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We present a method to reconstruct articulated 3D models from dynamic,
moving range scan sequences. The main contribution is a novel global reg-
istration algorithm that aligns all scans to a common pose, and reconstructs
a full 3D model from the geometry of these scans. Unlike other registration
algorithms, we express the surface motion in terms of a reduced, articulated
deformable model and solve for joints and skinning weights. This allows
a user to interactively manipulate the reconstructed 3D model in order to
create new poses and animations.

We express the global registration as an optimization of simultaneously
estimating the alignment and articulated structure for all scans. Compared to
a sequential registration approach, the global registration estimates the cor-
rect articulated structure that is based on the motion observed in all frames,
resulting in a more accurate registration. In addition, we employ a graph-
based representation for the skinning weights, which is successful in han-
dling difficult topological cases well. We show that we can automatically
reconstruct a variety of 3D models, without the use of markers, user-placed
correspondences, a segmentation, or a template. In addition, our algorithm
also supports reconstructing reasonable piecewise rigid approximations to
non-rigid motion sequences.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric Algorithms; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Surface Fitting

General Terms: Algorithms, Measurement
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Fig. 1. Our method can automatically reconstruct articulated, poseable
models from a sequence of single-view dynamic range scans.

1. INTRODUCTION

While 3D scanning has traditionally focused on acquiring static,
rigid objects, recent advances in real-time 3D scanning have
opened up the possibility of capturing dynamic, moving subjects.
Range scanning has become both practical and cost-effective, pro-
viding high-resolution, per-pixel depth images at high frame rates.
However, despite the many advances in acquisition, many chal-
lenges still remain in the processing of dynamic range scans to re-
construct complete, animated 3D models.

Our research vision is to automatically reconstruct detailed,
poseable models that animators can directly plug into existing soft-
ware tools and use to create new animations. The main challenges
to achieve this are to resolve the occlusion and missing data that oc-
cur in range scans, and to recover the structure of the deformation
exhibited by the scanned object. Missing data is due to a limited
view of a 3D subject from any single viewpoint at any point in
time. Therefore, we must align and integrate scans taken over time
and from different viewpoints to reconstruct a complete surface.
Since the subject moves from frame to frame, we must also track
the spatially varying surface motion to align the data over time. We
recover the structure of the object deformation by expressing the
surface motion in terms of a deformation model using a small set
of parameters. The recovered motion model allows animators to
easily create new animations and performances of the subject.

We present an algorithm to address these challenges by recon-
structing a rigged, articulated 3D model from dynamic range scans.
Given a sequence of range scans of a moving subject, our algorithm
automatically aligns all scans to produce a complete 3D model. We
formulate our approach as a single optimization problem that si-
multaneously aligns partial surface data and recovers the motion
model, similar to the pairwise registration method of Chang and
Zwicker [2009]. This is accomplished without the assistance of
markers, user-placed correspondences, a template, or a segmen-
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tation of the surface. Our method is unique because we perform
the alignment by estimating the parameters of a reduced, articu-
lated deformation model. In contrast to methods that focus only on
registration or reconstruction of the original recording, our method
produces a 3D model that can be interactively manipulated with no
further post-processing. Our main contributions are:

—A global registration algorithm that optimizes the registration si-
multaneously over all frames,

—A novel registration formulation that produces a 3D model with
skinning weights learned from incomplete examples,

—An improved robust registration technique to automate the global
registration with initial pairwise alignments of adjacent frames.

The main advantages of our method is that it can handle range scans
with fast motion and significant occlusion, and that it produces a
rigged 3D model. Our method is most useful when it is impossi-
ble to acquire a complete, static pose of the subject, because we
do not require a template shape nor a template rig with a prede-
fined skeletal structure. However, our method is mainly applica-
ble to articulated subjects, and it may produce a rough piecewise
rigid approximation of the surface motion for non-rigid cases. We
demonstrate the effectiveness of our algorithm by reconstructing
several synthetic and real-world datasets. We also present a simple
extension of our algorithm to interactively manipulate the resulting
3D model.

2. RELATED WORK

Template-Based Reconstruction. A popular approach to recon-
struct deforming sequences of range scans is to fit a template to the
scan data. A template provides many advantages in tracking and
fitting the data, with the expense of requiring the user to scan or
model it in advance. Our work addresses the more general problem
of reconstructing the template automatically from the range scans.

Many techniques rely on tracked marker locations to automati-
cally fit a template model to the scanned point cloud data [Allen
et al. 2002; 2003; Anguelov et al. 2005; Pauly et al. 2005]. For the
specific case of deforming garments, the method by Bradley et al.
[2008] automatically tracks a few key locations to fit the template.
The pairwise registration by Anguelov et al. [2004] does not re-
quire markers and is robust to the initial pose of the scan, but it
requires a template and uses a global optimization that is expen-
sive to compute. Markerless shape capture is also possible when
the range scan sequence has a high frame rate. For example, it is
possible to capture human faces by fitting a template face model
to a structured-light range scan video sequence [Zhang et al. 2004;
Weise et al. 2009]. The resulting face animation can be used to cre-
ate new animations or track novel sequences in real-time, but again
the template must be known in advance. Li et al. [2009] automati-
cally reconstruct a non-rigid range scan video sequence and repro-
duce the fine surface detail observed in the range scans. However,
this also requires a coarse template of the subject to be scanned
prior to the tracking step. Although our work is focused on articu-
lated subjects, the articulated assumption allows us to track larger
temporal spacing between scans, therefore producing a complete,
rigged model without using a template.

Templates are also used for estimating shape using multiview sil-
houette/video data [de Aguiar et al. 2008; Vlasic et al. 2008; Gall
et al. 2009] or sparse marker data [Park and Hodgins 2006; 2008].
Although these methods address the same problem of capturing
deformable geometry, they do not address how to process high-
resolution range scan data taken from just one or two views. Also,
while the surface detail in our work comes directly from the range

scans, most of the surface detail in these methods come directly
from the template, or it is added as a post-process using dense nor-
mal maps computed by shape from shading [Ahmed et al. 2008].
Templateless Reconstruction. To tackle the reconstruction prob-
lem without a template, many researchers have considered model-
ing a dynamic range scan sequence as a surface in four-dimensional
space and time, rather than a single 3D surface that changes its con-
figuration over time. Mitra et al. [2007] use kinematic properties
of this 4D space time surface to track points and register multi-
ple frames of a rigid object. Süßmuth et al. [2008] and Sharf et al.
[2008] explicitly model and reconstruct the 4D space-time surface
using an implicit surface representation. However, these techniques
require the surface to be sampled densely in both space and time,
which is an assumption that our method does not require. In ad-
dition, the latter method does not track points to produce corre-
spondence between frames, and it is more appropriate for filling in
missing surface data not observed by the scanner.

The algorithm by Wand et al. [2009] reconstructs an animated
3D model from range scan sequences without using a template.
Compared to the works mentioned above, this method is more ro-
bust to missing data in the scans. It aligns multiple frames by solv-
ing the surface motion in terms of an adaptive displacement field.
This motion representation handles smooth deformations well, but
our representation is more compact and accurate for representing
articulated motion. Wand et al. [2009] align and merge pairs of ad-
jacent frames in a hierarchical fashion, gradually building the tem-
plate shape hierarchically as well. In contrast, we simultaneously
align all frames at once using an explicit piecewise rigid deforma-
tion model. In addition, our method is more robust to large move-
ments and produces a fully rigged, poseable 3D model, rather than
just reconstructing the original recorded motion sequence.

