
OpenGLR© ES
Common Profile Specification 2.0

Version 1.06 (Annotated)

Editor: Aaftab Munshi

Copyright (c) 2002-2005 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter mem-
ber of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fash-
ion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed speci-
fication may be re-formatted AS LONG AS the contents of the specification are not changed in
any way. The specification may be incorporated into a product that is sold as long as such prod-
uct includes significant independent work developed by the seller. A link to the current version
of this specification on the Khronos Group web-site should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Overview 1
1.1 Conventions. 1

2 OpenGL Operation 2
2.1 OpenGL Fundamentals. 2

2.1.1 Fixed-Point Computation. 3
2.2 GL State. 3
2.3 GL Command Syntax. 3
2.4 Basic GL Operation. 3
2.5 GL Errors . 3
2.6 Begin/End Paradigm. 4
2.7 Vertex Specification. 5
2.8 Vertex Arrays . 5
2.9 Buffer Objects. 7
2.10 Rectangles. 8
2.11 Coordinate Transformations. 8
2.12 Clipping . 10
2.13 Current Raster Position. 10
2.14 Colors and Coloring. 10
2.15 Vertex Shaders. 11

3 Rasterization 13
3.1 Invariance. 13
3.2 Antialiasing . 13
3.3 Points . 13

3.3.1 Point Sprite Rasterization. 14
3.4 Line Segments . 14
3.5 Polygons . 14
3.6 Pixel Rectangles. 15
3.7 Bitmaps . 17
3.8 Texturing . 17

3.8.1 Copy Texture. 18
3.8.2 Compressed Textures. 20
3.8.3 Texture Wrap Modes. 20
3.8.4 Texture Minification . 20
3.8.5 Texture Magnification. 20

i

ii Contents

3.8.6 Texture Completeness. 20
3.8.7 Texture State. 21
3.8.8 Texture Environments and Texture Functions. 21

3.9 Color Sum. 25
3.10 Fog . 25
3.11 Fragment Shaders. 25

4 Per-Fragment Operations and the Framebuffer 26
4.1 Per-Fragment Operations. 26

4.1.1 Alpha Test . 26
4.1.2 Stencil Test. 26
4.1.3 Blending . 26

4.2 Whole Framebuffer Operations. 28
4.3 Drawing, Reading, and Copying Pixels. 28

5 Special Functions 30
5.1 Evaluators. 30
5.2 Selection . 30
5.3 Feedback . 31
5.4 Display Lists . 31
5.5 Flush and Finish. 31
5.6 Hints. 32

6 State and State Requests 33
6.1 Querying GL State. 33
6.2 State Tables. 35

7 Core Additions and Extensions 54
7.1 Read Format. 56
7.2 Compressed Paletted Texture. 56
7.3 Framebuffer Objects. 56
7.4 Rendering to mip-levels of a texture attached to a framebuffer object. 57
7.5 Additional Render Buffer Storage Formats. 57
7.6 Half-float Vertex Data. 57
7.7 Floating point Texture Formats. 58
7.8 Unsigned Integer Element Indices. 58
7.9 Mapping Buffer Objects In Client Address Space. 58
7.10 3D textures . 58
7.11 Non-power of two texture extensions. 58
7.12 Supporting High Precision Float and Integer Data Types in Fragment Shaders. 58
7.13 Ericsson RGB compressed texture format. 59
7.14 Loading and Compiling Shader Sources. 59
7.15 Loading Shader Binaries. 59

8 Packaging 60
8.1 Header Files. 60
8.2 Libraries. 60

Contents iii

A Acknowledgements 61

B OES Extension Specifications 64
B.1 OESreadformat . 64
B.2 OEScompressedpalettedtexture . 68
B.3 OESframebufferobject . 73
B.4 OESfbo rendermipmap . 78
B.5 OESrgb8 rgba8. 80
B.6 OESdepth24 . 82
B.7 OESdepth32 . 84
B.8 OESstencil1 . 86
B.9 OESstencil4 . 88
B.10 OESstencil8 . 90
B.11 OESvertexhalf float . 92
B.12 OEStexturefloat . 95
B.13 OEStexturefloat linear . 98
B.14 OESelementindex uint .100
B.15 OESmapbuffer .102
B.16 OEStexture3D .104
B.17 OEStexturenpot .107
B.18 OESfragmentprecisionhigh . 109
B.19 OEScompressedETC1 RGB8 texture . 111
B.20 OESshadersource .119
B.21 OESshaderbinary .122

Chapter 1

Overview

This document outlines the OpenGL ES 2.0 specification. OpenGL ES 2.0 implements theCommon profile
only. The Common profile supports fixed point (signed 16.16) vertex attributes and floating point vertex
attributes, shader uniform variables and command parameters. Shader uniform variables and command
parameters no longer support fixed point to simplify the API and also because the fixed point variants do
not offer any additional performance. The OpenGL ES 2.0 pipeline is described in the same order as in the
OpenGL specification. The specification lists supported commands and state, and calls out commands and
state that are part of the full (desktop) OpenGL specification but not part of the OpenGL ES 2.0 specification.
This specification isnot a standalone document describing the detailed behavior of the rendering pipeline
subset and API. Instead, it provides a concise description of the differences between a full OpenGL renderer
and the OpenGL ES renderer. This document is defined relative to the OpenGL 2.0 specification.

