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1. PIVOT AND SLIDING JOINTS

Although our system currently supports ball and hinge joints, it
can be easily extended to handle pivot and sliding joints as well. A
pivot joint is one that allows 1 DOF rotation about a line, similar
to the hinge joint. Sliding joints allow 1 DOF translational move-
ment about a line. For completeness, we discuss how to extend our
method to handle these joints.

Since both hinge and pivot joints are rotations about a fixed axis,
our mechanism for detecting and constraining hinge joints already
works for pivot joints as well. However, sliding joints are not cur-
rently handled by our system. To detect a sliding joint, we check
if the the relative transformation between two neighboring parts is
a translation along a common line. The relative transformation be-
tween pair (a, b) for frame i can be computed by first transforming
using a to the reference frame, then applying the the inverse of b:
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To check if this is a translation, we can threshold the maximum
deviation of each relative rotation R

(i)
a�b from identity. If this test

passes for all frames i, then we can check if the translations are
along a common line by fitting a line to the translations. To do this,
we can perform PCA on the set of the relative translations~t(i)a�b us-
ing the SVD. If the distribution of translations is maximal along the
first principal component and minimal along the other two, then the
translations are well-described by the line that follows the direction
of the first principal component. This can be determined quantita-
tively by checking if the ratio of the sum of the two smaller singu-
lar values to the sum of all singular values is less than a threshold.
The final parameters for the sliding joint’s axis is given by the the
line that points in the direction of the first principal component and
passes through the mean of the relative translations.

To constrain a sliding joint, we can use a set of points pab gen-
erated around the sliding axis (in the reference frame) to constrain
the motion. For the points we can take the vertices of a cylinder
(generated with a small number of slices and stacks) centered on
and aligned to the sliding axis. To constrain the motion, we add the
following equation to the objective:∥∥∥(T (i�Ref)
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where ~vab is the direction vector of the sliding axis in the reference
frame. This objective specifies that, when pab is transformed to

(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Fig. 1. Comparing registration results using grid-based and graph-based
weight representations. These images show the represented weight function
deformed into different poses according to the optimized transformations
and weights. The artifacts with the grid are absent when using the graph.

frame i using transformations a and b, the resulting distance stays
the same when projected to the sliding axis.

2. GRID-BASED WEIGHTS VS. GRAPH-BASED
WEIGHTS

We compare the benefit of using a graph vs. using a grid for rep-
resenting the weight function. We implemented the simultaneous
registration using a grid and compared the results to a graph-based
implementation. First, we found that the performance of the graph-
based registration is much faster, because the grid-based method
has an additional overhead of translating the weights from the grid
to the samples. For processing the 90 frame robot sequence, the
global registration took a total of 144.00 seconds per frame using
the grid strategy, while it only took 28.36 seconds per frame for the
graph based strategy (excluding initialization time in both cases).

Second, the graph-based representation dealt robustly with
topology issues. Since we can prune edges of the graph based on
the optimized motion, the algorithm can handle topologically diffi-
cult cases robustly. An example of this is shown in Figure 1, where
we display the grid and graph deformed according to the optimized
weights and transformations. The grid based result shown on the
left has many problems where grid cells stretch apart. This is be-
cause the limited resolution of the grid cannot resolve the left and
right leg of the robot when they move close to each other. In con-
trast, the graph-based result shown on the right does not suffer from
this issue.

3. COMPARING WITH REFERENCE MOTION

To validate our method, we compared our reconstruction results
with the original (i.e. ground truth) mesh and animation data that
was used to generate the synthetic walkman dataset. As a supple-
ment to the graphs shown in Figure 14 of the paper, we show a
comparison plot of the numerical values of the transformations for
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Fig. 2. Comparing the estimated transformation parameters for each part with the reference parameters used to generate the dataset.

each part of the skeleton in Figure 2. We compare a total of 16 parts.
The top 16 graphs (top 4 rows) show a comparison of the rotation
angle vs. time, and the bottom 16 graphs (bottom 4 rows) show a
comparison of the translation vector vs. time. Red is used for the
reference (ground-truth) data, and blue for the reconstructed data.

