames. The middle row shows the re-
constructed mesh using the algorithm, with weights obtained by
interpolating the weights on the sample set. The bottom row shows
the estimated joint locations, where hinge joints are represented by
a short stick and ball joints by a sphere. Both the reconstruction
results and the weight estimation are faithful to the input data.

To test our algorithm on a more deformable subject, we acquired
two range scan sequences of a pink panther toy using a Konica
Minolta VI-910 laser scanner. We animated one sequence with a
slower motion, while the other sequence had a faster motion. Re-
construction results are shown in Figure 9. Although the furry tex-
ture on the toy created noise on the scanned surface, we obtained
a reasonable reconstruction of both the surface geometry and the
weights.

Finally, we tested our algorithm on synthetic depth scans of a
walking man, where the camera is rotating around the subject. To
test the effect of occlusion in our algorithm, we captured two se-
quences, one using a single virtual camera, and the other using two
virtual cameras 90◦ apart. The reconstruction results are shown in
Figure 10. The results from both datasets are reasonable, but the
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Fig. 9. Reconstruction results for the Pink Panther dataset with faster input
motion.
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(a) Using
1 Camera

(b) Using
2 Cameras

Fig. 10. Reconstruction results for the synthetic Walking Man dataset. On
the right, (a) and (b) show a comparison of the reconstruction using scans
from one and two virtual cameras.

first sequence was less successful due to the large amount of oc-
clusion of the arms. With two virtual cameras, we obtained a bet-
ter reconstruction that was able to reproduce the fine detail of the
hands.

8.2 Parameters

The main parameters of our algorithm are the maximum number of
transformations B, weights for each term in the objective function,
and thresholds that control the sampling and closest point compu-
tation. We expressed many parameters relative to the grid sample
spacing s, which is the average distance between the scanned points
of the dataset.

Although the user needs to specify the maximum number of
transformations to approximate the motion, the algorithm may set-
tle on a smaller number of transformations if the registration error
is small enough. An alternative strategy could have the user spec-
ify a maximum alignment error ε and change the algorithm to add
additional transformations until the alignment error is within ε.
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Table I. Performance statistics for our experiments. The timings
are expressed in seconds, and the bottom row reports the average

execution time per frame in each sequence.
Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5→ 1 5→ 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples 4,970 2,672 4,077 4,203 8,305 8,539
Edges in ASG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Resampling ASG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02

Reconstructed
Model

User Specified
Constraints

Novel Poses

Fig. 11. Reposing the reconstructed robot. Using the solved weights and
the hinge joints, we can perform interactive IK on the reconstructed model.

The value of B for each dataset is shown in Table I. For the
weights of each term in Equation 2, we used α = 1, β between
0.1 and 1.5, and γ either 0.5s or s. For the uniform subsampling
Uf (Section 6), we instructed the algorithm to sample 6% to 20%
of the points depending on the density of the scans. For the sample
spacing parameter τs, we used a value between 2s and 5s depend-
ing on how dense we wanted the sparse sample set to be. Finally,
for determining the validity of the closest corresponding points, we
used τd = 10s, τn = 45◦, and τb = s. When we match reappear-
ing parts, we increased these values so that τd is between 50s and
100s, τn between 45◦ and 80◦, and β = 100. In our experiments,
we experimented with a few different parameter settings but did not
seriously optimize the parameters to give a better result.

8.3 Performance

We performed our experiments using a single core of an Intel Xeon
2.5 GHz processor. The timing results are reported in Table I. In
the robot and car datasets, the most time-consuming part was the
initialization, but in the other cases it was the global registration.
The global registration step can execute faster if a smaller sliding
window is used, with the trade-off of having a less accurate reg-
istration. Like other closest point matching algorithms, the most
time-consuming part is the closest point computation, which can
typically take 30% of the total time. Note that the times in the ini-
tialization step reported in Table I do not include some preprocess-
ing time to compute spin images and estimate the principal curva-
ture frame at each vertex.

8.4 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-
posing and animating the reconstructed model. To demonstrate this,
we implemented a tool to perform inverse kinematics on the model.

