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We present a method to reconstruct articulated 3D models from dynamic,
moving range scan sequences. The main contribution is a novel global reg-
istration algorithm that aligns all scans to a common pose, and reconstructs
a full 3D model from the geometry of these scans. Unlike other registration
algorithms, we express the surface motion in terms of a reduced, articulated
deformable model and solve for joints and skinning weights. This allows
a user to interactively manipulate the reconstructed 3D model in order to
create new poses and animations.

We express the global registration as an optimization of simultaneously
estimating the alignment and articulated structure for all scans. Compared to
a sequential registration approach, the global registration estimates the cor-
rect articulated structure that is based on the motion observed in all frames,
resulting in a more accurate registration. In addition, we employ a graph-
based representation for the weight function, which is successful in han-
dling difficult topological cases well. We show that we can automatically
reconstruct a variety of 3D models, without the use of markers, user-placed
correspondences, a segmentation, or a template. In addition, our algorithm
also supports reconstructing reasonable piecewise rigid approximations to
non-rigid motion sequences.
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tational Geometry and Object Modeling—Geometric Algorithms; I.4.8 [Im-
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Fig. 1. Our method can automatically reconstruct articulated, poseable
models from a sequence of single-view dynamic range scans.

1. INTRODUCTION

While 3D scanning has traditionally focused on acquiring static,
rigid objects, recent advances in real-time 3D scanning have
opened up the possibility of capturing dynamic, moving subjects.
Range scanning has become both practical and cost-effective, pro-
viding high-resolution, per-pixel depth images at high frame rates.
However, despite the many advances in acquisition, many chal-
lenges still remain in the processing of dynamic range scans to re-
construct complete, animated 3D models.

Our research vision is to automatically reconstruct detailed,
poseable models that animators can directly plug into existing soft-
ware tools and create new animations. The main challenge is to
resolve the occlusion and missing data that occur in range scans.
This is due to a limited view of a 3D subject from any single view-
point. Scans taken from many different viewpoints must be aligned
and integrated together in order to reconstruct a complete surface.
When the subject moves in each frame, we must also track the spa-
tially varying surface motion accurately to obtain a good alignment.
Since the tracking is not performed by the scanner, it must be es-
timated in the processing step by directly matching the surface ge-
ometry. An additional challenge is to improve the usability of the
reconstructed model by expressing the surface motion in terms of
a small set of parameters. This can allow animators to easily create
new animations and performances of the subject.

We present an algorithm to address these challenges by recon-
structing a rigged, articulated 3D model from dynamic range scans.
Given a sequence of range scans of a moving subject, our algorithm
automatically aligns all scans to produce a complete 3D model.
This is accomplished without the assistance of markers, user-placed
correspondences, a template, or a segmentation of the surface. Our
method is unique because we perform the alignment by estimating
the parameters of a reduced, articulated deformation model. In con-
trast to methods that focus only on registration or reconstruction of
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the original recording, our method produces a 3D model that can
be interactively manipulated with no further post-processing.

Our algorithm automatically estimates the articulated model us-
ing an alternating optimization approach inspired by the pairwise
registration method of Chang and Zwicker [2009]. Our contribu-
tions are:

—A global registration algorithm that optimizes the registration si-
multaneously over all frames,

—A novel registration formulation that produces a 3D model with
skinning weights learned from incomplete examples,

—An improved robust registration technique to automate the global
registration with initial pairwise alignments of adjacent frames.

The main advantages of our method is that it can handle range scans
with fast motion and significant occlusion, and that it produces a
rigged 3D model. However, our method is mainly applicable to ar-
ticulated subjects, and it may produce a rough piecewise rigid ap-
proximation of the surface motion for non-rigid cases. We demon-
strate the effectiveness of our algorithm by reconstructing several
synthetic and real-world datasets. We also present a simple exten-
sion of our algorithm to interactively manipulate the resulting 3D
model.

2. RELATED WORK

Template-Based Reconstruction. A popular approach to recon-
struct deforming sequences of range scans is to fit a template to the
scan data. A template provides many advantages in tracking and
fitting the data, with the expense of requiring the user to scan or
model it in advance. Our work addresses the more general problem
of reconstructing the template automatically from the range scans.

Many techniques rely on tracked marker locations to automati-
cally fit a template model to the scanned point cloud data [Allen
et al. 2002; 2003; Anguelov et al. 2005; Pauly et al. 2005]. For the
specific case of deforming garments, the method by Bradley et al.
[2008] automatically tracks a few key locations to fit the template.
The pairwise registration by Anguelov et al. [2004] does not re-
quire markers and is robust to the initial pose of the scan, but it
requires a template and uses a global optimization that is expen-
sive to compute. Markerless shape capture is also possible when
the range scan sequence has a high frame rate. For example, it is
possible to capture human faces by fitting a template face model
to a structured-light range scan video sequence [Zhang et al. 2004;
Weise et al. 2009]. The resulting face animation can be used to cre-
ate new animations or track novel sequences in real-time, but again
the template must be known in advance. Li et al. [2009] automati-
cally reconstruct a non-rigid range scan video sequence and repro-
duce the fine surface detail observed in the range scans. However,
this also requires a coarse template of the subject to be scanned
prior to the tracking step. Although our work is focused on articu-
lated subjects, the articulated assumption allows us to track larger
temporal spacing between scans, therefore producing a complete,
rigged model without using a template.

Templates are also used for estimating shape using multiview sil-
houette/video data [de Aguiar et al. 2008; Vlasic et al. 2008; Gall
et al. 2009] or sparse marker data [Park and Hodgins 2006; 2008].
Although these methods address the same problem of capturing
deformable geometry, they do not address how to process high-
resolution range scan data taken from just one or two views. Also,
while the surface detail in our work comes directly from the range
scans, most of the surface detail in these methods come directly

from the template, or it is added as a post-process using dense nor-
mal maps computed by shape from shading [Ahmed et al. 2008].
Templateless Reconstruction. To tackle the reconstruction prob-
lem without a template, many researchers have considered model-
ing a dynamic range scan sequence as a surface in four-dimensional
space and time, rather than a single 3D surface that changes its con-
figuration over time. Mitra et al. [2007] use kinematic properties
of this 4D space time surface to track points and register multi-
ple frames of a rigid object. Süßmuth et al. [2008] and Sharf et al.
[2008] explicitly model and reconstruct the 4D space-time surface
using an implicit surface representation. However, these techniques
require the surface to be sampled densely in both space and time,
which is an assumption that our method does not require. In ad-
dition, the latter method does not track points to produce corre-
spondence between frames, and it is more appropriate for filling in
missing surface data not observed by the scanner.

The algorithm by Wand et al. [2009] reconstructs an animated
3D model from range scan sequences without using a template.
Compared to the works mentioned above, this method is more ro-
bust to missing data in the scans. It aligns multiple frames by solv-
ing the surface motion in terms of an adaptive displacement field.
This motion representation handles smooth deformations well, but
our representation is more compact and accurate for representing
articulated motion. Wand et al. [2009] align and merge pairs of ad-
jacent frames in a hierarchical fashion, gradually building the tem-
plate shape hierarchically as well. In contrast, we simultaneously
align all frames at once using an explicit piecewise rigid deforma-
tion model. In addition, our method is more robust to large move-
ments and produces a fully rigged, poseable 3D model, rather than
just reconstructing the original recorded motion sequence.