Our method is partly inspired by the articulated motion capture
and reconstruction method of Pekelny and Gotsman [2008]. How-
ever, this method requires the user to manually segment a range
scan in advance, whereas we automatically solve for the segmenta-
tion using the motion observed in all frames.
Unsupervised Pairwise Registration. While our method is de-
signed for aligning multiple range scans, several methods for align-
ing a pair of scans are related to our work as well. A closely related
work is the method by Chang and Zwicker [2009], which solves for
the alignment between a pair of range scans by estimating the pa-
rameters of a reduced deformable model. A possibility is to apply
this method directly for multiple scans, using a sequential pairwise
registration and accumulation approach. However, in this case the
correct articulated structure is not estimated properly, because it
considers the movement in only two frames at a time. Also, un-
less a very high resolution is used, the grid-based representation of
the weights cannot handle difficult topological cases with close or
nearby surfaces. As we will demonstrate in the results section, we
overcome these limitations to handle multiple frames and difficult
topological cases effectively.

The transformation sampling and optimization approach by
Chang and Zwicker [2008] is used in our work to initialize the
registration between pairs of adjacent frames. However, this tech-
nique is too slow to apply for an entire sequence of range scans.
We improve the performance of this method by subsampling the
geometry. Our use of a graph to represent the deformation model
is related to the approach by Li et al. [2008] and [Sumner et al.
2007]. However, we solve for weights on the graph nodes, as op-
posed to solving for a separate affine transformation at each node.
The method by Huang et al. [2008] also uses a graph, but they use it
as an approximation of geodesic distances in order to extract a set of
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Algorithm 1: ARTICULATED GLOBAL REGISTRATION

Data: A sequence of range scans, denoted (F0, . . . , Fn−1)
Result: Dynamic sample graph G of the completed surface,

weightsW for each vertex v ∈ G, rigid
transformations T for all parts and frames

begin1
Compute initial pairwise registration of adjacent frames2
(Section 4);
Initialize dynamic sample graph G from F0 (Section 6);3
i← 0;4
while Fi 6= Fn−1 do5

Apply initial pairwise registration of Fi and Fi+16
(Section 6);
Detect occluded parts in Fi+1 (Section 7);7
Perform global registration of {F0, . . . , Fi+1}8
(Algorithm 2);
Update dynamic sample graph G (Section 6);9
i← i+ 1;10

Resample G densely and reconstruct surface mesh11
(Section 8.1);
return G,W, T ;12

end13

geodesically consistent correspondences. However, this approach is
problematic when a large amount of surface data is missing.
Deformation Modeling from Examples. Our inverse kinemat-
ics system resembles that of FaceIK [Zhang et al. 2004] or
MeshIK [Sumner et al. 2005], which extrapolate a set of exam-
ples to match user constraints. However, the deformation model
that we produce is a parametric model that explicitly models parts
and joints, as opposed to a data-driven method that blends a set of
example meshes. Therefore, our interactive IK system does not use
the original examples at run-time and only uses the reconstructed
deformation parameters (skinning weights and joints) to pose the
3D model.

Our deformation modeling approach is closer to the example-
based skeleton extraction work [Anguelov et al. 2004; Schaefer
and Yuksel 2007; de Aguiar et al. 2008]. However, while these ap-
proaches estimate the deformation parameters using a set of com-
plete examples that are already in correspondence, we estimate
them directly from incomplete range scan data.

3. ALGORITHM OVERVIEW

The input to our algorithm is a sequence of n range scans, where
the subject is moving from scan to scan. We denote this sequence
as F0, . . . , Fn−1. We also expect this to be in temporal order, so
that there is sufficient overlap between frames to align the scans.

The goal of our algorithm is to align all scans to a common pose
and express the surface motion using a reduced set of parameters.
We pose this problem as a skinning problem: finding transforma-
tions per frame and weights per vertex. When we apply these trans-
formations to each scan according to the weights, all scans should
be aligned with each other.

The basic structure of our method is shown in Algorithm 1.
In the following sections, we will describe each part of the
algorithm in detail. In a preprocessing step we solve for an
initial pairwise registration for each pair of adjacent frames
(F0, F1), (F1, F2), . . . , (Fn−2, Fn−1) (line 2, Section 4). We use
the transformation sampling and optimization approach by Chang
and Zwicker [2008]. This method is used because it can align a

pair of scans while being robust to missing data and large motions.
We also improve the speed of this method so that it is suitable for
aligning multiple frames.

In the core component of our approach we refine this initial reg-
istration and produce a global registration of all frames (lines 3–
10). The main idea is to optimize the transformations and weights
simultaneously across all frames to align them to a common ref-
erence pose. The optimization operates on a central data structure
that we call the dynamic sample graph (DSG). The DSG is formed
on a subset of points sampled from the input scans. We select the
points such that they form a uniform sampling of the complete sur-
face that has been registered so far. The graph is dynamic because
we incorporate new data as it becomes available in new frames that
are added to the optimization. The main advantage of the DSG is
that it removes redundancies in the input range scans and, hence,
makes the global registration tractable.

To give an overview of the optimization process outlined in Al-
gorithm 1, we start by creating the initial DSG (line 3, Section 6).
Then, the frames are introduced one at a time into the global reg-
istration (lines 5–10). For each frame, we apply the initial pairwise
registration (line 6, Section 6) which gives an initial alignment of
the new frame to the surface registered so far. We then detect oc-
clusions and disocclusions of surface parts in the new frame (line
7, Section 7) and optimize the transformations T and weightsW to
simultaneously align all frames (line 8, Section 5.3). Lastly we up-
date the DSG (line 9, Section 6) to incorporate new samples from
the new frame, and we move on to the next frame. After finishing
the entire sequence, the final post-processing step is to resample
the surface densely and reconstruct a mesh of the completed sur-
face (line 11, Section 8.1).

4. INITIAL PAIRWISE REGISTRATION

In a preprocessing step we solve for an initial pairwise registra-
tion for each pair of adjacent frames. Since the scans have missing
data and their poses can be far apart, the algorithm of Chang and
Zwicker [2008] is well suited for producing a robust registration.
It consists of two steps: (1) sampling rigid transformations from
feature-based correspondences between the scans, and (2) optimiz-
ing the assignment of these transformations onto each vertex of the
scans, so that applying the transformations produces an alignment
that minimizes distance between the scans while preserving their
shape.

The details of the method are the same as originally described
by Chang and Zwicker [2008]. However, with range scans that typi-
cally have thousands of points, this method is too slow to process an
entire range scan sequence with many frames. To improve perfor-
mance, we restrict the optimization to a small subset of points (typ-
ically a few thousand points) sampled uniformly from each scan
using best-candidate sampling [Mitchell 1991]. This makes sense
for articulated movement, where the number of unique transforma-
tions producing the movement is small compared to the number of
scanned points. We build a k-nearest neighbor graph with k = 15
on the subset of points to specify the smoothness constraints nec-
essary for the optimization [Chang and Zwicker 2008].

After the optimization, we propagate the transformations as-
signed to the subset to all remaining points using nearest-neighbor
interpolation. This produces the initial pairwise registration that we
will use as an initialization for the global registration.

