SICE Annual Conference 2008

August 20-22, 2008, The University Electro-Communications, Japan

High speed 3-D registration using GPU

Yasuo KITAAKI, Haruhisa OKUDA, Hiroshi KAGE, Kazuhiko SUMI
Mitsubishi Electric Corporation Advanced Technology R&D Center

Abstract

This paper describes high speed 3-D object recognition based on DAI(Depth Aspect Image) matching and
M-ICP (Modified Iterative Closest Point). We regards GPU(Graphic Processing Units) as coprocessor which are
capable of computation for general purpose. We proposed 3-D object recognition method which consists of two
step pose estimation and positioning, i.e. the DAI matching for coarse step and HM-ICP (Hierarchical M-ICP)
for fine one Our method on GPU which has remarkable performance for parallel computation. The experimental
results show the effectiveness of our method. This method can process 2 or 3 times faster than the original one,
although the calculation amount of this method is at least 20 times bigger than the original one. Additionally, its

processing time is more stabler than original method.

1 Introduction

When we apply robots into the factory automation, the
number of vision applications has been increasing and the
needs for 3-D object recognition technology is especially strong.
We proposed the 3-D object recognition technique which con-
sists of two steps. The first step for the coarse positioning and

pose estimation uses the DAI (Depth Aspect Image) matching[1].

The second step uses HM-ICP(Hierarchical M-ICP)[2] based
on the ICP (Iterative Closest Point) algorithm [3] for precise
3-D registration after the 1st step. Through the experimen-
tal result, this paper shows GPU(Graphic Processing Units)
application for each step to speed up. CPU is optimized for
high performance on sequential task. On the other hand GPU
has high performance of parallel computation because it is
desined for specific graphic processing. We apply GPU as
coprocessor to speed up of 3-D object recognition method.
Nvidia developed Cg as a high-level shading language.
Microsoft developed HLSL for use with Microsoft Direct3D
API. OpenGL ARB created GLSL to developers more direct
control of graphics pipeline unless using assembly language
or hardware-specific languages. Therefore, recent GPU can
deal with not only graphic task but also general purpose cal-
culation. For example, some reserchers are trying to apply
the GPU to fluid dynamics simulator , rendering of 3-D ob-
ject for madical image, and so on. But These methods are
required knowledge about graphics hardware and higl level
shader language because Cg, HLSL and GLSL are desined not
for general purpose computation but for specific graphic task.
As development environment for GPU computing, Nvidia has
released CUDA technology[4]. CUDA solve complex coding
problems, it’s faster than Cg, HLSL and GLSL. This devel-
opment environment is desined to have developers be capable
of programing without any knowledge about specific graph-
ics, GPU architecture and hardware. In this paper, we apply
CUDA to shorten up the processing speed of our method. The
paper consists of five sections. We introduce basic knowledge

of CUDA architecture. Then, 3-D registration algorithm we
proposed is explained in section 3, and experimental results
are shown in section 4. Finally, we concludes in section 5.

Programming using CUDA

Host Device
(CPU) (GPU)
kerne Iy Gridi
Block Block
(0,0) 0,1
Block [| Blook | | [~
a0/ an
Block (1, 1)
Thread | Thread | Thread
"_> Grid2 00 | ©n | 02
[Thread | Thread | Thread
v a0 | an | 4,2
|: Thread | Thread | Thread
(2,0) 2,1 (2,2)

Figure 1: execution model

When we use CUDA programming, we can make pro-
grams much easier than traditional general purpose compu-
tation on GPU because it’s the extension of the standard C
language. For example, when developers use traditional de-
velopment environment for GPGPU (General purpose com-
putation on GPU)[5], the data must be inputed as texture data
which are represented with R, G, B, « and the process must

- 3055 -

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2010

PR0001/08/0000-3055 ¥400 © 2008 SICE

at 10:34 from |IEEE Xplore. Restrictions apply.

Grid
Block (0, 0) Block (0, 1)
| Shared Memory | | Shared Memory |
| Registers| | Registers| | Registers| | Registers|
3 3]]

| Thread (0, 0)

| Thread (0, 0)

|| Thread (0, 1)
3

Local
Memory

Local
Memory

f

|| Thread (0, 1)

Local
Memory

Local
Memory

Scene data input

v

4'_

Set virtual view

v

Make DAI

v

Search DAl database

Global
Memory

Constant
Memory

Textured
Memory

Figure 2: memory model

be concerned with graphic task like rendering. But when de-
velopers use CUDA, it enable them to programming without
considering all these restriction.

2.1 Thread execution

A grid which consists of thread blocks is executed as illus-
trated in fig.1[4]. Each blocks consist of a batch of threads and
have shared memory region among threads. Batched blocks
which has same dimentionality can be regard as one grid of
thread blocks. They are executed by a single kernel.

2.2 Memory model

Fig.2 shows CUDA memory model. They are divided into
following three.

e register and local memory by each threads.
e shared memory by each blocks.

e global memory, constant memory and texture memory
by each grids.