(a) Result Using
Sequential Registration

(b) Result Using
Simultaneous Registration

Fig. 12. Comparing sequential and simultaneous registration. (a) The se-
quential strategy gives an unreliable estimate of the articulated structure
(large red oval), because it only uses the movement observed in two frames
at a time. This leads to an imprecise registration (smaller red oval). (b)
The simultaneous strategy can correctly estimate the weights that reflect
the movement observed in all frames. The registration is more precise, as
well as the estimated surface geometry.

In this system, the user specifies point constraints interactively by
drawing boxes around a region of interest. Then, the user is able to
select one of the constraint boxes and drag it around on the screen
to manipulate the model. To perform IK, we use the transforma-
tion optimization (Section 5.2) to solve for the rigid transforma-
tions of each part that best satisfy the constraints. The details of the
optimization are exactly the same as before, except that the joint
locations are fixed and the correspondences are given by the user.
By running the optimization in a separate background thread, we
were able to interactively manipulate the reconstructed model in
real-time. Figure 11 shows examples of different poses of the robot
created by our system.

8.5 Sequential Registration vs. Simultaneous
Registration

To illustrate the benefit of performing simultaneous registration,
we compare our algorithm with a sequential registration pipeline.
In a sequential registration method, we optimize each frame of the
sequence one-by-one, accumulate new samples directly on the ref-
erence frame, and discard the frame before moving on to the next.
This strategy is essentially a pairwise registration that is applied re-
peatedly for each frame, because it only performs the registration
between the accumulated samples and the current frame.

The main problem with the sequential registration approach
is that it cannot reliably estimate the articulated structure (i.e.
weights) based on the movement observed in just two frames at a
time. This complicates the situation further for occlusion detection
and recovery, which rely on a reliable estimate of the articulated
structure. A comparison between the sequential and simultaneous
strategies is shown in Figure 12. Here, we have used the two strate-
gies to align 40 robot frames, and we display the sample set and
ASG which roughly shows the reconstructed geometry. On the left,
we can see that the sequential strategy did not produce the correct
weights. As a result, the registration was imprecise, and “extra” sur-
faces appear where the parts were not aligned properly (for exam-
ple, on the left arm). On the right, we show the result using simul-
taneous registration using the same parameters. The registration is
more accurate, and the algorithm produced the correct weights that
reflect the movement of all frames.
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(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Fig. 13. Comparing registration results using grid-based and graph-based
weight representations. These images show the represented weight function
deformed into different poses according to the optimized transformations
and weights. The artifacts with the grid are absent when using the graph.

8.6 Grid-Based Weights vs. Graph-Based Weights

We compare the benefit of using a graph vs. using a grid for rep-
resenting the weight function. We implemented the simultaneous
registration using a grid and compared the results to a graph-based
implementation. First, we found that the performance of the graph-
based registration is much faster, because the grid-based method
has an additional overhead of translating the weights from the grid
to the samples. For processing the 90 frame robot sequence, the
global registration took a total of 144.00 seconds per frame using
the grid strategy, while it only took 28.36 seconds per frame for the
graph based strategy (excluding initialization time in both cases).

Second, the graph-based representation dealt robustly with
topology issues. Since we can prune edges of the graph based on
the optimized motion, the algorithm can handle topologically diffi-
cult cases robustly. An example of this is shown in Figure 13, where
we display the grid and graph deformed according to the optimized
weights and transformations. The grid based result shown on the
left has many problems where grid cells stretch apart. This is be-
cause the limited resolution of the grid cannot resolve the left and
right leg of the robot when they move close together. In contrast,
the graph-based result shown on the right does not suffer from this
issue.

8.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the deformable re-
construction method by Wand et al. [2009]. For the car, robot, and
pink panther datasets, their method was not able to reconstruct the
entire sequence because there was too much motion between the
frames. This is because they rely only on a local optimization us-
ing closest points, whereas our method uses a robust coarse initial-
ization that is able to automatically handle frames with large mo-
tion. An example of this is shown in the top row of Figure 14. Our
method (right) produces a correct registration, while their method
(middle) fails for this pair.

We also tested our algorithm on several examples from Wand
et al. [2009]. Figure 14 (right) shows reconstructions of the hand-
2 and popcorn tin datasets, and Figure 15 shows a result for the
grasping hand (hand-1) dataset. These sequences exhibit non-rigid
motion, especially the popcorn tin dataset. Our algorithm can suc-
cessfully capture the overall shape and produce a coarse articulated
motion of the subject. However, it does not reproduce some fine
details in the surface deformation.