Our method is partly inspired by the articulated motion capture
and reconstruction method of Pekelny and Gotsman [2008]. How-
ever, this method requires the user to manually segment a range
scan in advance, whereas we automatically solve for the segmenta-
tion using the motion observed in all frames.
Unsupervised Pairwise Registration. While our method is de-
signed for aligning multiple range scans, several methods for align-
ing a pair of scans are related to our work as well. A closely related
work is the method by Chang and Zwicker [2009], which solves for
the alignment between a pair of range scans by estimating the pa-
rameters of a reduced deformable model. A possibility is to apply
this method directly for multiple scans, using a sequential pairwise
registration and accumulation approach. However, in this case the
correct articulated structure is not estimated properly, because it
considers the movement in only two frames at a time. Also, un-
less a very high resolution is used, the grid-based representation of
the weights cannot handle difficult topological cases with close or
nearby surfaces. As we will demonstrate in the results section, we
overcome these limitations to handle multiple frames and difficult
topological cases effectively.

The transformation sampling and optimization approach by
Chang and Zwicker [2008] is used in our work to initialize the
registration between pairs of adjacent frames. However, this tech-
nique is too slow to apply for an entire sequence of range scans.
We improve the performance of this method by subsampling the
geometry. Our use of a graph to represent the deformation model
is related to the approach by Li et al. [2008] and [Sumner et al.
2007]. However, we solve for weights on the graph nodes, as op-
posed to solving for a separate affine transformation at each node.
The method by Huang et al. [2008] also uses a graph, but they use it
as an approximation of geodesic distances in order to extract a set of
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Algorithm 1: ARTICULATED GLOBAL REGISTRATION

Data: A sequence of range scans, denoted (F0, . . . , Fn−1)
Result: Dynamic sample graph G of the completed surface,

weightsW for each vertex v ∈ G, rigid
transformations T for all parts and frames

begin1
Compute initial pairwise registration of adjacent frames2
(Section 4);
Initialize dynamic sample graph G from F0 (Section 6);3
i← 0;4
while Fi 6= Fn−1 do5

Apply initial pairwise registration of Fi and Fi+16
(Section 6);
Detect occluded parts in Fi+1 (Section 7);7
Perform global registration of {F0, . . . , Fi+1}8
(Algorithm 2);
Update dynamic sample graph G (Section 6);9
i← i+ 1;10

Resample G densely and reconstruct surface mesh11
(Section 8.1);
return G,W, T ;12

end13

geodesically consistent correspondences. However, this approach is
problematic when a large amount of surface data is missing.
Deformation Modeling from Examples. Our inverse kinemat-
ics system resembles that of FaceIK [Zhang et al. 2004] or
MeshIK [Sumner et al. 2005], which extrapolate a set of exam-
ples to match user constraints. However, the deformation model
that we produce is a parametric model that explicitly models parts
and joints, as opposed to a data-driven method that blends a set of
example meshes. Therefore, our interactive IK system does not use
the original examples at run-time and only uses the reconstructed
deformation parameters (skinning weights and joints) to pose the
3D model.

Our deformation modeling approach is closer to the example-
based skeleton extraction work [Anguelov et al. 2004; Schaefer
and Yuksel 2007; de Aguiar et al. 2008]. However, while these ap-
proaches estimate the deformation parameters using a set of com-
plete examples that are already in correspondence, we estimate
them directly from incomplete range scan data.

3. ALGORITHM OVERVIEW

The input to our algorithm is a sequence of n range scans, where
the subject is moving from scan to scan. We denote this sequence
as F0, . . . , Fn−1. We also expect this to be in temporal order, so
that there is sufficient overlap between frames to align the scans.

The goal of our algorithm is to align all scans to a common pose
and express the surface motion using a reduced set of parameters.
We pose this problem as a skinning problem: finding transforma-
tions per frame and weights per vertex. When we apply these trans-
formations to each scan according to the weights, all scans should
be aligned with each other.

The basic structure of our method is shown in Algorithm 1. The
first step is to solve for a initial pairwise registration for each pair
of adjacent frames (F0, F1), (F1, F2), . . . , (Fn−2, Fn−1) (line 2).
We use the transformation sampling and optimization approach
by Chang and Zwicker [2008]. This method is used because it can
align a pair of scans while being robust to missing data and large

motions. We also improve the speed of this method so that it is
suitable for aligning multiple frames.

The second step is to refine this initial registration and produce
a global registration of all frames (lines 3–10). The main idea is to
optimize the transformations and weights simultaneously across all
frames to align them to a common reference pose. The optimization
operates on an important data structure called the dynamic sample
graph (DSG). It is a graph formed on a set of points sampled from
the input scans. The points are chosen so that they form a uniform
sampling of the complete, registered surface seen so far. The graph
is dynamic because we incorporate new data that becomes available
in new frames. Operating on the DSG makes the global registration
efficient.

In the following sections, we describe each part of the algorithm
in detail. To give an overview of the optimization process, we start
by creating the initial DSG (line 3, Section 6). Then, the frames are
introduced one at a time into the global registration (lines 5–10).
For each frame, we apply the initial pairwise registration (line 6,
Section 6) which gives an initial alignment of the new frame to the
surface registered so far. We then detect occlusions and disocclu-
sions of surface parts in the new frame (line 7, Section 7) and opti-
mize the transformations T and weightsW to simultaneously align
all frames (line 8, Section 5.3). Lastly we update the DSG (line 9,
Section 6) to incorporate new samples from the new frame, and we
move on to the next frame. After finishing the entire sequence, the
final post-processing step is to resample the surface densely and
reconstruct a mesh of the completed surface (Section 8.1).

4. INITIAL PAIRWISE REGISTRATION

The first step is to solve for a initial pairwise registration for each
pair of adjacent frames. Since the scans have missing data and their
poses can be far apart, the algorithm of Chang and Zwicker [2008]
is well suited for producing a robust registration. It consists of two
steps: (1) sampling rigid transformations from feature-based corre-
spondences between the scans, and (2) optimizing the assignment
of these transformations onto each vertex of the scans, so that ap-
plying the transformations produces an alignment that minimizes
distance between the scans while preserving their shape.

The details of the method are the same as originally described
by Chang and Zwicker [2008]. However, with range scans that typ-
ically have thousands of points, this method is too slow to process
an entire range scan sequence with many frames. To improve per-
formance, we restrict the optimization on a small subset of points
(1000 pts) sampled uniformly from each scan using best-candidate
sampling [Mitchell 1991]. This makes sense for articulated move-
ment, where the number of unique transformations producing the
movement is small compared to the number of scanned points.

To substitute for the edges of the triangle mesh that were used
for specifying smoothness constraints, we use a k-nearest neigh-
bor graph constructed on the subset of points, where k is 15. After
the optimization, we propagate the transformations assigned to the
subset to all remaining points using nearest-neighbor interpolation.
This produces the initial pairwise registration used as an initializa-
tion for the global registration.