This document specifies the OpenGL ES renderer. A companion document defines one or more bindings
to window system/OS platform combinations analogous to the GLX, WGL, and AGL specifications.1 If
required, an additional companion document describes utility library functionality analogous to the GLU
specification.

1.1 Conventions

This document describes commands in the identical order as the OpenGL 2.0 specification. Each section
corresponds to a section in the full OpenGL specification and describes the disposition of each command
relative to this specification. Where necessary, the OpenGL ES 2.0 specification provides additional clarifi-
cation of the reduced command behavior.

Each section of the specification includes tables summarizing the commands and parameters that are re-
tained. Several symbols are used within the tables to indicate various special cases. The symbol† indicates
that an enumerant is optional and may not be supported by an OpenGL ES 2.0 implementation. The super-
script ‡ indicates that the command is supported subject to additional constraints described in the section
body containing the table.

■ Additional material summarizing some of the reasoning behind certain decisions is included as an
annotation at the end of each section, set in this typeface. ❑

1See the OpenGL ES Native Platform Graphics Interface specification.

1

Chapter 2

OpenGL Operation

The significant change in the OpenGL ES 2.0 specification is that the OpenGL fixed function transformation
and fragment pipeline is not supported. Other features that are not supported are that commands cannot be
accumulated in a display list for later processing, and the first stage of the pipeline for approximating curve
and surface geometry is eliminated.

The specification introduces several OpenGL extensions that are defined relative to the full OpenGL 2.0
specification and then appropriately reduced to match the subset of supported commands. These OpenGL
extensions are divided into two categories: those that are fully integrated into the specification definition
– core additions; and those that remain extensions –profile extensions. Core additions do not use exten-
sion suffixes, whereas profile extensions retain their extension suffixes. Profile extensions that subset or
optionally support features that are in OpenGL 2.0 do not require extension suffixes. Chapter7 summarizes
each extension and how it relates to the specification. Complete extension specifications are included in
AppendixB.

■ OpenGL ES 2.0 is part of a wider family of OpenGL-derived application programming interfaces.
As such, it shares a similar processing pipeline, command structure, and the same OpenGL name
space. Where necessary, extensions are created to optionally support existing OpenGL 2.0 function-
ality or to augment the existing OpenGL 2.0 functionality. OpenGL ES-specific extensions play a role
in OpenGL ES similar to that played by OpenGL ARB extensions relative to the OpenGL specifica-
tion. OpenGL ES-specific extensions are either precursors of functionality destined for inclusion in
future core revisions, or formalization of important but non-mainstream functionality.

Extension specifications are written relative to the full OpenGL specification so that they can also
be added as extensions to an OpenGL 2.0 implementation and so that they are easily adapted
to functionality enhancements that are drawn from the full OpenGL specification. Extensions that
are part of the core do not have extension suffixes, since they are not extensions, though they are
extensions to OpenGL 2.0. ❑

2.1 OpenGL Fundamentals

Commands and tokens continue to be prefixed bygl andGL . The wide range of support for differing data
types (8-bit, 16-bit, 32-bit and 64-bit; integer and floating-point) is reduced wherever possible to eliminate
non-essential command variants and to reduce the complexity of the processing pipeline. Double-precision
floating-point parameters and data types are eliminated completely, while other command and data type
variations are considered on a command-by-command basis and eliminated when appropriate. Fixed point
data types have also been added where appropriate.

2

OpenGL Operation 3

2.1.1 Fixed-Point Computation

The OpenGL ES 2.0 specification supports fixed-point vertex attributes using a 32-bit two’s-complement
signed representation with 16 bits to the right of the binary point (fraction bits). The OpenGL ES 2.0
pipeline requires the same range and precision requirements as specified in Section 2.1.1 of the OpenGL
2.0 specification.

2.2 GL State

The OpenGL ES 2.0 specification retains a subset of the client and server state described in the full OpenGL
specification. The separation of client and server state persists. Section6.2 summarizes the disposition of
all state variables relative to the specification.

2.3 GL Command Syntax

The OpenGL command and type naming conventions are retained identically. A new typefixed is added.
Commands using the suffixes for the types:byte , ubyte , short , andushort are not supported. The
type double and all double-precision commands are eliminated. The result is that the OpenGL ES 2.0
specification uses only the suffixes ’f’, and ’i’.

2.4 Basic GL Operation

The basic command operation remains identical to OpenGL 2.0. The major differences from the OpenGL
2.0 pipeline are that commands cannot be placed in a display list; there is no polynomial function evaluation
stage; the fixed function transformation and fragment pipeline is not supported; and blocks of fragments
cannot be sent directly to the individual fragment operations.