A comparison of the optimization using all points versus using a
subset is shown in Figure 2. Although we obtain a good alignment
in both cases, the improved method achieves a significant speedup.
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(a) Source (blue) and Target (red)
21325 points total

(b) Alignment Using
All Points: 1330.4 sec

(c) Alignment Using
1000 Points: 87.3 sec

Fig. 2. Comparison showing performance improvement for the initial pair-
wise registration. With the same parameters, optimizing on a subset of the
points produces a similar registration in a fraction of the time. The color
variation in (b,c) visualizes how the transformations are assigned to the sur-
face.

Also, the use of the graph improves the connectivity between parts
that may be disconnected in the original mesh.

5. GLOBAL REGISTRATION

The core part of our method is the global registration step (line
3-10, Algorithm 1), which optimizes for the best transformations
and weights that simultaneously align all introduced frames. Be-
fore discussing the details of the algorithm, we first describe our
deformation model in more detail.

5.1 Deformation Model

Transformations. We represent the surface motion using a set of
rigid transformations in each frame. We designate the first frame as
the reference frame and define the transformations relative to this
reference1. Thus, each transformation moves a part of the surface
in frame f to align to the corresponding part in the reference frame
F0. We use the notation T (f�Ref)

a to denote the ath transformation
for frame f , which transforms in the direction from frame f to the
reference frame (Figure 3a). To aid our method, the user specifies a
maximum number of rigid transformations B used to approximate
the surface motion.

Each T (f�Ref)
a consists of a rotation matrix R ∈ SO(3) and

translation vector ~t ∈ R3. To apply this transformation to a point
x ∈ R3, we apply the formula T

(f�Ref)
a (x) = R

(f�Ref)
a x +

~t
(f�Ref)
a . We also express the relative transformation T (f�g)

a be-
tween any two frames f to g by transforming to the reference and
then transforming to the desired frame (Figure 3b) as follows:

T (f�g)
a (x) =

(
T (g�Ref)
a

−1 ◦ T (f�Ref)
a

)
(x)

= R(g�Ref)
a

> [(
R(f�Ref)
a x+~t(f�Ref)

a

)
−~t(g�Ref)

a

]
. (1)

Therefore, once we know the transformations on each frame, we
can transform between any two frames. This definition makes it
easy to specify and solve for the alignment for multiple frames.
Weights. We associate the transformations to the points indirectly
by assigning weights to each point. Each weight is aB-dimensional
vector w(x), where the ath component wa(x) indicates the influ-
ence of transformation a to the point x. This is analogous to “skin-
ning” a model. By changing the weights during the optimization,

1This is similar to the approach used by Neugebauer [1997] for registering
scans of rigid objects.

Reference FrameFrame 1

. . .

Frame 2

Frame 3

Frame 4

Frame nT (1   Ref)
j

T (2   Ref)
j

T (3   Ref)
j

T (4   Ref)
j

T (n   Ref)
j

Reference Frame

Frame f Frame g

T (f    Ref)
j

T (f    Ref)
j

T (g    Ref)
j( )-1

T          (Ref    g)
j =

T          (Ref    g)
j

(a) Configuration of Transformations (b) Composition Between Frames

Fig. 3. Organizing the transformations for simultaneous registration. (a)
We solve for the set of transformations that align each input frame to the
reference frame F0. (b) We can transform between any pair of frames f
and g by first transforming from f to the reference and applying the inverse
transformation to g.

Frame 0
(reference) All Samples

Frame i Frame i+1 Frame i+2

Fig. 4. Initially the vertices of the dynamic sample graph (DSG) are uni-
formly sampled from the reference frame (far left). As we introduce more
frames (i, i+1, i+2), we add samples only from parts of the surface that are
missing in previous frames. On the far right, we plot all sample points after
transforming them to frame 0. Because of our careful selection strategy, the
samples minimize redundancy and form an overall uniform sampling of the
completed surface.

we can dynamically adjust where each transformation is being ap-
plied. Having this level of indirection makes sense for an articulated
subject, where a small number of transformations can express the
movement of the surface.

In our method, we solve for binary weights, where one com-
ponent is exactly 1 and the rest are 0. This is because solving
for smooth weights during registration leads to overfitting of both
transformations and weights [Chang and Zwicker 2009]. There-
fore, all components of w(x) are 0 and only one component
wj(x)(x) = 1. Here, we use j(x) to indicate the index of the com-
ponent of w(x) with 1.
Dynamic Sample Graph (DSG). We introduce the dynamic sam-
ple graph (DSG) to efficiently represent the skinning weights and
make the optimization over all frames tractable. The vertices of
the DSG are a subset of the points from all input frames. We will
optimize for skinning weights only on the vertices of the DSG,
and interpolate the weights on all other scanned points, thus giv-
ing a sparse representation of the weight function. We will also use
the edges of the DSG to impose additional constraints on nearby
samples to incorporate the skinning model in the optimization. The
DSG is dynamic because we add new samples from each new frame
that is introduced into the optimization. We select the samples care-
fully to minimize redundancy, form a uniform distribution, and pro-
vide adequate coverage of the entire surface seen so far. This pro-
cess is illustrated in Figure 4. We discuss details on how to sample
the points and form the edges of the DSG later in Section 6.
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5.2 Optimization Objective

The goal of the optimization is to solve for weights and transfor-
mations that align the DSG to all frames simultaneously. The op-
timization objective has three terms: (1) Efit(T ,W), which mea-
sures the alignment distance between the DSG and all frames, (2)
Ejoint(T ), which constrains neighboring transformations to agree on
a common joint location, and (3) Eweight(W), which constrains the
weights of neighboring points to be the same. With coefficients
α, β, γ for each term, we write the entire objective as

argmin
T ,W

α Efit(T ,W) + β Ejoint(T ) + γ Eweight(W). (2)

Fitting Objective Efit. This term measures the alignment distance
of the DSG to all frames. Let us denote a sample in the DSG by x.
With each sample we also store the index of the frame from which
it was selected and denote this by f(x). To evaluate the fitting ob-
jective, we transform each sample to all other frames and measure
how close it is to the scanned data of these frames. We use a ro-
bust error metric based on the distance to the closest corresponding
point on the other frame. For a sample x in frame f(x), we mea-
sure its alignment distance to frame g by transforming it to frame
g (using T (f(x)�g)

j(x) (x)) and finding the closest corresponding point

y
(g)

j(x) ∈ Fg . This notation represents the point on frame g closest
to the transformed position of x, assuming that we apply transfor-
mation j(x). Note that the closest point in frame g depends on the
transformation j(x) that is assigned to x. We make this explicit in
our notation by using the subscript j(x). Once we have the corre-
sponding point, the total alignment distance is given by the formula

Efit(T ,W) =
∑
x

∑
Fg

d
(
T

(f(x)�Ref)
j(x) (x), T

(g�Ref)
j(x)

(
y
(g)

j(x)

))
. (3)

Here we have computed the distance d(·, ·) between x (in frame
f(x) and its corresponding point y(g)

j(x), where both points have
been transformed to the reference frame (see Figure 5). The re-
sulting values are summed up over all sample positions x and all
frames g to compute the total alignment distance.

We design the distance d(x,y) to be robust under missing data
and outliers. This metric first determines whether the two points
x,y are valid corresponding points. We define three criteria for
determining validity.

(1) Assume that the sample x is from frame f(x). Then it will
never have a valid corresponding point in any frame g that was
added before frame f(x), i.e., when g < f(x). To see this, note
that when we add a new frame, we add samples to the DSG only
from surface parts that are missing in all previous frames (for de-
tails see Section 5.1). Therefore, for g < f(x) no sample added
from frame f(x) will have a corresponding point in any frame g.