A comparison of the optimization using all points versus using a
subset is shown in Figure 2. Although we obtain a good alignment
in both cases, the improved method achieves a significant speedup.
Also, the use of the graph improves the connectivity between parts
that may be disconnected in the original mesh.
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(a) Source (blue) and Target (red)
21325 points total

(b) Alignment Using
All Points: 1330.4 sec

(c) Alignment Using
1000 Points: 87.3 sec

Fig. 2. Comparison showing performance improvement for the initial pair-
wise registration. With the same parameters, optimizing on a subset of the
points produces a similar registration in a fraction of the time. The color
variation in (b,c) visualizes how the transformations are assigned to the sur-
face.

5. GLOBAL REGISTRATION

The core part of our method is the global registration step (line
3-10, Algorithm 1), which optimizes for the best transformations
and weights that simultaneously align all introduced frames. Be-
fore discussing the details of the algorithm, we first describe our
deformation model in more detail.

5.1 Deformation Model

Transformations. We represent the surface motion using a set of
rigid transformations in each frame. We designate the first frame as
the reference frame and define the transformations relative to this
reference1. Thus, each transformation moves a part of the surface in
frame Ff to align to the corresponding part in the reference frame
F0. We use the notation T (f�Ref)

j to denote the jth transformation
for frame Ff , which transforms in the direction from frame f to the
reference frame (Figure 3a). To aid our method, the user specifies a
maximum number of rigid transformations B used to approximate
the surface motion. Thus, the index j ranges from 1 to B. Since
f ranges from 0 to n − 1, we are using a maximum total of nB
transformations to represent the surface movement in all frames.

Each T (f�Ref)
j consists of a rotation matrix R ∈ SO(3) and

translation vector ~t ∈ R3. To apply this transformation to a point
x ∈ R3, we notate T (f�Ref)

j (x) = Rx + ~t. We also express the

relative transformation T (f�g)
j between any two frames f to g by

transforming to the reference and then transforming to the desired
frame (Figure 3b). We express this as

T
(f�g)
j (x) =

(
T

(g�Ref)
j

−1
◦ T (f�Ref)

j

)
(x)

= R
(g�Ref)
j

> [(
R

(f�Ref)
j x+~t

(f�Ref)
j

)
−~t(g�Ref)

j

]
. (1)

Therefore, once we know the transformations on each frame, we
can transform between any two frames. This definition makes it
easy to specify and solve for the alignment for multiple frames.
Weights. We associate the transformations to the points indirectly
by assigning weights to each point. Each weight is aB-dimensional
vector w(x), where the j th component indicates the influence of
transformation j to the point x. This is analogous to “skinning”
a model. By changing the weights during the optimization, we

1This is similar to the approach used by Neugebauer [1997] for registering
scans of rigid objects.

Reference FrameFrame 1

. . .

Frame 2

Frame 3

Frame 4

Frame nT (1   Ref)
j

T (2   Ref)
j

T (3   Ref)
j

T (4   Ref)
j

T (n   Ref)
j

Reference Frame

Frame f Frame g

T (f    Ref)
j

T (f    Ref)
j

T (g    Ref)
j( )-1

T          (Ref    g)
j =

T          (Ref    g)
j

(a) Configuration of Transformations (b) Composition Between Frames

Fig. 3. Organizing the transformations for simultaneous registration. (a)
We solve for the set of transformations that align each input frame to the
reference frame F0. (b) We can transform between any pair of frames f
and g by first transforming from f to the reference and applying the inverse
transformation to g.

Reference Frame 1 Frame 2 Frame 3 All Samples

....

Fig. 4. We represent the weight function using the DSG (vertices shown
as yellow points). As we introduce more frames (Frames 1,2,3), we add
samples only from parts of the surface that are missing in previous frames
(Left & Middle). This ensures that we get a sparse, uniform sampling of the
entire surface (Right).

can dynamically adjust where each transformation is being ap-
plied. Having this level of indirection makes sense for an articu-
lated subject, where a small number of transformations can express
the movement of the surface.

In our method, we solve for binary weights, where one com-
ponent is exactly 1 and the rest are 0. This is because solving
for smooth weights during registration leads to overfitting of both
transformations and weights [Chang and Zwicker 2009]. Therefore,
all components of w(x) are 0 and only one componentwj(x)(x) =
1. Here, we use j(x) to indicate the index of the component with 1.
Dynamic Sample Graph (DSG). We introduce the dynamic sam-
ple graph (DSG) to efficiently represent and optimize for weights
on all frames. Each vertex of the DSG is a point sampled from one
of the input frames. The edges of the DSG constrain nearby sam-
ples to have the same weight in the optimization. We gain efficieny
in the optimization by storing weights only on the vertices of the
DSG, thus giving a sparse representation of the weight function.

The graph is dynamic because we incorporate new samples that
become available as we register new frames. The samples are care-
fully selected to minimize redundancy while giving adequate cov-
erage of the entire surface seen so far. They satisfy three main prop-
erties (illustrated in Figure 4):

—Each sample is an actual point from an input frame
—Samples are only from surface parts that are missing in all previ-

ous frames
—The samples form a uniform sampling (i.e. Poisson disk sam-

pling) of the entire surface registered so far.

We discuss details on how to sample the points and form the edges
later in Section 6.
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5.2 Optimization Objective

The goal of the optimization is to solve for weights and transfor-
mations that align the DSG to all frames simultaneously. The op-
timization objective has three terms: (1) Efit(T ,W), which mea-
sures the alignment distance between the DSG and all frames, (2)
Ejoint(T ), which constrains neighboring transformations to agree on
a common joint location, and (3) Eweight(W), which constrains the
weights of neighboring points to be the same. With coefficients
α, β, γ for each term, we write the entire objective as

argmin
T ,W

α Efit(T ,W) + β Ejoint(T ) + γ Eweight(W). (2)

Fitting Objective Efit. This term measures the alignment distance
of the DSG to all frames. For each sample x, we transform it to
all other frames and measure how close it is to the scanned data of
these frames. The distance measure we use is a robust error metric
based on the distance to the closest correponding point in the other
frame. For a sample x in frame f , we measure its alignment dis-
tance to frame g by transforming it to frame Fg (using T (f�g)

j(x) (x))

and finding the closest corresponding point y(g)

j(x) ∈ Fg . Once we
have the corresponding point, the total alignment distance is given
by the formula

Efit(T ,W) =
∑
x

∑
Fg

d
(
T

(f�Ref)
j(x) (x), T

(g�Ref)
j(x)

(
y
(g)

j(x)

))
. (3)

Here we have computed the distance d(·, ·) between x (in Ff ) and
its corresponding point y(g)

j(x), where both points have been trans-
formed to the reference frame (see Figure 5). The resulting values
are summed up over all sample positions x and all frames g to com-
pute the total alignment distance.

The distance d(x,y) is a robust error metric designed take miss-
ing data in the scans into account. This metric first determines
whether the two points x,y are valid corresponding points. We de-
fine three criteria for determining validity.

(1) The sample x (from Ff ) may not have a corresponding point
in Fg due to missing data. The first of these cases is when g ≤ f .
Since the samples are picked from surface parts that are missing in
all previous frames (Section 5.1), there will not be a corresponding
point in Fg . Thus y is always invalid when g ≤ f .

(2) Because of scanner occlusion, x may not have a correspond-
ing point even when g > f . Adapting the strategy from Pekelny and
Gotsman [2008], we use simple thresholding to detect this case. y
is invalid when

—the Euclidean distance ‖x− y‖ exceeds a threshold τd,
—the angle between their normals exceeds a threshold τn,
—or the distance exceeds a smaller threshold τb when y lies on the

boundary of Fg .