2.5 GL Errors

The full OpenGL error detection behavior is retained, including ignoring offending commands and setting
the current error state. In all commands, parameter values that are not supported are treated like any other
unrecognized parameter value and an error results, i.e.,INVALID ENUMor INVALID VALUE. Table2.1 lists
the errors.

OpenGL 2.0 Common

NOERROR �
INVALID ENUM �
INVALID VALUE �
INVALID OPERATION �
STACKOVERFLOW �
STACKUNDERFLOW �
OUTOF MEMORY �
TABLE TOOLARGE –

Table 2.1: Error Disposition

4 OpenGL Operation

The commandGetError is retained to return the current error state. As in OpenGL 2.0, it may be
necessary to callGetError multiple times to retrieve error state from all parts of the pipeline.

OpenGL 2.0 Common

enum GetError (void) �

■ Well-defined error behavior allows portable applications to be written. Retrievable error state allows
application developers to debug commands with invalid parameters during development. This is an
important feature during initial deployment. ❑

2.6 Begin/End Paradigm

OpenGL ES 2.0 draws geometric objects exclusively using vertex arrays. The OpenGL ES 2.0 specification
supports user defined vertex attributes only. Support for vertex position, normals, colors, texture coordinates
is removed since they can be specified using vertex attribute arrays.

The associated auxiliary values for user defined vertex attributes can also be set using a small subset of
the associated attribute specification commands described in Section 2.7.

Since the commandsBegin andEnd are not supported, no internal state indicating the begin/end state is
maintained.

ThePOINTS, LINES , LINE STRIP, LINE LOOP, TRIANGLES, TRIANGLE STRIP, andTRIANGLE FAN

primitives are supported. TheQUADS, QUADSTRIP, andPOLYGONprimitives are not supported.

Color index rendering is not supported. Edge flags are not supported.

OpenGL 2.0 Common

void Begin(enum mode) –
void End(void) –
void EdgeFlag[v](T flag) –

■ The Begin/End paradigm, while convenient, leads to a large number of commands that need to
be implemented. Correct implementation also involves suppression of commands that are not legal
between Begin and End. Tracking this state creates an additional burden on the implementation.
Vertex arrays, arguably can be implemented more efficiently since they present all of the primitive
data in a single function call. Edge flags are not included, as they are only used when drawing
polygons as outlines and support for PolygonModehas not been included.

Quads and polygons are eliminated since they can be readily emulated with triangles and it reduces
an ambiguity with respect to decomposition of these primitives to triangles, since it is entirely left to
the application. Elimination of quads and polygons removes special cases for line mode drawing
requiring edge flags (should PolygonModebe re-instated). ❑

OpenGL Operation 5

2.7 Vertex Specification

The OpenGL ES 2.0 specification does not include the concept of Begin and End. Vertices are specified
using vertex arrays exclusively.

Setting generic vertex attribute zero no longer specifies a vertex. Setting any generic vertex attribute,
including attribute zero, updates the current values of the attribute. The state required to support vertex
specification consists of MAXVERTEX ATTRIBS four-component floating-point vectors to store generic
vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coordinates. The initial values for
all generic vertex attributes, including vertex attribute zero, are (0, 0, 0, 1).

OpenGL 2.0 Common

void Vertex{234}{sifd}[v] (T coords) –
void Normal3{bsifd}[v] (T coords) –
void TexCoord{1234}{sifd}[v] (T coords) –
void MultiTexCoord {1234}{sifd}[v] (enum texture, T coords) –
void Color{34}{bsifd ub us ui}[v] (T components) –
void FogCoord{fd}[v] (T coord) –
void SecondaryColor3{bsifd ub us ui}[v] (T components) –
void Index{sifd ub}[v] (T components) –
void VertexAttrib {1234}f[v] (uint indx, T values) �
void VertexAttrib {1234}{sd}[v] (uint indx, T values) –
void VertexAttrib4 {bsid ubusui}v(uint indx, T values) –
void VertexAttrib4N {bsi ubusui}[v] (uint indx, T values) –

■ Generic per-primitive attributes can be set using the (VertexAttrib*) entry points. The most general
form of the floating-point version of the command is retained to simplify addition of extensions or
future revisions. Since these commands are unlikely to be issued frequently, as they can only be
used to set (overall) per-primitive attributes, performance is not an issue.

OpenGL ES 2.0 supports the RGBA rendering model only. One or more of the RGBA component
depths may be zero. Color index rendering is not supported. ❑

2.8 Vertex Arrays

Vertex data is specified using VertexAttribPointer. Pre-defined vertex data arrays such as vertex, color,
normal, texture coord arrays are not supported. Color index and edge flags are not supported. Both in-
dexed and non-indexed arrays are supported, but theInterleavedArrays andArrayElement commands are
not supported.