Processing time of applications developed with CUDA is de-
pended on the use of these memory because each memory
type are specialized in different purposes. When proper ap-
plied, processing time is much faster even if handling data
size is larger than CPU’s. Especially, shared memory is more
important than others for faster parallel computing. Program-
mer should consider a restriction of shared memory size and
the bandwidth of each memory. Access speed of shared mem-
ory is very fast, but the memory size is only 16 KB.

3 Object recognition algorithm

In this chapter, we explain 3-D object recognition method
which consists of two steps pose estimation and positioning,
i.e. the DAI matching for coarse step and the HM-ICP for the
fine one.

e) No
verification

Yes

output

Figure 3: DAI matching algorithm

3.1 DAI matching

The flow of the processing is shown in fig.3. First step, we
build the 3-D view model database called DAI(Depth Aspect
Image) which is generated from the virtual viewpoint. Af-
ter building the database, we seek best matching position and
pose of the target based on the correlation between the target
view and the DAI database view.

3.2 HM-ICP

ICP algorithm is widely used for geometric alignment of 3-
D models. ICP starts with two 3-D data and an initial guess
for their relative rigid body transform, and refines the trans-
form by generating pairs of corresponding points, minimizing
distance of pairs and the update repeatedly. Modified ICP(M-
ICP) by M-estimaor for the robustness was proposed[6]. We
proposed Hierarchical M-ICP(HM-ICP) which was improved
based on M-ICP by two techniques. One is hierarchical regis-
tration processing using multiple resolution data and the sec-
ond is using partial regions which are selected based on the
feature values for registration. We achieved more than 4-
digits number reduction of the computational cost by these
algorithm approaches.

4 Parallel computation on GPU

In this chapter, the parallel computing technique on GPU is
described.

4.1 Implementation of the DAI method

Fig4(a) shows the sequential computing model on CPU and
fig4(b) shows parallel one on GPU for the DAI matching step.
Main roop of this method implemented on CPU consists of
following four parts.

(A) Set virtual view

(B) Make DAI

- 3056 -

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2010 at 10:34 from IEEE Xplore. Restrictions apply.

Scene data input Scene data input

!

Make DAI

-

Set virtual view 1“'

v

v

(Wake DAI

v

y

y

Search DAI database

(Search DAI databasE
* TL + T L + 1

Select best DAI

output

(a)Processing on CPU (b)Processing on GPU

Figure 4: Computation model of DAI matching

(C) Search DAI database

(D) Verification

It’s executed repeatedly until finding DAI which can pass
the verification. Virtual view is set to scene data and corre-
sponding scene DAI is created. The scene DAI is matched
with model DAI database. In the case of that succeeds, it en-
ables to estimate coarse position and pose from virtual views
to create each DAIs and recognition phase will go to next step
for verification. If the matching fails, next view is set in scene
for created another DAL In this method, the processing time
is depended on a number of created DAI until the success.

We explain the process which was implemented on the de-
velopment environment, CUDA. Before scene data measured,
model DAI database is inputed into GPU memory. When
scene inputed, it is executed with parallel that all processing
which contains making DAI, searching for best matching DAI
and calculating evaluation value. The bottleneck of GPGPU is
the transfer time between GPU and CPU, especially the trans-
fer GPU to CPU is much slower than CPU to GPU because
GPU is designed for specific graphics originally. Therefore,
we limited a number of times of the transfer between CPU
and GPU.

4.2 Implementaition of the HM-ICP

We implemented only M-ICP algorithm on GPU because the
part accounts for 90 percent of the computing time of HM-
ICP. The ICP algorithm can be divided into three process -

(A) Obtain correspondence between scene and model.
(B) Estimate the parameter using a mean square error.
(C) Transform 3-D data by the estimated parameter.

The computational cost of (A) part is much larger than other’s
one. Therefore, we explain the implementation of (A) on
GPU. The ICP algorithm estimates the corresponding of each

Points data input

Mode | Mode | Mode |
Point 1| Point 2 Point Nmd|

| Estimate the parameter |

v v v

(::: Tr;Hsform 3—6 d;ta :::)
1 T I . r

I
ermination
condition

Yes

The parameter output

Figure 5: HM-ICP algorithm

data point between 3-D data sets A and B. Then, it calculates
at the N, x N, time if supposing that the points number of
data A and the points number of data B is N,. When (A) pro-
cessing on GPU, GPU can process points of data A in parallel
because it is executed in the same way that searching for clos-
est point of data B from each points of data A. This processing
is very effective to reduce computational cost. We execute dis-
tance calculation for obtain correspondence from each points
of data A to all the points of data B in parallel(fig.5). It han-
dles only N, points data in parallel for limitation of memory
size. If memory size permits, it handles both points data in
parallel. We limits the transfer between CPU and GPU, es-
pecially GPU to CPU. In our implementation, only seven pa-
rameter are returned to CPU after all processing which consist
of (A), (B) and (C) on GPU.

5 [Experiments
We experimented to verify the effectiveness of the our method

which was described in the former section. We verify the pro-
cessing time. The target object is shown in fig.??.