9. SUMMARY AND CONCLUSION

We have presented a method to reconstruct an articulated 3D model
from a set of range scans. From a sequence of range scans, we solve
for the division of the surface into parts (weights) and the motion

[Wand et al. 2009] Our Method

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Source and Target

Fig. 14. Articulated registration on the hand-2 and popcorn tin datasets
used by Wand et al. [2009]. Our algorithm is able to produce coarse ap-
proximations of the non-rigid motion exhibited in these datasets.

(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Fig. 15. Registration for a grasping hand sequence [Weise et al. 2007],
where the hand starts from an open pose and gradually closes to a grasp-
ing pose. Shown are the input data (displayed as a red color mesh) and
the sparse ASG. Our algorithm tracks the hand well in the first part of the
animation, where most of the surface is visible. In (c), the surface of the fin-
gers start to gradually disappear, and the middle segment of the index finger
starts to lose track and rotate backwards. In (d), the algorithm loses track
of the middle and ring fingers, because most of these fingers are occluded
(except for the fingertips).

for each part (transformations) to align all input scans. For this pur-
pose, we used an improved robust registration to solve for a coarse
alignment between pairs of adjacent frames in the sequence. Then,
we formulated a simultaneous registration of all input frames to
minimize registration error. This optimization included joint con-
straints that preserves the connectivity between parts and auto-
matically handled cases when parts are disappear or reappear. We
demonstrated that we can reconstruct a full 3D articulated model
without relying on markers, a segmentation, or a template. Finally,
we demonstrated that the reconstructed model is deformable and
can be interactively manipulated into new poses using a simple
inverse-kinematics extension of our optimization algorithm.

A limitation of our method is that there needs to be enough over-
lap between adjacent frames in the range scan sequence to obtain
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a good alignment. For example, if one frame captures the surface
from the front, and the next frame captures the surface from the
back, there will be not enough overlap to match these frames to-
gether in the registration. This means that the order of the range
scans in the sequence should maintain a reasonable amount of over-
lap between adjacent pairs of frames. A temporal ordering of the
scans, for example, would produce a sequence with a reasonable
amount of overlap. However, even this is not enough sometimes
when there is severe occlusion. For example, our algorithm loses
track of the fingers in the hand sequence because of too much miss-
ing data, as shown in Figure 15.

Another shortcoming of our ICP-based registration is the han-
dling of “slippable” parts such as cylinders. For example, the fin-
gers of the hand example in Figure 15 have cylindrical symmetry,
so the ICP registration can converge into a state where the segments
of the fingers are “twisted” or rotated about the axis of symmetry
(Figure 15c). Although hinge joints could disambiguate cylindri-
cal symmetries, we found that it was difficult to estimate accurate
hinge joints in this case.

Currently our method is applicable for reconstructing articu-
lated subjects and coarsely capturing non-rigid subjects. However,
it would be interesting to adapt our algorithm for high-quality non-
rigid reconstruction. For this case, estimating “flexible” transfor-
mations would be appropriate, for example, estimating affine trans-
formations with additional surface displacements. Also, it would
be useful to find a way to optimize for smooth weights with-
out causing overfitting. We believe that there should be a middle
ground between solving for separate transformation for every sam-
ple point [Li et al. 2008] and our method of solving for the weight
at each sample point.

We would also like to reduce the parameters in our algorithm.
An alternative to specifying various thresholds is to use a robust
error metric similar to the work of Nishino and Ikeuchi [2002]. In
this case, the outliers would automatically be identified during the
optimization, without a need to specify hard thresholds.

Finally, we would like to investigate ways of improving the per-
formance of the algorithm. In particular, since our method estimates
the weights and transformations for all frames simultaneously, we
need to keep all of the input scans in memory. We would like to de-
velop a streaming version of our algorithm that reduces the mem-
ory requirements and allows us to process longer sequences. In ad-
dition, if we can detect when reasonable weights have been ob-
tained, we can skip the weight optimization step to save time in the
algorithm. We believe that an improved version of our algorithm
along these lines can be implemented for real-time markerless mo-
tion capture applications.
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