Indexing support withubyte andushort indices is supported. Support foruint indices is not required
by OpenGL ES 2.0. If an implementation supportsuint indices, it will export theOESelement index -

uint extension.

OpenGL 2.0 Common
void VertexPointer(int size, enum type, sizei stride,

const void * ptr)
–

6 OpenGL Operation

OpenGL 2.0 Common
void NormalPointer(enum type, sizei stride, const void

* ptr)
–

void ColorPointer(int size, enum type, sizei stride,

const void * ptr)
–

void TexCoordPointer(int size, enum type, sizei stride,

const void * ptr)
–

void SecondaryColorPointer(int size, enum type, sizei

stride, void * ptr)
–

void FogCoordPointer(enum type, sizei stride, void * ptr) –
void EdgeFlagPointer(sizei stride, const void * ptr) –
void IndexPointer(enum type, sizei stride, const void

* ptr)
–

void ArrayElement (int i) –
void VertexAttribPointer (uint index, int size, enum type, boolean normalized,

sizei stride, const void * ptr)

size = 1,2,3,4, type = BYTE �
size = 1,2,3,4, type = UNSIGNED BYTE �
size = 1,2,3,4, type = SHORT �
size = 1,2,3,4, type = UNSIGNED SHORT �
size = 1,2,3,4, type = INT �
size = 1,2,3,4, type = UNSIGNED INT �
size = 1,2,3,4, type = FLOAT �
size = 1,2,3,4, type = FIXED �

void DrawArrays (enum mode, int first, sizei count)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLESTRIP,TRIANGLE FAN �
mode = QUADS,QUADSTRIP,POLYGON –

void DrawElements(enum mode, sizei count, enum type, const void * indices)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLESTRIP,TRIANGLE FAN �
mode = QUADS,QUADSTRIP,POLYGON –
type = UNSIGNED BYTE,UNSIGNEDSHORT �
type = UNSIGNED INT †

void MultiDrawArrays (enum mode, int * first, sizei

* count, sizei primcount)
–

void MultiDrawElements (enum mode, sizei * count, enum

type, void ** indices, sizei primcount)
–

void InterleavedArrays(enum format, sizei stride, const

void * pointer)
–

void DrawRangeElements(enum mode, uint start, uint end,

sizei count, enum type, const void * indices)
–

void ClientActiveTexture(enum texture) –
void EnableClientState(enum cap) –
void DisableClientState(enum cap) –

OpenGL Operation 7

OpenGL 2.0 Common
void EnableVertexAttribArray (uint index) �
void DisableVertexAttribArray (uint index) �

■ Float types are supported for all-around generality, short , ushort , byte and ubyte types
are supported for space efficiency. Support for indexed vertex arrays allows for greater reuse of
coordinate data between multiple faces, that is, when the shared edges are smooth.

The OpenGL 2.0 specification defines the initial type for the vertex attribute arrays to be FLOAT. ❑

2.9 Buffer Objects

The vertex data arrays described in Section 2.8 are stored in client memory. It is sometimes desirable to
store frequently used client data, such as vertex array data in high-performance server memory. GL buffer
objects provide a mechanism that clients can use to allocate, initialize and render from memory. Buffer
objects can be used to store vertex array and element index data.

MapBuffer andUnmapBuffer functions are not required. If an implementation supports these two func-
tions, it will export theOESmapbuffer extension.

OpenGL 2.0 Common

void BindBuffer (enum target, uint buffer) �
void DeleteBuffers(sizei n, const uint * buffers) �
void GenBuffers(sizei n, uint * buffers) �
void BufferData(enum target, sizeiptr size, const void

* data, enum usage)
�

void BufferSubData(enum target, intptr offset, sizeiptr

size, const void * data)
�

void *MapBuffer (enum target, enum access) †
boolean UnmapBuffer(enum target) †

■ MapBuffer and UnmapBuffer functions are not required because it may not be possible for an
application to read or get a pointer to the vertex data from the vertex buffers in server memory.

BufferData and BufferSubData define two new types that will work well on 64-bit systems, analogous
to C’s ”intptr t”. The new type ”GLintptr” should be used in place of GLint whenever it is expected
that values might exceed 2 billion. The new type ”GLsizeiptr” should be used in place of GLsizei
whenever it is expected that counts might exceed 2 billion. Both types are defined as signed integers
large enough to contain any pointer value. As a result, they naturally scale to larger numbers of bits
on systems with 64-bit or even larger pointers. ❑

8 OpenGL Operation

Name Type Initial Value Legal Values

BUFFERSIZE integer 0 any non-negative integer

BUFFERUSAGE enum STATIC DRAW
STATIC DRAW, DYNAMICDRAW, STREAMDRAW,
STATIC READ, DYNAMICREAD, STREAMREAD,
STATIC COPY, DYNAMICCOPY, STREAMCOPY

BUFFERACCESS enum WRITEONLY WRITEONLY

BUFFERMAPPED boolean FALSE FALSE

Table 2.2: Buffer object parameters and their values

2.10 Rectangles

The commands for directly specifying rectangles are not supported.