(3) When we optimize the weights, j(x) becomes a variable, not
a fixed constant. Therefore, we maintain a separate closest point
y
(g)
j for each potential transformation T (f�g)

j(x) (x). Now, consider
the current value of j(x), denoted jcurrent(x) (i.e. the weight last
assigned to x). If the closest point y(g)

jcurrent(x)
is invalid, then most

likely there is no corresponding point in the frame. Therefore, in
this case we set all y(g)

j for all j as invalid.
If x,y pass these criteria, we include their distance in Efit; other-

wise their distance is 0 and not included in the term. The distance
for valid pairs is a weighted sum of the point-to-point and point-to-

Reference Frame Frame 1 Frame 2 Frame 3

y  j* y  j*x

T         (x)(1    Ref)
j*

Minimize
Distances

T         (y   )(2    Ref)
j* j*

(2)

(2)

T         (y   )(3    Ref)
j* j*

(3)

(3)

Fig. 5. To measure alignment, we compute distances between sample
points x (yellow) and corresponding points y(g)

j∗ (blue) transformed to the
reference frame Fref. We add up these distances to measure the alignment of
all frames in the sequence. We optimize for the transformations and weights
that minimize this total distance.

plane distance measures. The formula for d is

d(x,y) =

{
ηpt ‖x− y‖2 + ηpl ((x− y) · ~ny)

2 when x,y is valid
0 otherwise.

(4)

where ~ny is the surface normal of y, transformed along with y
using only the rotational part of the transformation. We use the
weights ηpt = 0.2 and ηpl = 0.8 for our experiments.
Joint Objective Ejoint. The joint term constrains neighboring trans-
formations to agree on a common joint location. It ensures that the
parts stay connected to each other and do not drift apart. We sup-
port automatically detecting and constraining two types of joints: 3
DOF ball joints and 1 DOF hinge joints. First, we will explain the
definition of the joint constraints. Then, we will explain how the
joint parameters are computed.

We define the joint locations in the reference frame Fref. A hinge
joint specifies that two transformations are connected along a line
in R3, which means that both transformations transform this line to
exactly the same location. We call this line the hinge axis, which
can be described using the parametric form u + t~v, where t ∈ R.
A ball joint says that the transformations connect on a single point
u ∈ R3. We express a ball joint in the same form as the hinge,
except that ~v = ~0. An example of hinge joints detected for the
robot model is illustrated in Figure 6 (left).

Once we know these joint locations and types, we can constrain
the transformations to map the joint locations to the same place
(Figure 6, middle & right). Let us represent a joint between trans-
formations for parts i and j using the tuple (uij , ~vij). We addition-
ally set a valid/invalid flag for each tuple, depending on whether
there actually is a joint between transformations i and j. In the ob-
jective, we constrain the joints using the term Ejoint:

Ejoint(T ) =
∑

All Ff

∑
Valid Joints
(uij ,~vij)

∑
t ∈ [−10s..10s]∥∥∥T (f�Ref)

i

−1
(uij + t~vij)− T (f�Ref)

j

−1
(uij + t~vij)

∥∥∥2. (5)

Here, we use 20 values of t spread in the range [−10s..10s] where
s is the mesh resolution (or grid sample spacing)2. For a hinge joint,
this constrains a set of points along the hinge axis. In the case of

2A similar approach is used by Knoop et al. [2005].
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T  (u)i
-1

-1

Minimize
Distance

T  (u)j

T  = (R  ,t )i i i

T  = (R ,t )j j j

Reference Frame Input Frame

u

Hinge Joints

Fig. 6. Estimating and constraining joints in our optimization. (Left) we
show hinge joints that are estimated automatically. The bars represent the
hinge axes. (Middle & Right) Ejoint constrains the transformed locations
of u to agree on the same point by minimizing the distance between the
transformed locations.

a ball joint, we set ~vij = 0, so this term constrains only one point
uij . Inverses of the transformations are used in this term because
the joint locations are defined on the reference frame.
Detecting Joint Locations. To detect joints and estimate their
locations, we first find which pairs of transformations (i, j) are
likely to share a joint in between, and we determine the ex-
act location using the transformations T (1�Ref)

i , T
(2�Ref)
i , ... and

T
(1�Ref)
j , T

(2�Ref)
j , ... that we have solved for each frame.

We use the edges of the DSG to find pairs of transformations
(i, j) likely to have a joint. If there are many edges in the DSG
where one end has weight corresponding to transformation i and
the other end with weight j, then these transformations neighbor
each other and are likely to share a joint in between. On the other
hand, if there are no such edges, then most likely there is not a joint
between these transformations. To help our discussion, let an edge
in the DSG be incident to transformation i if one of its end points
x ∈ S has weight wxi = 1. If either of the following ratios exceeds
a threshold (set to 15%):

# edges incident to both i, j
# edges incident to i

,
# edges incident to both i, j

# edges incident to j
(6)

we take the pair i, j as a candidate for sharing a joint. We then
average all endpoints of edges incident to both i, j to obtain an
estimate uest ∈ R3 of the joint location. Since we will define joint
locations on the reference frame, we compute uest on the reference
frame.

Once we have a set of candidate pairs (i, j) and estimated joint
locations uest, we solve for joint locations u on the reference frame
based on the solved transformations. We perform a least-squares
minimization for each pair (i, j):

argmin
u∈R3

∑
All Frames Ff

∥∥∥T (f�Ref)
i

−1
(u)− T (f�Ref)

j

−1
(u)
∥∥∥2. (7)

We solve this minimization using the SVD. During this process,
we determine if the joint is a hinge by examining if the ratio of
the smallest singular value to the sum of the singular values is less
than a threshold (set to 0.1). If this is the case, then we truncate
the smallest singular value to zero and solve for the equation of
the line u′ + t~v′ satisfying the system. Finally, for the hinge joint
parameters (u, ~v), we take the point u on this line that is closest to
uest and normalize ~v = ~v′/‖~v′‖.

If the joint is not a hinge, it is a ball joint and we determine a
single joint location u. In this case, we add an additional regular-
ization term λ ‖u−uest‖2 in the optimization, where λ is typically
0.1 [Pekelny and Gotsman 2008]. This additional term helps to pull
the location closer to uest in case the joint is close to being a hinge
and admits multiple solutions.
Weight Objective Eweight. Constraining the solution to solve for bi-
nary weights transforms the problem into a discrete labeling prob-
lem, where we try to find an optimal assignment of transformations
to the sample points x ∈ S. The goal of the weight objective is to
constrain neighboring samples to have a similar weight. This way,
sets of samples with the same weight form well-connected and con-
tiguous regions on the DSG.

We use a simple constant penalty when two neighboring weights
are different:

Eweight(W) =
∑

(x,y)∈E

I (wx 6= wy) , (8)

where I(·) is 1 if the argument is true and 0 otherwise, and E is
the set of all edges in the DSG. This is known as the Potts model, a
discontinuity-preserving interaction term widely used for labeling
problems [Boykov et al. 2001].