(2) Because of scanner occlusion, a sample x from frame f may
not have a corresponding point in frame g even when g > f . Adapt-
ing the strategy from Pekelny and Gotsman [2008], we use simple
thresholding to detect this case. The corresponding point y is in-
valid when

—the Euclidean distance ‖x− y‖ exceeds a threshold τd,
—the angle between their normals exceeds a threshold τn,
—or the distance exceeds a smaller threshold τb when y lies on the

boundary of Fg .

(3) When we optimize the weights (see Section Section 5.3),
j(x) becomes a variable, not a fixed constant. Therefore, we main-
tain a separate closest point y

(g)
a for each potential transforma-

Frame 0 (reference) Frame i Frame i+1 Frame i+2

x

Minimize
Distances

y j(x)
(i+1)

T              (        )
(i+1    Ref)
j(x) y j(x)

(i+1)

y j(x)
(i+2)

y j(x)
(i+2)T              (        )

(i+2    Ref)
j(x)

T          (x)
(i    Ref)
j(x)

Fig. 5. To measure alignment, we compute distances between sample
points x (yellow) and closest corresponding points y

(g)
j(x)

(blue) trans-
formed to the reference frame. We add up these distances to measure the
alignment of all frames in the sequence. We optimize for the transforma-
tions and weights that minimize this total distance.

tion T (f�g)
a (x). Now, consider the current transformation j(x) as-

signed to x. If the closest point y(g)

j(x) is invalid, then most likely
there is no corresponding point at all in frame g. Thus, in this case
we set all y(g)

a for all transformations a as invalid.
The reason for this strategy is that, even if the current transforma-

tion j(x) assigned to x is the correct one, the region corresponding
to x in a frame g may be occluded. In this case, the correspond-
ing point y(g)

j(x) will be invalid. By coincidence, however, one of
the other transformations may move x very close to a valid corre-
sponding point, but in a completely wrong location. As a result, the
weight optimization will prefer to assign this incorrect transforma-
tion. Our strategy prevents this problem by conservatively declaring
that there is no valid corresponding point for any transformation if
the current transformation does not yield a valid correspondence.

If x,y pass the three criteria, we include their distance in Efit;
otherwise their distance is 0 and not included in the term. The dis-
tance for valid pairs is a weighted sum of the point-to-point and
point-to-plane distance measures. The formula for d is

d(x,y) =

{
ηpt ‖x− y‖2 + ηpl ((x− y) · ~ny)

2 if x,y is valid
0 otherwise.

(4)

where ~ny is the surface normal of y, transformed along with y
using only the rotational part of the transformation. We use the
weights ηpt = 0.2 and ηpl = 0.8 for our experiments.
Joint Objective Ejoint. The joint term constrains neighboring trans-
formations to agree on a common joint location. It ensures that the
parts stay connected to each other and do not drift apart. We sup-
port automatically detecting and constraining two types of joints: 3
DOF ball joints and 1 DOF hinge joints. First, we will explain the
definition of the joint constraints. Then, we will explain how the
joint parameters are computed.

We define the joint locations in the reference frame. A hinge
joint specifies that two transformations are connected along a line
in R3, which means that both transformations transform this line to
exactly the same location. We call this line the hinge axis, which
can be described using the parametric form u + t~v, where t ∈ R.
A ball joint says that the transformations connect on a single point
u ∈ R3. We express a ball joint in the same form as the hinge,
except that ~v = ~0. An example of hinge joints detected for the
robot model is illustrated in Figure 6 (left).
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T  (u)a
-1

-1

Minimize
Distance

T  (u)b

T  = (R  ,t )a a a

T  = (R ,t )b b b

Reference Frame Input Frame

u

Hinge Joints

Fig. 6. Estimating and constraining joints in our optimization. (Left) we
show hinge joints that are estimated automatically. The bars represent the
hinge axes. (Middle & Right) Ejoint constrains the transformed locations
of u to agree on the same point by minimizing the distance between the
transformed locations.

Once we know these joint locations and types, we can constrain
the transformations to map the joint locations to the same place
(Figure 6, middle & right). Let us represent a joint between trans-
formations for parts a and b using the tuple (uab, ~vab). We addi-
tionally set a valid/invalid flag for each tuple, depending on whether
there actually is a joint between transformations a and b. In the ob-
jective, we constrain the joints using the term Ejoint:

Ejoint(T ) =
∑

All Fi

∑
Valid Joints

(a,b)

∑
t ∈ [−10s..10s]∥∥∥T (i�Ref)

a

−1
(uab + t~vab)− T (i�Ref)

b

−1
(uab + t~vab)

∥∥∥2.
(5)

Here, we use 20 values of t spread in the range [−10s..10s] where
s is the mesh resolution (or grid sample spacing)2. For a hinge joint,
this constrains a set of points along the hinge axis. In the case of a
ball joint, we set ~vab = 0, so this term constrains only one point
uab. Inverses of the transformations are used in this term because
the joint locations are defined on the reference frame.
Detecting Joint Locations. To detect joints and estimate their lo-
cations, we first find which pairs of transformations (a, b) are likely
to share a joint in between, and we determine the location using the
transformations a b that we have solved for each frame.

We use the edges of the DSG to find pairs of transformations
(a, b) likely to have a joint. If there are many edges in the DSG
where one end has weight corresponding to transformation a and
the other end with weight b, then these transformations neighbor
each other and are likely to share a joint in between. On the other
hand, if there are no such edges, then most likely there is not a
joint between these transformations. To help our discussion, let an
edge in the DSG be incident to transformation a if one of its end
points x ∈ S has weight j(x) = a. If either of the following ratios
exceeds a threshold (set to 15%):

# edges incident to both a, b
# edges incident to a

,
# edges incident to both a, b

# edges incident to b
(6)

we take the pair a, b as a candidate for sharing a joint. We then
average all endpoints of edges incident to both a, b to obtain an

2A similar approach is used by Knoop et al. [2005].

estimate uest ∈ R3 of the joint location. Since we will define joint
locations on the reference frame, we compute uest on the reference
frame. This estimate of the joint location serves to regularize the
optimization below and to prune unreasonable estimates of the joint
location.

Once we have a set of candidate pairs (a, b) and estimated joint
locations uest, we solve for joint locations u on the reference frame
based on the solved transformations. We perform a least-squares
minimization for each pair (a, b):

argmin
u∈R3

∑
All Frames Fi

∥∥∥T (i�Ref)
a

−1
(u)− T (i�Ref)

b

−1
(u)
∥∥∥2 + λ ‖u− uest‖2

(7)

The first term aims to find the location u that stays fixed under
the transformations, and the second term helps to pull the location
closer to uest in case the joint is close to being a hinge and admits
multiple solutions.

We first try to detect hinge joints using this minimization. We
initially set λ = 0 and solve the least-squares problem using the
SVD. The joint is a hinge if the ratio of the smallest singular value
to the sum of the singular values is less than a threshold (set to 0.1).
If this is the case, we truncate the smallest singular value to zero
and solve for the equation of the line u′+ t~v′ satisfying the system.
The final hinge joint parameter u is the point on this line that is
closest to uest, and ~v is the normalized line direction ~v′/‖~v′‖.

If the joint is not a hinge, it is a ball joint and we determine
a single joint location u with ~v = 0. In this case, we solve the
minimization once again, but with λ = 0.1 to pull the solution
nearby the estimated location.