Table 1: PC Specification

CPU Intel Core 2 Duo 2.6GHz
Memory 4GB
GPU GeForce8800GTX(G80)
oS MS-Windows XP
Compiler MS-VC.net2005

5.1 DAI method

Table.1 shows our PC specification. Model data is measured
by KONICA MINOLTA VIVID910. Fig.6 shows the model

- 3057 -

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2010 at 10:34 from IEEE Xplore. Restrictions apply.

Side View Top View
(b)scene range data sample

Side View

Top View
(c)recongnition result sample

Figure 6: Scene and recongnition result sample

data in the experiments, which were created beforehand of the
recognition. The point number of the model are 33558 points.
Not only measured one but CAD format can be applied to our
recognition method. The scene data sets are measured using
our original 3-D range finder called ”"Micro3D”. Resolution of
this 3-D range finder is 307200(640 x 480) points. 17 scene
data sets were prepared by using Micro3D. Fig.7 shows the
experimental results of DAI method.

CPU processing time is depended on a number of created
scene DAI. Usually, hundreds of scene DAI are created and
compared with a model DAI in the database. These DAI are
compared with the database in sequential. On the other hand,
GPU processing time is faster and stabler than CPU because
scene DAI are created from all virtual view which was lim-
ited by geometric conditions and matched with model DAI
database in parallel.

Processing times (sec) number of created DAls
10 1000
Em number of Created DAL || g¢q

©

- Processing times

r 800
700
600
500
400
300
200
100
0

O = N W A O O N ®

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Scene No.

Figure 7: Result of DAI method

Processing times (sec) number of created DAls
10 1000
9 900

800

700

600

500

400

300

200
100

0

SR I R N I -}

8 9 10 11 12 13 14 15 16 17
Scene No.

Figure 8: Result of HM-ICP

52 M-ICP

Fig.8 shows the the experimental result of HM-ICP. In CPU
processing, even 3-D data size for registration are limited to
partial regions to reduce computational cost, it takes more
than 2 seconds. M-ICP implemented on GPU doesn’t limit
3-D data to any region to reduce computational cost, and the
processing time is within 0.5 seconds.

Total processing time is shown in table4. In this experiment,
our approach is 2-3 times faster than CPU processing although
it is executed by basic DAI matching and M-ICP on GPU
without any speed-up algorithm.

Let us begin our analysis about calculation amount and
processing time. We regard a number of created DAI as cal-
culation amount of DAI method and compare CPU’s one and
GPU’s one. When HM-ICP is executed, the calclation amount
is defined as a number of distance calculation. In CPU pro-
cessing, the calclation amount is reduced by algorithm ap-
proach. On the other hand, GPU’s one is more enormous than
CPU because the calclation amount is not reduced anyway.
So, the processing speed on GPU is faster than 40 - 60 times
on CPU because processing data size of on GPU is more than
20 times on CPU.

- 3058 -

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2010 at 10:34 from IEEE Xplore. Restrictions apply.

Table 2: Processing time of DAI method(sec)
worst | best | average | variance
CPU | 5.735 | 1.86 3.955 1.0973
GPU | 2.512 | 2.507 | 2.509 | 0.00002
Table 3: Processing time of the HM-ICP(sec)
worst | best | average | variance
CPU | 3.250 | 2.016 | 2.858 0.1090
GPU | 0.459 | 0.357 | 0.408 0.0006

Table 4: Total processing time (sec)

worst | best | average | variance
CPU | 8.188 | 4.766 | 6.813 0.9130
GPU | 2971 | 2.864 | 2918 0.0007

6 Conclusion

[6] S.Kaneko, T.Kondo and A.Miyamoto : Robust Match-

This paper presents the speed-up technique of the 3-D ob-
ject recongnition on GPU. Through basic experiments, we
show the effectiveness of our approach. Even the processing
on GPU is not optimized, the processing speed of proposed
method is faster than 40 - 60 times on CPU. In the future, we
plan to implement the optimization of parallel computing on

GPU and modify the algorithm.

References

[1] Tomoyuki Takeguchi and Shun’ichi Kaneko Robust and
Efficient Search of Multiple Objects in Cluttered Scene
by Depth Aspect Image, IEEE-Trans. on Industry Elec-

tronics, vol.52, no.4, pp.1041-1049, August 2005.

[2] HM-ICP: Fast 3-D Registration Algorithm with Hierar-

chical and Region Selection Approach of M-ICP

[3] PJ.Besl and N.D.McKay: A Method for Registration
of 3-D Shapes: IEEE Trans. on PAMI, vol.14, no.2,
pp.239-256, 1992. Haruhisa Okuda, Yasuo Kitaaki,
Manabu Hashimoto, and Shun’ichi Kaneko, Journal of
Robotics and Mechatronics, Vol.18, No.6, pp. 765-771

2006

[4] NVIDIA CUDA Homepage

http://developer.nvidia.com/object/cuda.html

[5] General-purpose computation using graphics hardware.
http://www.gpgpu.org/

- 3059 -

ing of 3D Contours Using Iterative Closest Point Algo-
rithm Improved by M-estimation, Pattern Recognition,
vol.36,n0.9, pp.2041-2047, 2003.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2010 at 10:34 from IEEE Xplore. Restrictions apply.