5.3 Optimization

To perform the optimization, we divide the solver into two phases
and alternate between each phase until the solution converges (see
Algorithm 2). In the first phase, we keep the weights fixed and solve
for the transformations (lines 4-11), and in the second phase, we
keep the transformations fixed and solve for the weights (lines 15-
23). This strategy works well in practice and produces a good align-
ment within a few iterations. Also, we try to detect if previously
disappeared parts have reappeared in the new frame (line 12).

In our experiments, we observed that the transformations for a
frame do not change much after the frame is first introduced and
optimized. Therefore, we solve for the transformations only on the
newest c frames that have been optimized. We can think of this as
a “sliding window” in which to optimize the transformations. Low-
ering the value of c improves the speed of the registration, while
raising this value may produce a more accurate registration at the
cost of speed. Note that this only affects optimizing the transforma-
tions; the weights are always optimized using all frames.
Optimizing the Transformations. For optimizing the first
phase, we solve for the transformations minimizing the terms
α Efit(T ,W) + β Ejoint(T ) from Equation 2, while keeping the
weights fixed. Since the location of the closest corresponding points
y
(g)

j(x) depend on the transformations, we use an iterative approach
in the spirit of the iterative closest point (ICP) algorithm [Besl and
McKay 1992] (line 6–10 in Algorithm 2). We first keep the trans-
formations fixed and compute the closest points, then we keep the
corresponding points y(g)

j(x) fixed and optimize the transformations,
and we repeat this alternation until convergence.

We perform the optimization using the Gauss-Newton algorithm,
linearizing the objective function in each iteration by substituting a
linearized form of each rigid transformation. To solve for the trans-
formations on a limited number of frames, we can simply remove
the variables/constraints (and also not update closest points) involv-
ing transformations from frames outside of the set of interest. This
significantly reduces the time to perform this phase.
Optimizing the Weights. For the second phase, we solve for the
weights of each sample point x that minimize the terms α Efit +
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Algorithm 2: OPTIMIZE T ,W (DSG, T ,W, F0, . . . , Fnew)
Data: Dynamic sample graph (DSG), associated weightsW ,

transformations for all frames T , and all initialized
input frames F0, . . . , Fi+1

Result: Optimized transformations and weights T ,W
begin1

Select a subset of frames to optimize the transformations2
(e.g. a sliding window of 1–10 frames);
while Not converged do3

begin (Phase 1: Solve for the transformations T )4
Re-estimate joint locations and types;5
while Not converged do6

Update the closest points y(g)

j(x) for all x ∈ S7
and frames Fg;
Construct the sparse matrices for Efit and Ejoint;8
Solve linear system and update9
transformations;
Check convergence criteria;10

end11
Detect reappearing transformations in Fi+1 by aligning12
occluded parts with unmatched surface points
(Section 7);
Check convergence criteria;13
if converged then break;14
begin (Phase 2: Solve for the weightsW)15

Update the closest points y(g)
j for all samples x,16

all frames Fg , and all j;
Precompute Efit for all x and all j;17
Create Eweight using the edges of the DSG;18
Solve discrete labeling using α-expansion;19
Discard parts that are too small;20
Reuse unassigned weight components by splitting21
regions with highest Efit error;
Update the weights for each sample x;22

end23

end24

γ Eweight, while keeping the transformations fixed. Since we con-
strain the weights to be binary, we are essentially solving for the
value of j(x) for each sample point that minimizes the total error.
We solve this discrete optimization problem using the α-expansion
algorithm [Boykov et al. 2001; Boykov and Kolmogorov 2004;
Kolmogorov and Zabih 2004]. Here, we use edges of the DSG di-
rectly to specify smoothness constraints between points. To save
computation time during the optimization, we precompute Efit in
the DSG and store the values in a 2-dimensional hash table for
quick access. We precompute and store the summand d(x,y) of
Efit separately per sample x and per transformation j, summed over
all frames g.

After the optimization, it may be the case that some trans-
formations are applied to few samples of the DSG. To facilitate
discussion, let us partition the DSG into subsets Sj = {x ∈
DSG | j(x) = j}, and denote the number of samples in Sj as
|Sj |. If there is a j such that |Sj | is less than 1% of the total num-
ber of sample points, then we remove transformation j completely
by changing the weight value j(x) to the weight of the closest y
with a different weight. This results in “unused” transformations,
which we denote junused.

Instead of completely throwing these unused transformations
away, we can re-introduce them in a different location to reduce
registration error. We split the region with the highest registration
error in half and introduce the unused transformation by replacing
the weights in one of these halves [Chang and Zwicker 2009]. This
adds more degrees of freedom, allowing the optimization to refine
the alignment further for the region.

Specifically, we compute the registration error for each Sj by
averaging the precomputed value of Efit for transformation j(x), for
all x ∈ Sj . We then split Sj with the highest registration error into
two groups Sj1 and Sj2. We randomly select two points x1,x2 ∈
Sj and divide Sj into Sj1, Sj2 based on whether each sample is
closer to x1 or to x2. We leave group Sj1 as is, but we replace the
weight of samples x ∈ Sj2 with an unused transformation so that
j(x) = junused. This splitting process is continued until the highest
registration error among the remaining Sj’s is below a threshold
0.1s, or there are no unused transformations left.
Checking for Convergence. We perform the convergence check
(Algorithm 2, lines 13-14) right after solving for the transforma-
tions, because the optimization is usually able to refine the trans-
formations further after the weights have changed. To detect if
the optimization for the transformations has converged, we mon-
itor the change of the objective function by examining the value of
the minimized residual. Denoting the total error residual at itera-
tion k as Ek, we apply the criterion |Ek − Ek+1| < ε(1 + Ek)
(where ε = 1.0 × 10−6) and stop the iteration if this condition
is met. We also have a maximum number of iterations, typically
set to about 20–30 iterations, and stop if we exceed this maximum
number. In our experiments, we observed that in most cases the
optimization converges in about 10–15 iterations. However, the op-
timization may enter an oscillating mode, where the closest points
switch back and forth indefinitely between a few points. Because
of this, convergence is not guaranteed; but in practice we have not
encountered any major problems.

6. MAINTAINING THE DYNAMIC SAMPLE GRAPH

The dynamic sample graph (DSG) is an important component that
is involved in all stages of our algorithm. In this section, we discuss
remaining details about how we manage the DSG, including how
to transfer the initial pairwise registration into a format compatible
with the DSG, how to update the DSG with new samples, and how
to interpolate the sparse weight function defined on the vertices of
the DSG.
Initializing the DSG. We initially create the DSG by uniformly
sampling a set of points on the reference frame. As a preprocessing
step, we sample a fixed fraction r of the points in every input frame
using the best-candidate technique [Mitchell 1991]. This results in
a Poisson-disk sampling of the points in each input frame. We de-
note the set sampled points in frame f as Uf . Then, the initial set of
samples in the DSG is exactly U0. As we register each new frame
Fi, we will select samples from Ui to add to the DSG.
Applying the Initial Pairwise Registration. Every time we intro-
duce a new frame Fi+1 into the global registration, we need to find
the initial value of each transformation T (i+1�Ref)

j from the refer-
ence frame to the new frame. For this, we use the result of the initial
pairwise registration between frame Fi to Fi+1. However, the ini-
tial pairwise registration specifies a transformation for every vertex
of Fi.