Finally, we perform a sanity check after solving for the joint lo-
cation. If the distance between the solved and estimated locations
exceeds the length of a hinge (‖u−uest‖ > 20s), we consider it an
unreasonable estimate and discard the joint.
Weight Objective Eweight. Constraining the solution to solve for bi-
nary weights transforms the problem into a discrete labeling prob-
lem, where we try to find an optimal assignment of transformations
to the sample points x ∈ S. The goal of the weight objective is to
constrain neighboring samples to have a similar weight. This way,
sets of samples with the same weight form well-connected and con-
tiguous regions on the DSG.

We use a simple constant penalty when two neighboring weights
are different:

Eweight(W) =
∑

(x,y)∈E

I (j(x) 6= j(y)) , (8)

where I(·) is 1 if the argument is true and 0 otherwise, and E is
the set of all edges in the DSG. This is known as the Potts model, a
discontinuity-preserving interaction term widely used for labeling
problems [Boykov et al. 2001].

5.3 Optimization

To perform the optimization, we divide the solver into two phases
and alternate between each phase until the solution converges (see
Algorithm 2). In the first phase, we keep the weights fixed and solve
for the transformations (lines 6-10), and in the second phase, we
keep the transformations fixed and solve for the weights (lines 16-
22). This strategy works well in practice and produces a good align-
ment within a few iterations. Also, we try to detect if previously
disappeared parts have reappeared in the new frame (line 12).

In our experiments, we observed that the transformations for a
frame do not change much after the frame is first introduced and
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Algorithm 2: OPTIMIZE T ,W (DSG, T ,W, F0, . . . , Fi+1)
Data: Dynamic sample graph (DSG), associated weightsW ,

transformations for all frames T , and all initialized
input frames F0, . . . , Fi+1

Result: Optimized transformations and weights T ,W
begin1

Select a subset of frames to optimize the transformations2
(e.g. a sliding window of 1–10 frames);
while Not converged do3

begin (Phase 1: Solve for the transformations T )4
Re-estimate joint locations and types;5
while Not converged do6

Update the closest points y(g)

j(x) for all x ∈ S7
and all Fg , where g ∈ [0 .. i+1];
Construct the sparse matrices for Efit and Ejoint;8
Solve linear system and update9
transformations;
Check convergence criteria;10

end11
Detect reappearing transformations in Fi+1 by aligning12
occluded parts with unmatched surface points
(Section 7);
Check convergence criteria;13
if converged then break;14
begin (Phase 2: Solve for the weightsW)15

Update the closest points y(g)
a for all samples x,16

all Fg , and all transformations a, where
g ∈ [0 .. i+1] and a ∈ [0 .. B];
Precompute Efit for all x and for all a;17
Create Eweight using the edges of the DSG;18
Solve discrete labeling using α-expansion;19
Discard parts that are too small;20
Reuse unassigned weight components by splitting21
regions with highest Efit error;
Update the weights for each sample x;22

end23

end24

optimized. Therefore, we solve for the transformations only on the
newest c frames that have been optimized. We can think of this as
a “sliding window” in which to optimize the transformations. Low-
ering the value of c improves the speed of the registration, while
raising this value may produce a more accurate registration at the
cost of speed. Note that this only affects optimizing the transforma-
tions; the weights are always optimized using all frames.
Optimizing the Transformations. For optimizing the first
phase, we solve for the transformations minimizing the terms
α Efit(T ,W) + β Ejoint(T ) from Equation 2, while keeping the
weights fixed. Since the location of the closest corresponding points
y
(g)

j(x) depend on the transformations, we use an iterative approach
in the spirit of the iterative closest point (ICP) algorithm [Besl and
McKay 1992] (line 6–10 in Algorithm 2). We first keep the trans-
formations fixed and compute the closest points, then we keep the
corresponding points y(g)

j(x) fixed and optimize the transformations,
and we repeat this alternation until convergence.

We perform the optimization using the Gauss-Newton algorithm,
linearizing the objective function in each iteration by substituting a
linearized form of each rigid transformation. To solve for the trans-

formations on a limited number of frames, we can simply remove
the variables/constraints (and also not update closest points) involv-
ing transformations from frames outside of the set of interest. This
significantly reduces the time to perform this phase.
Optimizing the Weights. For the second phase, we solve for the
weights of each sample point x that minimize the terms α Efit +
γ Eweight, while keeping the transformations fixed. Since we con-
strain the weights to be binary, we are essentially solving for the
value of j(x) for each sample point that minimizes the total error.
We solve this discrete optimization problem using the α-expansion
algorithm [Boykov et al. 2001; Boykov and Kolmogorov 2004;
Kolmogorov and Zabih 2004]. Here, we use edges of the DSG di-
rectly to specify smoothness constraints between points. To save
computation time during the optimization, we precompute Efit in
the DSG and store the values in a 2-dimensional hash table for
quick access. We precompute and store the summand d(x,y) of
Efit separately per sample x and per transformation a, summed over
all frames g.

After the optimization, it may be the case that some transfor-
mations are applied to too few samples of the DSG. To facilitate
discussion, let us partition the DSG into its rigid parts, i.e. the sub-
sets Sa = {x ∈ DSG | j(x) = a}. If the number of points for
a rigid part is less than 1% of the total number of sample points,
then we remove the rigid part from the DSG and replace the weight
of its points with the weight of the closest point from a different
part. This results in “unused” transformations that are not assigned
to any samples.

Instead of completely throwing away these unused transforma-
tions, we can re-introduce them in a different location to reduce
registration error. We split the region with the highest registration
error in half and introduce the unused transformation by replacing
the weights in one of these halves [Chang and Zwicker 2009]. This
adds more degrees of freedom, allowing the optimization to refine
the alignment further for the region.

Specifically, we compute an average registration error for each
rigid part and its current transformation by evaluating the fitting
objective (Equation 3) for the points of each part separately and
dividing by the number of points. We then split the part with the
highest registration error into two. We split by randomly selecting
two seed points and dividing the points of the part according to
which seed is closer. Then, we leave one of the new parts as is, but
we replace the weights of the points in the other with an unused
transformation. This splitting process is continued until the highest
registration error is below a threshold 0.1s, or there are no unused
transformations left.
Checking for Convergence. We perform a convergence check
(Algorithm 2, lines 13-14) right after solving for the transforma-
tions, because the optimization is usually able to refine the trans-
formations further after the weights have changed. To detect if
the optimization for the transformations has converged, we mon-
itor the change of the objective function by examining the value
of the minimized residual. Denoting the total error residual at it-
eration ι as Eι, we apply the criterion |Eι − Eι+1| < ε(1 + Eι)
(where ε = 1.0 × 10−6) and stop the iteration if this condition
is met. We also have a maximum number of iterations, typically
set to about 20–30 iterations, and stop if we exceed this maximum
number. In our experiments, we observed that in most cases the
optimization converges in about 10–15 iterations. However, the op-
timization may enter an oscillating mode, where the closest points
switch back and forth indefinitely between a few points. Because
of this, convergence is not guaranteed; but in practice we have not
encountered any major problems.
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6. MAINTAINING THE DYNAMIC SAMPLE GRAPH

The dynamic sample graph (DSG) is an important component that
is involved in all stages of our algorithm. In this section, we dis-
cuss remaining details about how we manage the DSG, including
how to transfer the initial pairwise registration (Section 4) into a
format compatible with the DSG, how to update the DSG with new
samples when a frame is added, and how to interpolate the sparse
weight function defined on the vertices of the DSG.
Initializing the DSG. We initially create the DSG by uniformly
sampling a set of points on the reference frame. As a preprocessing
step, we sample a fixed fraction r of the points in every input frame
using the best-candidate technique [Mitchell 1991]. This results in
a Poisson-disk sampling of the points in each input frame. We de-
note the set of sampled points in frame f as Uf . Then, the initial
set of samples in the DSG is exactly U0. As we register each new
Fi, we will select samples from Ui to add to the DSG.
Applying the Initial Pairwise Registration. Every time we intro-
duce a new frame Fi+1 into the global registration, we need to find
the initial value of each transformation T (i+1�Ref)

a , where a ranges
from 0 to B. For this, we use the result of the initial pairwise reg-
istration between frame i and i + 1. However, the initial pairwise
registration specifies a transformation for every vertex of frame i,
whereas we want to apply the initial registration to the current DSG.