OpenGL 2.0 Common

void Rect{sifd}(T x1, T y1, T x2, T y2) –
void Rect{sifd}v(T v1[2], T v2[2]) –

■ The rectangle commands are not used enough in applications to justify maintaining a redundant
mechanism for drawing a rectangle. ❑

2.11 Coordinate Transformations

The fixed function transformation pipeline is no longer supported. The application can compute the neces-
sary matrices (can be the combined modelview and projection matrix, or an array of matrices for skinning)
and load them as uniform variables in the vertex shader. The code to compute transformed vertex will now
be executed in the vertex shader.

TheViewport command is supported since the viewport transformation happens after the programmable
vertex transform and is a fixed function.

OpenGL 2.0 Common
void DepthRange(clampd n, clampd f) –
void DepthRangef(clampf n, clampf f) �
void Viewport (int x, int y, sizei w, sizei h) �
void MatrixMode (enum mode) –
void LoadMatrixf (float m[16]) –
void LoadMatrixd (double m[16]) –
void MultMatrixf (float m[16]) –
void MultMatrixd (double m[16]) –
void LoadTransposeMatrix{fd}(T m[16]) –
void MultTransposeMatrix {fd}(T m[16]) –
void LoadIdentity (void) –
void Rotatef(float angle, float x, float y, float z) –

OpenGL Operation 9

OpenGL 2.0 Common
void Rotated(double angle, double x, double y, double

z)
–

void Scalef(float x, float y, float z) –
void Scaled(double x, double y, double z) –
void Translatef(float x, float y, float z) –
void Translated(double x, double y, double z) –
void Frustum(double l, double r, double b, double t,

double n, double f)
–

void Ortho (double l, double r, double b, double t,

double n, double f)
–

void ActiveTexture(enum texture) �
void PushMatrix (void) –
void PopMatrix (void) –
void Enable/Disable(RESCALE NORMAL) –
void Enable/Disable(NORMALIZE) –
void TexGen{ifd}[v] (enum coord, enum pname, T param) –
void GetTexGen{ifd}v(enum coord, enum pname, T * params) –
void Enable/Disable(TEXTURE GEN{STRQ}) –

■ Features such as texture coordinate generation, normalization and rescaling of normals etc. can
now be implemented inside a vertex shader, and are therefore not needed. ❑

10 OpenGL Operation

2.12 Clipping

Clipping against the viewing frustum is supported; however, separate user-specified clipping planes are not
supported.

OpenGL 2.0 Common
void ClipPlane(enum plane, const double * equation) –
void GetClipPlane(enum plane, double * equation) –
void Enable/Disable(CLIP PLANE{0-5 }) –

■ User-specified clipping planes are used predominately in engineering and scientific applications.
User clip planes can be emulated by calculating the dot product of the user clip plane with the vertex
position in eye space in the vertex shader. This term can be defined as a varying variable. The
fragment shader can reject the pixel based on the value of this term. Depending on the float pre-
cision types supported in a fragment shader, there may be clipping artifacts because of insufficient
precision. ❑

2.13 Current Raster Position

The concept of the current raster position for positioning pixel rectangles and bitmaps is not supported.
Current raster state and commands for setting the raster position are not supported.

OpenGL 2.0 Common

RasterPos{2,3,4}{sifd}[v] (T coords) –
WindowPos{2,3}{sifd}[v] (T coords) –

■ Bitmaps and pixel image primitives are not supported so there is no need to specify the raster
position. ❑

2.14 Colors and Coloring

The OpenGL 2.0 fixed function lighting model is no longer supported.

OpenGL 2.0 Common
void FrontFace(enum mode) �
void Enable/Disable(LIGHTING) –
void Enable/Disable(LIGHT {0-7 }) –
void Materialf[v] (enum face, enum pname, T param) –
void Materiali[v] (enum face, enum pname, T param) –
void GetMaterialfv (enum face, enum pname, T * params) –
void GetMaterialiv (enum face, enum pname, T * params) –
void Lightf[v] (enum light, enum pname, T param) –
void Lighti[v] (enum light, enum pname, T param) –
void GetLightfv (enum light, enum pname, T * params) –
void GetLightiv (enum light, enum pname, T * params) –

OpenGL Operation 11

OpenGL 2.0 Common
void LightModelf[v] (enum pname, T param) –
void LightModeli[v] (enum pname, T param) –
void Enable/Disable(COLORMATERIAL) –
void ColorMaterial (enum face, enum mode) –
void ShadeModel(enum mode) –

■ The OpenGL 2.0 or any user defined lighting can be implemented by writing appropriate vertex
and/or pixel shaders. ❑

2.15 Vertex Shaders

OpenGL 2.0 supports the fixed function vertex pipeline and a programmable vertex pipeline using vertex
shaders. OpenGL ES 2.0 supports the programmable vertex pipeline only. OpenGL ES 2.0 allows applica-
tions to describe operations that occur on vertex values and their associated data by using avertex shader.