To apply the initial pairwise registration, we first partition the
DSG into subsets Sj = {x ∈ DSG | j(x) = j}. Now, we blend
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transformations from the initial pairwise registration for each sub-
set.

For each point x ∈ Sj , we find the closest point y in Fi and store
(in a list) the transformation that was assigned to y in the initial
pairwise registration. This results in a list of transformations for the
subset. Finally, we uniformly blend all transformations in the list
using Dual Quaternion Linear Blending (DLB) [Kavan et al. 2008]
to produce an initial transformation T init

j from frame i to frame i+1.

Then, we concatenate to produce the initial value T (i+1�Ref)
j =

T
(i�Ref)
j ◦ T init

j
−1.

Since we blend transformations, this produces a slightly different
result from the initial pairwise registration, but the differences were
negligible in practice.

There is one exception to this procedure when we apply the ini-
tial pairwise registration of the first two frames F0 and F1. At
this point in the algorithm, the DSG has just been created using
the points in F0 (i.e. S = U0), and the samples do not have any
weights. In this case, S is exactly a subset of F0, so we directly
copy the transformations from the initial pairwise registration while
limiting the total number of unique transformations to the maxi-
mum B.
Updating the DSG. After applying the initial pairwise registration
for the new frame Fi+1, the algorithm moves into the global reg-
istration phase to align Fi+1 to the rest of the frames. After each
global registration, we update the DSG to reflect changes in the
registration.

To update, we create a new and empty DSG, denoted DSGnew,
and initialize it to U0. We then sequentially add samples from each
frame to DSGnew. Recall that Ui is a uniform sampling of the points
in frame Fi. For each frame Fi, we add points x ∈ Ui to DSGnew
that do not overlap with the current samples in DSGnew [Pekelny
and Gotsman 2008]. This makes the DSG satisfy the three main
properties listed in Section 5.1. We also determine the weight for
every point x added to DSGnew using the old DSG (DSGold). In the
next paragraphs we first describe how to determine overlap, then
how to determine weight.

To determine overlap, we first transform all current samples (and
their surface normals) in DSGnew to frame Fi. Then, for each x ∈
Ui, we find the closest point y ∈ DSGnew and compute dpt = ‖x−
y‖ and dOnPl =

√
‖x− y‖2 − ((x− y) · ~ny)2. We consider x

to overlap with DSGnew when (1) the surface normals of x and y
differ by ≥ 90◦ and dpt < τs, or (2) the normals differ by < 90◦

and dpl < τs.
To determine a weight j(x)new for a point x ∈ Ui, we inter-

polate the weight values from DSGold. We first transform all sam-
ples in DSGold to frame Fi. Next, we partition DSGold into subsets
Sold
j = {x ∈ DSGold | j(x)old = j} using the weights j(x)old

from DSGold. Then, for each Sold
j , we find the point yj ∈ Sold

j

closest to x. We compute a score Cj for each j using the formula
Cj =

‖yj−x‖∑
j ‖yj−x‖

. If the maximum score jmax = maxj Cj is greater
than three times the upper quartile (median of the largest half) of
all Cj , we assign j(x)new = jmax. Otherwise, we consider it an am-
biguous case and do not add x to DSGnew. In addition, we do not
add x when transformation jmax is marked as occluded in frame Fi

(more details about occlusion in Section 7).
After the resampling is complete, we form edges on DSGnew.

We first transform DSGnew to the reference frame and compute the
k-nearest neighbor graph of the samples (k = 15). To prevent un-
desired edges between separate (but spatially near) parts, we mea-
sure the length of each edge when DSGnew is transformed to each
frame Fi and discard edges that stretch in length more than 2 times.

However, if the edge is between parts that have a joint, we do not
discard the edge. In our experiments, we observed that discarding
these “joint edges” may bias the discrete labeling optimization and
prevent changes in the boundary location between the parts. This
caused the optimization to converge to the wrong local minimum.

After forming the edges on DSGnew, we finally discard DSGold
and replace it with on DSGnew. This concludes the updating process
for the DSG.

7. HANDLING OCCLUSION

Detecting Occluded Parts. When a part of the surface is partially
or completely occluded in a frame, the transformation for this part
may have few or no valid correspondences constraining it in the
optimization. In these cases, it may not be possible to solve for the
rigid transformation of that part. In our algorithm, we automatically
detect this and exclude these parts from the optimization (line 7 of
Algorithm 1).

As before, let us partition the DSG into subsets Sj = {x ∈
DSG | j(x) = j}. Right after loading and applying the initial
pairwise registration (line 6 of Algorithm 1), we determine whether
the transformation j is occluded in frame Fi+1.

First, we update the closest corresponding points y(i+1)

j(x) for each

x and compute the distance d(x,y(i+1)

j(x) ) using the robust error met-
ric (Equation 4). Then, for each Sj we count the number of points
x ∈ Sj such that d(x,y(i+1)

j(x) ) > 0. If this number falls below a
small threshold (< 5, or< 0.05|Sj |), then we mark transformation
j as “occluded” for frameFi+1. In addition, subset Sj is considered
an “occluded part” for frame Fi+1.
Excluding Occluded Transformations in the Optimization. We
do not optimize for occluded transformations in Phase 1 of Algo-
rithm 2. Instead, we substitute a value computed based on the joint
constraints with neighboring parts. If there are no neighbors, we
use the value from the last frame; if there is exactly one, we copy
the neighbor’s value; and if there are two or more, we solve for
the transformation that best fits all joint constraints [Pekelny and
Gotsman 2008].

While we can simply exclude transformations in Phase 1, we
cannot do the same for optimizing the weights in Phase 2. Here, the
algorithm must solve a binary weight for each sample to minimize
the registration error. The question is, what should be the “regis-
tration error” for applying a transformation that is occluded in the
frame? We need to assign some reasonable value for this case so
that the weights are not optimized erroneously. We cannot assign
a zero error, because the optimization would prefer to assign the
weight for the occluded transformation. It also cannot be too high,
because the optimization would prefer to not assign the weight for
the occluded transformation to any samples at all.

Recall that when we optimize the weights in Phase 2 (Sec-
tion 5.3), we compute and store the summand of Efit for all sam-
ples x, all j, and all frames g. Suppose that for some sample x,
transformation j is occluded in frame g. In this case we use the
error value of transformation j(x). If transformation j(x) is also
occluded, then we use the minimum error value among all non-
occluded transformations. This strategy worked well in our experi-
ments.
Detecting Reappearing Parts. When an occluded part suddenly
reappears in a new frame, we need to start tracking it again. Other-
wise, the algorithm could mistakenly treat it as new surface geom-
etry, thus duplicating the part multiple times in the reconstruction.
If the part happens to reappear nearby its last seen location, then
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Fig. 7. Reconstruction results for the Robot dataset.

the algorithm will be able to find a sufficient number of closest
points and automatically track the part again. However, if the part
reappears in a completely different location, we need a different
strategy since there will not be enough closest points. Our algo-
rithm detects and handles this case it during the global registration
(line 12 of Algorithm 2). Note that detecting reappearing parts is
not handled by our initial pairwise registration, because it can only
align parts not occluded in both the source and target.