To apply the initial pairwise registration, we first partition the
DSG into its rigid parts, i.e. the subsets Sa = {x ∈ DSG | j(x) =
a}. Now we determine an initial transformation for each rigid part
by blending the corresponding transformations from the initial pair-
wise registration.

For each point x ∈ Sa, we find the closest point y in frame i and
store (in a list) the transformation that was assigned to y in the ini-
tial pairwise registration. This results in a list of transformations for
the subset. Then, we uniformly blend all transformations in the list
using Dual Quaternion Linear Blending (DLB) [Kavan et al. 2008]
to produce an initial transformation T init

a from frame i to frame i+1.
Lastly, we concatenate with the transformation from frame i to pro-
duce the initial value: T (i+1�Ref)

a = T
(i�Ref)
a ◦ T init

a
−1. Since we

blend transformations, this produces a slightly different result from
the initial pairwise registration, but the differences were negligible
in practice.

There is one exception to this procedure when we apply the ini-
tial pairwise registration of the first two frames F0 and F1. At this
point in the algorithm, the DSG has just been created using the
points in frame 0 (i.e. S = U0), and the samples do not have any
weights. In this case, S is exactly a subset of frame 0, so we di-
rectly copy the transformations from the initial pairwise registra-
tion while limiting the total number of unique transformations to
the maximum B.
Updating the DSG. After applying the initial pairwise registration
for the new frame Fi+1, the algorithm moves into the global reg-
istration phase to align Fi+1 to the rest of the frames. After each
global registration, we update the DSG to reflect changes in the
registration. When we update, we actually resample the DSG from
scratch. This is because the global registration changes the align-
ment of all frames, and certain samples that were not redundant
before may become redundant and need to be removed.

To start, we create a new and empty DSG, and initialize its sam-
ples to U0. Then, for each frame g, we add points from Ug to the
DSG that do not overlap with the points added so far. Also, we only
add points for which we can determine a valid weight using the old
DSG. These techniques are inspired by the work of Pekelny and
Gotsman [2008].

To decide overlap, we first transform the current points in the
(new) DSG to frame g. Then, a point from Ug overlaps with the
DSG if the distance to the closest DSG point is less than a threshold
τs. To make this more robust to registration error, we project the
distance onto the plane of the DSG point (with the DSG point’s
surface normal) if the surface normals of the two points differ by
less than 90◦.

We interpolate the weight values of the old DSG to determine
the weight of new points from Ug . First, we transform the old DSG
to frame g and divide the old DSG into rigid parts. Then, for each
rigid part, we compute the closest distance between the new point
and the part. We convert the distances to scores by normalizing
them to sum to 1. The weight of the new point is the transformation
of the part with the highest score, but only if the highest score is
greater than three times the upper quartile (median of the largest
half) of all scores. Otherwise, we consider it an ambiguous case,
and a valid weight cannot be determined for the point. Also, the
weight is invalid if the highest scoring transformation is marked as
occluded for frame g (more details about occlusion in Section 7).

After the resampling is complete, we form edges on the new
DSG. We transform it to the reference frame and compute the k-
nearest neighbor graph of its samples (k = 15). To prevent unde-
sired edges between separate (but spatially near) parts, we discard
edges that stretch in length more than twice when transformed to
each frame g. However, if the edge is between parts that share a
joint, we do not discard the edge. This is because discarding these
“joint edges” may bias the discrete labeling optimization and cause
the boundary between parts to get “stuck” in particular locations.

After forming the edges, we finally discard the old one and re-
place it with the new. This concludes the updating process for the
DSG.

7. HANDLING OCCLUSION

Detecting Occluded Parts. When a part of the surface is partially
or completely occluded in a frame, the transformation for this part
may have few or no valid correspondences constraining it in the
optimization. In these cases, it may not be possible to solve for the
rigid transformation of that part. In our algorithm, we automatically
detect this and exclude these parts from the optimization (line 7 of
Algorithm 1).

As before, let us partition the DSG into its rigid parts. Right after
loading and applying the initial pairwise registration (line 6 of Al-
gorithm 1), we determine whether each transformation is occluded
in frame i+ 1.

First, we update the closest corresponding points y(i+1)

j(x) for each

DSG point x and compute the distance d(x,y(i+1)

j(x) ) using the ro-
bust error metric (Equation 4). If the number of points in a rigid
part with non-zero distance falls below a threshold (5, or 5% of
the part), then we mark the part’s transformation as “occluded” for
frame i+ 1. The rigid part is considered “occluded” as well.
Excluding Occluded Transformations in the Optimization.
When we solve for the transformations (Phase 1) and weights
(Phase 2) in Algorithm 2, we need to handle occluded transfor-
mations and parts. In Phase 1, we do not solve for occluded trans-
formations. Instead, we substitute a value computed based on the
joint constraints with neighboring parts. If there are no neighbors,
we use the value from the last frame; if there is exactly one, we
copy the neighbor’s value; and if there are two or more, we solve
for the transformation that best fits all joint constraints [Pekelny
and Gotsman 2008].
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While we can simply exclude transformations in Phase 1, we
cannot do the same for optimizing the weights in Phase 2. Here, the
algorithm must solve a binary weight for each sample to minimize
the registration error. The problem is to define a useful “registra-
tion error” for a transformation that is occluded in the frame. We
cannot assign a zero error, because the optimization would prefer
to assign the weight for the occluded transformation. It also cannot
be too high, because the optimization would prefer to not assign the
weight for the occluded transformation to any samples at all.

Recall that when we optimize the weights in Phase 2 (Sec-
tion 5.3), we compute and store the summand of Efit for all sam-
ples x, all transformations a, and all frames g. Suppose that for
some sample x, transformation a is occluded in frame g. In this
case we use the error value of the currently selected transforma-
tion j(x) for the occluded transformation a. If transformation j(x)
is also occluded, then we use the minimum error value among all
non-occluded transformations. This strategy worked well in our ex-
periments.
Detecting Reappearing Parts. When an occluded part suddenly
reappears in a new frame, we need to start tracking it again. Other-
wise, the algorithm could mistakenly treat it as new surface geom-
etry, thus duplicating the part multiple times in the reconstruction.
If the part happens to reappear nearby its last seen location, then
the algorithm will be able to find a sufficient number of closest
points and automatically track the part again. However, if the part
reappears in a completely different location, we need a different
strategy since there will not be enough closest points. Our algo-
rithm detects and handles this case during the global registration
(line 12 of Algorithm 2). Note that detecting reappearing parts can-
not be handled by our initial pairwise registration, because it can
only align parts not occluded in both the source and target.