OpenGL ES 2.0 provides interfaces to directly load the pre-compiled shader binaries, or to load the
shader sources and compile them in OpenGL ES. TheOESshader binary extension describes APIs to
load pre-compiled shader binaries. TheOESshader source extension describes APIs to load and compile
shader sources.Both features are optional extensions with the caveat that at least one of these methods must
be implemented by an OpenGL ES 2.0 implementation.

In case there is no valid program object currently in use, then the result of all drawing commands issued
usingDrawArrays or DrawElements is undefined.

OpenGL 2.0 Common
void AttachShader(uint program, uint shader) �
void BindAttribLocation (uint program, uint index, const

char * name)
�

void CompileShader(uint shader) †
uint CreateProgram(void) �
uint CreateShader(enum type) �
void DeleteShader(uint shader) �
void DetachShader(uint program, uint shader) �
void DeleteProgram(uint program) �
void GetActiveAttrib (uint program, uint index, sizei

bufsize, sizei * length, int * size, enum * type, char

* name)

�

void GetActiveUniform (uint program, uint index, sizei

bufsize, sizei * length, int * size, enum * type, char

* name)

�

int GetAttribLocation (uint program, const char * name) �
void GetShaderiv(uint shader, enum pname, int * params)

pname = SHADERTYPE, DELETE STATUS �
pname = COMPILESTATUS, INFO LOGLENGTH †
pname = SHADERSOURCELENGTH †

12 OpenGL Operation

OpenGL 2.0 Common
void GetShaderInfoLog(uint shader, sizei bufsize, sizei

* length, char * infolog)
†

int GetUniformLocation (uint program, const char * name) �
void LinkProgram (uint program) �
void ShaderSource(uint shader, sizei count, const char

** string, const int * length)
†

void Uniform {1234}{if}(int location, T value) �
void Uniform {1234}{if}v(int location, sizei count, T

value)
�

void UniformMatrix {234}fv(int location, sizei count,

boolean transpose, T value)
�

void UseProgram(uint program) �
void ValidateProgram(uint program) �

■ OpenGL 2.0 requires a shader compiler and therefore only supports loading shader sources and
compiling them in GL. A compiler that produces optimized binary shader code is quite significant
in size (multiple MBs) and requiring such a compiler as part of the device image can be an issue
for handheld devices. Therefore, OpenGL ES makes the shader compiler optional and in addition
provides an optional extension to directly load precompiled shader binaries.

The transpose parameter in the UniformMatrix API call can only be FALSE in OpenGL ES 2.0. The
transpose field was added to UniformMatrix as OpenGL 2.0 supports both column major and row
major matrices. OpenGL ES 1.0 and 1.1 do not support row major matrices because there was
no real demand for it. For OpenGL ES 2.0, there is no reason to support both column major and
row major matrices, so the default matrix type used in OpenGL (i.e. column major) is the only one
supported. An INVALID VALUE error will be generated if tranpose is not FALSE. ❑

Chapter 3

Rasterization

3.1 Invariance

The invariance rules are retained in full.

3.2 Antialiasing

Multisampling is supported though an implementation is not required to provide a multisample buffer. Mul-
tisampling can be enabled and/or disabled in OpenGL using the Enable/Disable command. Multisampling
is automatically enabled in OpenGL ES 2.0, if the EGLconfig associated with the target render surface uses
a multisample buffer.

OpenGL 2.0 Common

void Enable/Disable(MULTISAMPLE) –

■ Multisampling is a desirable feature. Since an implementation need not provide an actual multi-
sample buffer and the command overhead is low, it is included. ❑

3.3 Points

OpenGL ES 2.0 supports aliased point sprites only. ThePOINT SPRITE default state is alwaysTRUE.

OpenGL 2.0 Common

void PointSize(float size) �
void PointParameter{if}[v] (enum pname, T param) –
void Enable/Disable(POINT SMOOTH) –
void Enable/Disable(POINT SPRITE) –
void Enable/Disable(VERTEX PROGRAMPOINT SIZE) �

13

14 Rasterization

3.3.1 Point Sprite Rasterization

Point sprite rasterization produces a fragment for each framebuffer pixel whose center lies inside a square
centered at the points (xw, yw), with side length equal to the current point sprite. The rasterization rules are
the same as that defined in the OpenGL 2.0 specification with the following differences:

• The point sprite coordinate origin isUPPERLEFT and cannot be changed.

• The point size is computed by the vertex shader, so the fixed function to multiply the point size with
a distance attenuation factor and clamping it to a specified point size range is no longer supported.

• Multisample point fade is not supported.

• TheCOORDREPLACEfeature wheres texture coordinate for a point sprite goes from 0 to 1 across the
point horizontally left-to-right andt texture coordinate goes from 0 to 1 vertically top-to-bottom is
given by theglPointCoord variable defined the OpenGL ES shading language specification.