To detect if an occluded part is reappearing in frame Fi+1, we
first transform the DSG to frame Fi+1, and try to determine the
weights of each point x ∈ Ui+1 using the same algorithm in Sec-
tion 6 (recall the definition of Ui+1 also in Section 6). If the weight
cannot be determined for x (i.e. it is an ambiguous case, or jmax
is marked as occluded for frame Fi+1), then we consider x to be
“unmatched” and add it to a set M . Next, if |M | < 0.1|Ui+1|, we
attempt to solve for occluded transformations (in frame Fi+1) by
aligning occluded parts of the DSG to M .

Here, we use the same procedure as Phase 1 of Algorithm 2 to
solve for the values of the occluded transformations (Section 5.3).
However, we expect unmatched points to be far away from the cur-
rent position of the DSG. Therefore, we adjust the optimization,
where

—we only solve for the values of the occluded transformations by
aligning occluded parts of frame Fi+1 to M ,

—we set thresholds to higher values: τd = 50s and τn = 45◦,
—and we increase the weight of the joint constraint to β = 1000.

These modifications ensure that we obtain an alignment even when
the points in M are far away from the DSG, while the higher value
of β prevents the optimization from falling into local minima. Af-
ter solving for the occluded transformations, we run the occlusion
detection routine once more to update the occlusion status of each
transformation.

8. EXPERIMENTAL RESULTS

8.1 Reconstruction

We implemented our algorithm in C++ and tested it with several
real-world and synthetic datasets exhibiting articulated motion. Af-
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Fig. 8. Reconstruction results for the Car dataset.
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Fig. 9. Reconstruction results for the Pink Panther dataset with faster input
motion.

ter we have aligned all frames, we reconstruct a triangle mesh from
a dense sampling of S produced using a small sample distance τs.
We use the streaming wavelet surface reconstruction algorithm by
Manson et al. [2008].

The car and robot datasets were acquired by Pekelny and Gots-
man [2008] using a Vialux Z-Snapper depth camera. These se-
quences were created by animating the physical model while cap-
turing each frame from a different viewpoint. Each sequence has
90 frames, and consists of 4 and 7 parts, respectively. The results
are shown in Figures 7 and 8. The top row shows some of the input
frames in the sequence. Notice that there is a significant amount
of occlusion in some of the frames. The middle row shows the re-
constructed mesh using the algorithm, with weights obtained by
interpolating the weights on the sample set. The bottom row shows
the estimated joint locations, where hinge joints are represented by
a short stick and ball joints by a sphere. Both the reconstruction
results and the weight estimation are faithful to the input data.

To test our algorithm on a more deformable subject, we acquired
two range scan sequences of a pink panther toy using a Konica
Minolta VI-910 laser scanner. We animated one sequence with a
slower motion, while the other sequence had a faster motion. Re-
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(a) Using
1 Camera

(b) Using
2 Cameras

Fig. 10. Reconstruction results for the synthetic Walking Man dataset. On
the right, (a) and (b) show a comparison of the reconstruction using scans
from one and two virtual cameras.

construction results are shown in Figure 9. Although the furry tex-
ture on the toy created noise on the scanned surface, we obtained
a reasonable reconstruction of both the surface geometry and the
weights.

Finally, we tested our algorithm on synthetic depth scans of a
walking man, where the camera is rotating around the subject. To
test the effect of occlusion in our algorithm, we captured two se-
quences, one using a single virtual camera, and the other using two
virtual cameras 90◦ apart. The reconstruction results are shown in
Figure 10. The results from both datasets are reasonable, but the
first sequence was less successful due to the large amount of oc-
clusion of the arms. With two virtual cameras, we obtained a bet-
ter reconstruction that was able to reproduce the fine detail of the
hands.

8.2 Parameters

The main parameters of our algorithm are the maximum number of
transformations B, weights for each term in the objective function,
and thresholds that control the sampling and closest point compu-
tation. We expressed many parameters relative to the grid sample
spacing s, which is the average distance between the scanned points
of the dataset.

Although the user needs to specify the maximum number of
transformations to approximate the motion, the algorithm may set-
tle on a smaller number of transformations if the registration error
is small enough. An alternative strategy could have the user spec-
ify a maximum alignment error ε and change the algorithm to add
additional transformations until the alignment error is within ε.

The value of B for each dataset is shown in Table I. For the
weights of each term in Equation 2, we used α = 1, β between
0.1 and 1.5, and γ either 0.5s or s. For the uniform subsampling
Uf (Section 6), we instructed the algorithm to sample 6% to 20%
of the points depending on the density of the scans. For the sample
spacing parameter τs, we used a value between 2s and 5s depend-
ing on how dense we wanted the sparse sample set to be. Finally,
for determining the validity of the closest corresponding points, we
used τd = 10s, τn = 45◦, and τb = s. When we match reappear-
ing parts, we increased these values so that τd is between 50s and
100s, τn between 45◦ and 80◦, and β = 100. In our experiments,

Table I. Performance statistics for our experiments. The timings
are expressed in seconds, and the bottom row reports the average

execution time per frame in each sequence.
Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5→ 1 5→ 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples 4,970 2,672 4,077 4,203 8,305 8,539
Edges in DSG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Updating DSG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02

Reconstructed
Model

User Specified
Constraints

Novel Poses

Fig. 11. Reposing the reconstructed robot. Using the solved weights and
the hinge joints, we can perform interactive IK on the reconstructed model.

we experimented with a few different parameter settings but did not
seriously optimize the parameters to give a better result.

8.3 Performance

We performed our experiments using a single core of an Intel Xeon
2.5 GHz processor. The timing results are reported in Table I. In
the robot and car datasets, the most time-consuming part was the
initialization, but in the other cases it was the global registration.
The global registration step can execute faster if a smaller sliding
window is used, with the trade-off of having a less accurate reg-
istration. Like other closest point matching algorithms, the most
time-consuming part is the closest point computation, which can
typically take 30% of the total time. Note that the times in the ini-
tialization step reported in Table I do not include some preprocess-
ing time to compute spin images and estimate the principal curva-
ture frame at each vertex.

8.4 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-
posing and animating the reconstructed model. To demonstrate this,
we implemented a tool to perform inverse kinematics on the model.
In this system, the user specifies point constraints interactively by
drawing boxes around a region of interest. Then, the user is able to
select one of the constraint boxes and drag it around on the screen
to manipulate the model. To perform IK, we use the transforma-
tion optimization (Section 5.3) to solve for the rigid transforma-
tions of each part that best satisfy the constraints. The details of the
optimization are exactly the same as before, except that the joint
locations are fixed and the correspondences are given by the user.
By running the optimization in a separate background thread, we
were able to interactively manipulate the reconstructed model in
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(a) Result Using
Sequential Registration

(b) Result Using
Simultaneous Registration

Fig. 12. Comparing sequential and simultaneous registration. (a) The se-
quential strategy gives an unreliable estimate of the articulated structure
(large red oval), because it only uses the movement observed in two frames
at a time. This leads to an imprecise registration (smaller red oval). (b)
The simultaneous strategy can correctly estimate the weights that reflect
the movement observed in all frames. The registration is more precise, as
well as the estimated surface geometry.

real-time. Figure 11 shows examples of different poses of the robot
created by our system.