To detect if an occluded part is reappearing in frame i + 1, we
first transform the DSG to frame i+1 and determine the weights of
each point of Ui+1 by applying the algorithm of Section 6 again in
a separate step. If a valid weight cannot be determined (i.e. it is an
ambiguous case, or the highest scoring transformation is occluded),
then we consider the point to be “unmatched” and add it to a set M
of unmatched points. If there is a sufficient number of unmatched
points (|M | > 0.1|Ui+1|), we interpret this as an indication that a
previously occluded part is reappearing. Therefore, we attempt to
match these points by aligning them with transformations that were
previously marked as occluded for frame i+ 1.

Here, we use the same procedure as Phase 1 of Algorithm 2 to
solve for the values of the occluded transformations (Section 5.3).
However, we expect unmatched points to be far away from the cur-
rent position of the DSG. Therefore, we adjust the optimization,
where

—we only solve for the values of the occluded transformations by
aligning occluded parts of frame i+ 1 to M ,

—we set thresholds to higher values: τd = 50s and τn = 45◦,
—and we increase the weight of the joint constraint to β = 1000.

These modifications ensure that we obtain an alignment even when
the points in M are far away from the DSG, while the higher value
of β prevents the optimization from falling into local minima. Af-
ter solving for the occluded transformations, we run the occlusion
detection routine once more to update the occlusion status of each
transformation. MZ: it would be great to show a figure with an
example, where a reappearing part is detected and registered

8. EXPERIMENTAL RESULTS

8.1 Reconstruction

We implemented our algorithm in C++ and tested it with several
real-world and synthetic datasets exhibiting articulated motion. Af-
ter we have aligned all frames, we reconstruct a triangle mesh from
a dense sampling of S produced using a small sample distance τs.
We use the streaming wavelet surface reconstruction algorithm by
Manson et al. [2008].

The car and robot datasets were acquired by Pekelny and Gots-
man [2008] using a Vialux Z-Snapper depth camera. These se-
quences were created by animating the physical model while cap-
turing each frame from a different viewpoint. Each sequence has
90 frames, and consists of 4 and 7 parts, respectively. The results
are shown in Figures 7 and 8. The top row shows some of the input
frames in the sequence. Notice that there is a significant amount
of occlusion in some of the frames. The middle row shows the re-
constructed mesh using the algorithm, with weights obtained by
interpolating the weights on the sample set. The bottom row shows
the estimated joint locations, where hinge joints are represented by
a short stick and ball joints by a sphere. Both the reconstruction
results and the weight estimation are faithful to the input data.

To test our algorithm on a more deformable subject, we acquired
two range scan sequences of a pink panther toy using a Konica
Minolta VI-910 laser scanner. We animated one sequence with a
slower motion, while the other sequence had a faster motion. Re-
construction results are shown in Figure 9. Although the furry tex-
ture on the toy created noise on the scanned surface, we obtained
a reasonable reconstruction of both the surface geometry and the
weights.

Finally, we tested our algorithm on synthetic depth scans of a
walking man, where the camera is rotating around the subject. To
test the effect of occlusion in our algorithm, we captured two se-
quences, one using a single virtual camera, and the other using two
virtual cameras 90◦ apart. The reconstruction results are shown in
Figure 10. The results from both datasets are reasonable, but the
first sequence was less successful due to the large amount of oc-
clusion of the arms. With two virtual cameras, we obtained a bet-
ter reconstruction that was able to reproduce the fine detail of the
hands.

8.2 Parameters

The main parameters of our algorithm are the maximum number of
transformations B, weights for each term in the objective function,
and thresholds that control the sampling and closest point compu-
tation. We expressed many parameters relative to the grid sample
spacing s, which is the average distance between the scanned points
of the dataset.

Although the user needs to specify the maximum number of
transformations to approximate the motion, the algorithm may set-
tle on a smaller number of transformations if the registration error
is small enough. An alternative strategy could have the user spec-
ify a maximum alignment error ε and change the algorithm to add
additional transformations until the alignment error is within ε.

The value of B for each dataset is shown in Table I. For the
weights of each term in Equation 2, we used α = 1, β between
0.1 and 1.5, and γ either 0.5s or s. For the uniform subsampling
Uf (Section 6), we instructed the algorithm to sample 6% to 20%
of the points depending on the density of the scans. For the sample
spacing parameter τs, we used a value between 2s and 5s depend-
ing on how dense we wanted the sparse sample set to be. Finally,
for determining the validity of the closest corresponding points, we
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Fig. 7. Reconstruction results for the Robot dataset.
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Fig. 8. Reconstruction results for the Car dataset.

used τd = 10s, τn = 45◦, and τb = s. When we match reappear-
ing parts, we increased these values so that τd is between 50s and
100s, τn between 45◦ and 80◦, and β = 100. In our experiments,
we experimented with a few different parameter settings but did not
seriously optimize the parameters to give a better result.

8.3 Performance

We performed our experiments using a single core of an Intel Xeon
2.5 GHz processor. The timing results are reported in Table I. In
the robot and car datasets, the most time-consuming part was the
initialization, but in the other cases it was the global registration.
The global registration step can execute faster if a smaller sliding
window is used, with the trade-off of having a less accurate reg-
istration. Like other closest point matching algorithms, the most
time-consuming part is the closest point computation, which can
typically take 30% of the total time. Note that the times in the ini-
tialization step reported in Table I do not include some preprocess-
ing time to compute spin images and estimate the principal curva-
ture frame at each vertex.
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Fig. 9. Reconstruction results for the Pink Panther dataset with faster input
motion.
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(a) Using
1 Camera

(b) Using
2 Cameras

Fig. 10. Reconstruction results for the synthetic Walking Man dataset. On
the right, (a) and (b) show a comparison of the reconstruction using scans
from one and two virtual cameras.

Table I. Performance statistics for our experiments. The timings
are expressed in seconds, and the bottom row reports the average

execution time per frame in each sequence.
Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5→ 1 5→ 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples 4,970 2,672 4,077 4,203 8,305 8,539
Edges in DSG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Updating DSG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02
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Reconstructed
Model

User Specified
Constraints

Novel Poses

Fig. 11. Reposing the reconstructed robot. Using the solved weights and
the hinge joints, we can perform interactive IK on the reconstructed model.

8.4 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-
posing and animating the reconstructed model. To demonstrate this,
we implemented a tool to perform inverse kinematics on the model.
In this system, the user specifies point constraints interactively by
drawing boxes around a region of interest. Then, the user is able to
select one of the constraint boxes and drag it around on the screen
to manipulate the model. To perform IK, we use the transforma-
tion optimization (Section 5.3) to solve for the rigid transforma-
tions of each part that best satisfy the constraints. The details of the
optimization are exactly the same as before, except that the joint
locations are fixed and the correspondences are given by the user.
By running the optimization in a separate background thread, we
were able to interactively manipulate the reconstructed model in
real-time. Figure 11 shows examples of different poses of the robot
created by our system.

8.5 Sequential Registration vs. Simultaneous
Registration

To illustrate the benefit of performing simultaneous registration,
we compare our algorithm with a sequential registration pipeline.
In a sequential registration method, we optimize each frame of the
sequence one-by-one, accumulate new samples directly on the ref-
erence frame, and discard the frame before moving on to the next.
This strategy is essentially a pairwise registration that is applied re-
peatedly for each frame, because it only performs the registration
between the accumulated samples and the current frame.