■ Point sprites are used for rendering particle effects efficiently by drawing them as a point instead of
a quad. Traditional points (aliased and anti-aliased) have seen very limited use and are therefore no
longer supported. ❑

3.4 Line Segments

Aliased lines are supported. Anti-aliased lines and line stippling are not supported.

OpenGL 2.0 Common

void LineWidth (float width) �
void Enable/Disable(LINE SMOOTH) –
void LineStipple(int factor, ushort pattern) –
void Enable/Disable(LINE STIPPLE) –

3.5 Polygons

Polygonal geometry support is reduced to triangle strips, triangle fans and independent triangles. All raster-
ization modes are supported except for point and linePolygonModeand antialiased polygons using polygon
smooth. Depth offset is supported inFILL mode only.

■ Support for all triangle types (independents, strips, fans) is not overly burdensome and each type
has some desirable utility: strips for general performance and applicability, independents for efficiently
specifying unshared vertex attributes, and fans for representing ”corner-turning” geometry. Face
culling is important for eliminating unnecessary rasterization. Polygon stipple is desirable for doing
patterned fills for ”presentation graphics”. It is also useful for transparency, but support for alpha is
sufficient for that. Polygon stippling does represent a large burden for the polygon rasterization path
and can usually be emulated using texture mapping and alpha test, so it is omitted. Polygon offset for
filled triangles is necessary for rendering coplanar and outline polygons and if not present requires
either stencil buffers or application tricks. Antialiased polygons using POLYGONSMOOTHis just as
desirable as antialiasing for other primitives, but is too large an implementation burden to include. ❑

Rasterization 15

OpenGL 2.0 Common

void CullFace(enum mode) �
void Enable/Disable(CULL FACE) �
void PolygonMode(enum face, enum mode) –
void Enable/Disable(POLYGONSMOOTH) –
void PolygonStipple(const ubyte * mask) –
void GetPolygonStipple(ubyte * mask) –
void Enable/Disable(POLYGONSTIPPLE) –
void PolygonOffset(float factor, float units) �
void Enable/Disable(enum cap)

cap = POLYGONOFFSETFILL �
cap = POLYGONOFFSETLINE, POLYGONOFFSETPOINT –

3.6 Pixel Rectangles

No support for directly drawing pixel rectangles is included. LimitedPixelStoresupport is retained to allow
different pack alignments forReadPixelsand unpack alignments forTexImage2D. DrawPixels, PixelTransfer
modes andPixelZoom are not supported. The Imaging subset is not supported.

OpenGL 2.0 Common
void PixelStorei(enum pname, T param)

pname = PACKALIGNMENT,UNPACKALIGNMENT �
pname = <all other values> –

void PixelStoref(enum pname, T param) –
void PixelTransfer{if}(enum pname, T param) –
void PixelMap{ui us f}v(enum map, int size, T * values) –
void GetPixelMap{ui us f}v(enum map, T * values) –

void Enable/Disable(COLORTABLE) –
void ColorTable(enum target, enum internalformat, sizei

width, enum format, enum type, const void * table)
–

void ColorSubTable(enum target, sizei start, sizei

count, enum format, enum type, const void * data)
–

void ColorTableParameter{if}v(enum target, enum pname, T

* params)
–

void GetColorTableParameter{if}v(enum target, enum pname, T

* params)
–

void CopyColorTable(enum target, enum internalformat,

int x, int y, sizei width)
–

void CopyColorSubTable(enum target, sizei start, int x,

int y, sizei width)
–

void GetColorTable(enum target, enum format, enum type,

void * table)
–

16 Rasterization

OpenGL 2.0 Common
void ConvolutionFilter1D (enum target, enum internalformat,

sizei width, enum format, enum type, const void

* image)

–

void ConvolutionFilter2D (enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void * image)

–

void GetConvolutionFilter (enum target, enum format, enum

type, void * image)
–

void CopyConvolutionFilter1D(enum target, enum

internalformat, int x, int y, sizei width)
–

void CopyConvolutionFilter2D(enum target, enum

internalformat, int x, int y, sizei width, sizei

height)

–

void SeparableFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void * row, const void * column)

–

void GetSeparableFilter(enum target, enum format, enum

type, void * row, void * column, void * span)
–

void ConvolutionParameter{if}[v] (enum target, enum pname, T

param)
–

void GetConvolutionParameter{if}v(enum target, enum pname, T

* params)
–

void Enable/Disable(POST CONVOLUTIONCOLORTABLE) –
void MatrixMode (COLOR) –
void Enable/Disable(POST COLORMATRIX COLORTABLE) –

void Enable/Disable(HISTOGRAM) –
void Histogram(enum target, sizei width, enum

internalformat, boolean sink)
–

void ResetHistogram(enum target) –
void GetHistogram(enum target, boolean reset, enum

format, enum type, void * values)
–

void GetHistogramParameter{if}v(enum target, enum pname, T

* params)
–

void Enable/Disable(MINMAX) –
void Minmax (enum target, enum internalformat, boolean