8.5 Sequential Registration vs. Simultaneous
Registration

To illustrate the benefit of performing simultaneous registration,
we compare our algorithm with a sequential registration pipeline.
In a sequential registration method, we optimize each frame of the
sequence one-by-one, accumulate new samples directly on the ref-
erence frame, and discard the frame before moving on to the next.
This strategy is essentially a pairwise registration that is applied re-
peatedly for each frame, because it only performs the registration
between the accumulated samples and the current frame.

The main problem with the sequential registration approach
is that it cannot reliably estimate the articulated structure (i.e.
weights) based on the movement observed in just two frames at
a time. This complicates the situation further for occlusion detec-
tion and recovery, which rely on a reliable estimate of the articu-
lated structure. A comparison between the sequential and simulta-
neous strategies is shown in Figure 12. Here, we have used the two
strategies to align 40 robot frames, and we display the DSG which
roughly shows the reconstructed geometry. On the left, we can see
that the sequential strategy did not produce the correct weights. As
a result, the registration was imprecise, and “extra” surfaces ap-
pear where the parts were not aligned properly (for example, on
the left arm). On the right, we show the result using simultaneous
registration using the same parameters. The registration is more ac-
curate, and the algorithm produced the correct weights that reflect
the movement of all frames.

8.6 Grid-Based Weights vs. Graph-Based Weights

We compare the benefit of using a graph vs. using a grid for rep-
resenting the weight function. We implemented the simultaneous
registration using a grid and compared the results to a graph-based
implementation. First, we found that the performance of the graph-
based registration is much faster, because the grid-based method
has an additional overhead of translating the weights from the grid
to the samples. For processing the 90 frame robot sequence, the

(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Fig. 13. Comparing registration results using grid-based and graph-based
weight representations. These images show the represented weight function
deformed into different poses according to the optimized transformations
and weights. The artifacts with the grid are absent when using the graph.

[Wand et al. 2009] Our Method

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Source and Target

Fig. 14. Articulated registration on the hand-2 and popcorn tin datasets
used by Wand et al. [2009]. Our algorithm is able to produce coarse ap-
proximations of the non-rigid motion exhibited in these datasets.

global registration took a total of 144.00 seconds per frame using
the grid strategy, while it only took 28.36 seconds per frame for the
graph based strategy (excluding initialization time in both cases).

Second, the graph-based representation dealt robustly with
topology issues. Since we can prune edges of the graph based on
the optimized motion, the algorithm can handle topologically diffi-
cult cases robustly. An example of this is shown in Figure 13, where
we display the grid and graph deformed according to the optimized
weights and transformations. The grid based result shown on the
left has many problems where grid cells stretch apart. This is be-
cause the limited resolution of the grid cannot resolve the left and
right leg of the robot when they move close together. In contrast,
the graph-based result shown on the right does not suffer from this
issue.
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(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Fig. 15. Registration for a grasping hand sequence [Weise et al. 2007], where the hand starts from an open pose and gradually closes to a grasping pose.
Shown are the input data (displayed as a red color mesh) and the sparse DSG. Our algorithm tracks the hand well in the first part of the animation, where most
of the surface is visible. In (c), the surface of the fingers start to gradually disappear, and the middle segment of the index finger starts to lose track and rotate
backwards. In (d), the algorithm loses track of the middle and ring fingers, because most of these fingers are occluded (except for the fingertips).

8.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the deformable re-
construction method by Wand et al. [2009]. For the car, robot, and
pink panther datasets, their method was not able to reconstruct the
entire sequence because there was too much motion between the
frames. This is because they rely only on a local optimization us-
ing closest points, whereas our method uses a robust initial pair-
wise initialization that is able to automatically handle frames with
large motion. An example of this is shown in the top row of Fig-
ure 14. Our method (right) produces a correct registration, while
their method (middle) fails for this pair.

We also tested our algorithm on several examples from Wand
et al. [2009]. Figure 14 (right) shows reconstructions of the hand-
2 and popcorn tin datasets, and Figure 15 shows a result for the
grasping hand (hand-1) dataset. These sequences exhibit non-rigid
motion, especially the popcorn tin dataset. Our algorithm can suc-
cessfully capture the overall shape and produce a coarse articulated
motion of the subject. However, it does not reproduce some fine
details in the surface deformation.

9. SUMMARY AND CONCLUSION

We have presented a method to reconstruct an articulated 3D model
from a set of range scans. From a sequence of range scans, we
solve for the division of the surface into parts (weights) and the
motion for each part (transformations) to align all input scans. For
this purpose, we used an improved robust registration to solve for
a initial pairwise registration between pairs of adjacent frames in
the sequence. Then, we formulated a simultaneous registration of
all input frames to minimize registration error. This optimization
included joint constraints that preserves the connectivity between
parts and automatically handled cases when parts are disappear or
reappear. We demonstrated that we can reconstruct a full 3D ar-
ticulated model without relying on markers, a segmentation, or a
template. Finally, we demonstrated that the reconstructed model is
deformable and can be interactively manipulated into new poses
using a simple inverse-kinematics extension of our optimization al-
gorithm.

A limitation of our method is that there needs to be enough over-
lap between adjacent frames in the range scan sequence to obtain
a good alignment. For example, if one frame captures the surface
from the front, and the next frame captures the surface from the
back, there will be not enough overlap to match these frames to-
gether in the registration. This means that the order of the range
scans in the sequence should maintain a reasonable amount of over-
lap between adjacent pairs of frames. A temporal ordering of the
scans, for example, would produce a sequence with a reasonable
amount of overlap. However, even this is not enough sometimes

when there is severe occlusion. For example, our algorithm loses
track of the fingers in the hand sequence because of too much miss-
ing data, as shown in Figure 15.

Another shortcoming of our ICP-based registration is the han-
dling of “slippable” parts such as cylinders. For example, the fin-
gers of the hand example in Figure 15 have cylindrical symmetry,
so the ICP registration can converge into a state where the segments
of the fingers are “twisted” or rotated about the axis of symmetry
(Figure 15c). Although hinge joints could disambiguate cylindri-
cal symmetries, we found that it was difficult to estimate accurate
hinge joints in this case.

Currently our method is applicable for reconstructing articu-
lated subjects and coarsely capturing non-rigid subjects. However,
it would be interesting to adapt our algorithm for high-quality non-
rigid reconstruction. For this case, estimating “flexible” transfor-
mations would be appropriate, for example, estimating affine trans-
formations with additional surface displacements. Also, it would
be useful to find a way to optimize for smooth weights with-
out causing overfitting. We believe that there should be a middle
ground between solving for separate transformation for every sam-
ple point [Li et al. 2008] and our method of solving for the weight
at each sample point.

We would also like to reduce the parameters in our algorithm.
An alternative to specifying various thresholds is to use a robust
error metric similar to the work of Nishino and Ikeuchi [2002]. In
this case, the outliers would automatically be identified during the
optimization, without a need to specify hard thresholds.

Finally, we would like to investigate ways of improving the per-
formance of the algorithm. In particular, since our method estimates
the weights and transformations for all frames simultaneously, we
need to keep all of the input scans in memory. We would like to de-
velop a streaming version of our algorithm that reduces the mem-
ory requirements and allows us to process longer sequences. In ad-
dition, if we can detect when reasonable weights have been ob-
tained, we can skip the weight optimization step to save time in the
algorithm. We believe that an improved version of our algorithm
along these lines can be implemented for real-time markerless mo-
tion capture applications.
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