4. PARAMETER COMPARISON TESTS

We show the results of additional experiments performed to analyze
the effect of different parameter choices.
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Fig. 3. The sample spacing size affects the registration. The two numbers
beneath the images denote the sample spacing size (top) and the computa-
tion time (bottom).

(b) Results using 6-frame Sliding Window

(a) Results using 1-frame Sliding Window

(c) Results using 12-frame Sliding Window

10.9 min 15.1 min 14.4 min

26.3 min 67.5 min 86.6 min

70.1 min 131.5 min 164.4 min

Fig. 4. The sliding window does not affect the registration quality heavily.

4.1 Effect of the Sample Set Size

The size of the DSG depends on the sample spacing. A small sam-
ple spacing results in a dense DSG, whereas a large sample spacing
results in a sparse DSG. Figure 3 shows the result of processing the
pink panther dataset with a varying sample spacing value.

We see that the smaller sampler spacings tend to produce good
registrations, and the registration may fail if the sample spacing is
too large. However, denser DSGs require more memory and com-
putation time. Generally denser DSGs are needed as the number
of articulated parts increase. However, you don’t need to have too
dense a DSG, as long as there are enough points to distinguish each
part. Denser DSGs also tend to produce more accurate registrations,
because there are more points to evaluate the distance error so that
we can capture fine-scale errors.

4.2 Effect of the Sliding Window Size

We perform an experiment where we vary the size of the sliding
window (Figure 4). We found that the registration quality does not
depend much on the sliding window size. Even a sliding window
size of 1 frame is enough.

Frame 0 Frame 2 Frame 4 Frame 6

Ref Frame 0 Ref Frame 2 Ref Frame 4 Ref Frame 8

Frame 8

Ref Frame 6

Frame 10 Frame 12 Frame 13

Fig. 5. Results when aligning the pink panther dataset with different refer-
ence frames. The top row shows some of the original input frames, and the
bottom row shows the registration result using different reference frames.

Table I. Performance numbers for reconstructing 62 frames of the
walkman dataset, scanned using varying resolutions.

Resolution Points Time(sec) Mem(MB) Sec/frame Points/frame Msec/pt
240x180 93765 2333.8 60.1 37.6 1512.3 24.9
400x300 474636 12093.2 229.0 195.1 7655.4 25.5
520x390 842932 16859.9 400.5 271.9 13595.7 20.0
600x450 1146627 24054.1 548.2 388.0 18494.0 21.0

Larger sliding windows give more “second chances” to refine
the registration in case the articulated structure changes in a later
frame. What really matters in the global registration is that the ar-
ticulated structure (weights) is estimated globally over all frames.
This is the main reason why the sequential method fails in Figure
16. Accumulating the point cloud and throwing away the scan dis-
cards the motion information in previous frames and results in an
inaccurate registration.

4.3 Effect of Reference Frame Choice

The algorithm can fail with different reference frame choices. It
works best when all parts are visible for the reference frame and
several frames that follow. Also, the registration is most successful
when all joints are exercised early in the sequence. Figure 5 shows
results when aligning the pink panther dataset with different refer-
ence frames (earlier frames are discarded). The registration is less
successful in the rightmost example, because the algorithm encoun-
ters frames with occluded surface parts earlier in the optimization.

4.4 Performance Impact of Mesh Size

We run a scan simulation of the walkman dataset with varying scan
resolutions. This gives geometric data, but with varying mesh size
(scanned point density). We reconstruct the model using each res-
olution and summarize the performance in Table I. The total com-
putation time and memory usage increases, but the time spent per
point stays approximately the same.

4.5 Memory Requirements

Our implementation stores all scans in memory, maintains extra
data for each scan (normals, boundary information, sample set, k-
d tree for computing closest points, transformations for each part,
precomputed distance error, occlusion information) and for sav-
ing the global registration state (DSG samples and graph struc-
ture, weights for each sample). We measured that typically we need
about 400 MB of memory for 90 frames, with 60 MB for the range
scan data. This is highly variable and depends on the range scan
data size and the DSG sample spacing.
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