The main problem with the sequential registration approach
is that it cannot reliably estimate the articulated structure (i.e.
weights) based on the movement observed in just two frames at
a time. This complicates the situation further for occlusion detec-
tion and recovery, which rely on a reliable estimate of the articu-
lated structure. A comparison between the sequential and simulta-
neous strategies is shown in Figure 12. Here, we have used the two
strategies to align 40 robot frames, and we display the DSG which
roughly shows the reconstructed geometry. On the left, we can see
that the sequential strategy did not produce the correct weights. As
a result, the registration was imprecise, and “extra” surfaces ap-
pear where the parts were not aligned properly (for example, on
the left arm). On the right, we show the result using simultaneous
registration using the same parameters. The registration is more ac-
curate, and the algorithm produced the correct weights that reflect
the movement of all frames.

(a) Result Using
Sequential Registration

(b) Result Using
Simultaneous Registration

Fig. 12. Comparing sequential and simultaneous registration. (a) The se-
quential strategy gives an unreliable estimate of the articulated structure
(large red oval), because it only uses the movement observed in two frames
at a time. This leads to an imprecise registration (smaller red oval). (b)
The simultaneous strategy can correctly estimate the weights that reflect
the movement observed in all frames. The registration is more precise, as
well as the estimated surface geometry.

(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Fig. 13. Comparing registration results using grid-based and graph-based
weight representations. These images show the represented weight function
deformed into different poses according to the optimized transformations
and weights. The artifacts with the grid are absent when using the graph.

8.6 Grid-Based Weights vs. Graph-Based Weights

We compare the benefit of using a graph vs. using a grid for rep-
resenting the weight function. We implemented the simultaneous
registration using a grid and compared the results to a graph-based
implementation. First, we found that the performance of the graph-
based registration is much faster, because the grid-based method
has an additional overhead of translating the weights from the grid
to the samples. For processing the 90 frame robot sequence, the
global registration took a total of 144.00 seconds per frame using
the grid strategy, while it only took 28.36 seconds per frame for the
graph based strategy (excluding initialization time in both cases).

Second, the graph-based representation dealt robustly with
topology issues. Since we can prune edges of the graph based on
the optimized motion, the algorithm can handle topologically diffi-
cult cases robustly. An example of this is shown in Figure 13, where
we display the grid and graph deformed according to the optimized
weights and transformations. The grid based result shown on the
left has many problems where grid cells stretch apart. This is be-
cause the limited resolution of the grid cannot resolve the left and
right leg of the robot when they move close together. In contrast,
the graph-based result shown on the right does not suffer from this
issue.
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(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Fig. 15. Registration for a grasping hand sequence [Weise et al. 2007], where the hand starts from an open pose and gradually closes to a grasping pose.
Shown are the input data (displayed as a red color mesh) and the sparse DSG. Our algorithm tracks the hand well in the first part of the animation, where most
of the surface is visible. In (c), the surface of the fingers start to gradually disappear, and the middle segment of the index finger starts to lose track and rotate
backwards. In (d), the algorithm loses track of the middle and ring fingers, because most of these fingers are occluded (except for the fingertips).

[Wand et al. 2009] Our Method

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Source and Target

Fig. 14. Articulated registration on the hand-2 and popcorn tin datasets
used by Wand et al. [2009]. Our algorithm is able to produce coarse ap-
proximations of the non-rigid motion exhibited in these datasets.

8.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the deformable re-
construction method by Wand et al. [2009]. For the car, robot, and
pink panther datasets, their method was not able to reconstruct the
entire sequence because there was too much motion between the
frames. This is because they rely only on a local optimization us-
ing closest points, whereas our method uses a robust initial pair-
wise initialization that is able to automatically handle frames with
large motion. An example of this is shown in the top row of Fig-
ure 14. Our method (right) produces a correct registration, while
their method (middle) fails for this pair.

We also tested our algorithm on several examples from Wand
et al. [2009]. Figure 14 (right) shows reconstructions of the hand-
2 and popcorn tin datasets, and Figure 15 shows a result for the
grasping hand (hand-1) dataset. These sequences exhibit non-rigid

motion, especially the popcorn tin dataset. Our algorithm can suc-
cessfully capture the overall shape and produce a coarse articulated
motion of the subject. However, it does not reproduce some fine
details in the surface deformation.

9. SUMMARY AND CONCLUSION

We have presented a method to reconstruct an articulated 3D model
from a set of range scans. From a sequence of range scans, we
solve for the division of the surface into parts (weights) and the
motion for each part (transformations) to align all input scans. For
this purpose, we used an improved robust registration to solve for
a initial pairwise registration between pairs of adjacent frames in
the sequence. Then, we formulated a simultaneous registration of
all input frames to minimize registration error. This optimization
included joint constraints that preserves the connectivity between
parts and automatically handled cases when parts are disappear or
reappear. We demonstrated that we can reconstruct a full 3D ar-
ticulated model without relying on markers, a segmentation, or a
template. Finally, we demonstrated that the reconstructed model is
deformable and can be interactively manipulated into new poses
using a simple inverse-kinematics extension of our optimization al-
gorithm.

A limitation of our method is that there needs to be enough over-
lap between adjacent frames in the range scan sequence to obtain
a good alignment. For example, if one frame captures the surface
from the front, and the next frame captures the surface from the
back, there will be not enough overlap to match these frames to-
gether in the registration. This means that the order of the range
scans in the sequence should maintain a reasonable amount of over-
lap between adjacent pairs of frames. A temporal ordering of the
scans, for example, would produce a sequence with a reasonable
amount of overlap. However, even this is not enough sometimes
when there is severe occlusion. For example, our algorithm loses
track of the fingers in the hand sequence because of too much miss-
ing data, as shown in Figure 15.

Another shortcoming of our ICP-based registration is the han-
dling of “slippable” parts such as cylinders. For example, the fin-
gers of the hand example in Figure 15 have cylindrical symmetry,
so the ICP registration can converge into a state where the segments
of the fingers are “twisted” or rotated about the axis of symmetry
(Figure 15c). Although hinge joints could disambiguate cylindri-
cal symmetries, we found that it was difficult to estimate accurate
hinge joints in this case.

Currently our method is applicable for reconstructing articu-
lated subjects and coarsely capturing non-rigid subjects. However,
it would be interesting to adapt our algorithm for high-quality non-
rigid reconstruction. For this case, estimating “flexible” transfor-
mations would be appropriate, for example, estimating affine trans-
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formations with additional surface displacements. Also, it would
be useful to find a way to optimize for smooth weights with-
out causing overfitting. We believe that there should be a middle
ground between solving for separate transformation for every sam-
ple point [Li et al. 2008] and our method of solving for the weight
at each sample point.

We would also like to reduce the parameters in our algorithm.
An alternative to specifying various thresholds is to use a robust
error metric similar to the work of Nishino and Ikeuchi [2002]. In
this case, the outliers would automatically be identified during the
optimization, without a need to specify hard thresholds.

Finally, we would like to investigate ways of improving the per-
formance of the algorithm. In particular, since our method estimates
the weights and transformations for all frames simultaneously, we
need to keep all of the input scans in memory. We would like to de-
velop a streaming version of our algorithm that reduces the mem-
ory requirements and allows us to process longer sequences. In ad-
dition, if we can detect when reasonable weights have been ob-
tained, we can skip the weight optimization step to save time in the
algorithm. We believe that an improved version of our algorithm
along these lines can be implemented for real-time markerless mo-
tion capture applications.
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