sink)
–

void ResetMinmax(enum target) –
void GetMinmax(enum target, boolean reset, enum

format, enum types, void * values)
–

void GetMinmaxParameter{if}v(enum target, enum pname, T

* params)
–

Rasterization 17

OpenGL 2.0 Common

void DrawPixels(sizei width, sizei height, enum format,

enum type, void * data)
–

void PixelZoom(float xfactor, float yfactor) –

■ The OpenGL 2.0 specification includes substantial support for operating on pixel images. The
ability to draw pixel images is important, but with the constraint of minimizing the implementation
burden. There is a concern that DrawPixels is often poorly implemented on hardware accelerators
and that many applications are better served by emulating DrawPixels functionality by initializing a
texture image with the host image and then drawing the texture image to a screen-aligned quadrilat-
eral. This has the advantage of eliminating the DrawPixelsprocessing path and and allows the image
to be cached and drawn multiple times without re-transferring the image data from the application’s
address space. However, it requires extra processing by the application and the implementation,
possibly requiring the image to be copied twice.

The command PixelStoremust be included to allow changing the pack alignment for ReadPixelsand
unpack alignment for TexImage2D to something other than the default value of 4 to support ubyte
RGBimage formats. The integer version of PixelStore is retained rather than the floating-point version
since all parameters can be fully expressed using integer values. ❑

3.7 Bitmaps

Bitmap images are not supported.

OpenGL 2.0 Common

void Bitmap(sizei width, sizei height, float xorig,

float yorig, float xmove, float ymove, const ubyte

* bitmap)

–

■ The Bitmap command is useful for representing image data compactly and for positioning images
directly in window coordinates. Since DrawPixels is not supported, the positioning functionality is not
required. A strong enough case hasn’t been made for the ability to represent font glyphs or other
data more efficiently before transfer to the rendering pipeline. ❑

3.8 Texturing

OpenGL ES 2.0 requires a minimum of two texture image units to be supported. 1D textures, and depth
textures are not supported. 2D textures, cube maps are supported with the following exceptions: only a
limited number of image format and type combinations are supported, listed in Table3.1. 3D textures are
not required but can be optionally supported through theOEStexture 3D extension.

OpenGL 2.0 implementspower of two and non-power of two 1D, 2D, 3D textures and cube-
maps. The power and non-power of two textures support all texture wrap modes and can be mip-mapped in
OpenGL 2.0.

OpenGL ES 2.0 supportsnon-power of two 2D textures, and cubemaps, with the caveat that mip-
mapping and texture wrap modes other than clamp to edge are not supported. Mip-mapping and all OpenGL
ES 2.0 texture wrap modes are supported forpower of two 2D textures, and cubemaps.

18 Rasterization

TheOEStexture npot extension allows implementations to support mip-mapping andREPEATand
MIRROREDREPEATtexture wrap modes fornon-power of two 2D textures, cubemaps, and also for 3D
textures, ifOEStexture 3D extension is supported.

Table3.2 summarizes the disposition of all image types. The only internal formats supported are the
base internal formats:RGBA, RGB, LUMINANCE, ALPHA, andLUMINANCEALPHA. The format must match
the base internal format (no conversions from one format to another during texture image processing are
supported) as described in Table3.1. Texture borders are not supported (theborder parameter must be zero,
and anINVALID VALUEerror results if it is non-zero).

Internal Format External Format Type Bytes per Pixel

RGBA RGBA UNSIGNEDBYTE 4
RGB RGB UNSIGNEDBYTE 3
RGBA RGBA UNSIGNEDSHORT4 4 4 4 2
RGBA RGBA UNSIGNEDSHORT5 5 5 1 2
RGB RGB UNSIGNEDSHORT5 6 5 2
LUMINANCEALPHA LUMINANCEALPHA UNSIGNEDBYTE 2
LUMINANCE LUMINANCE UNSIGNEDBYTE 1
ALPHA ALPHA UNSIGNEDBYTE 1

Table 3.1: Texture Image Formats and Types

3.8.1 Copy Texture

CopyTexImageandCopyTexSubImageare supported. The internal format parameter can be any of the base
internal formats described forTexImage2D subject to the constraint that color buffer components can be
dropped during the conversion to the base internal format, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to createLUMINANCEor RGBtextures, but notALPHA, LUMINANCE-

ALPHA, or RGBAtextures. Table3.3summarizes the allowable framebuffer and base internal format combi-
nations. If the framebuffer format is not compatible with the base texture format anINVALID OPERATION

error results.

OpenGL 2.0 Common
UNSIGNEDBYTE �
BITMAP –
BYTE –
UNSIGNEDSHORT –
SHORT –
UNSIGNEDINT –
INT –
FLOAT –
UNSIGNEDBYTE 3 3 2 –
UNSIGNEDBYTE 3 3 2 REV –
UNSIGNEDSHORT5 6 5 �
UNSIGNEDSHORT5 6 5 REV –

Rasterization 19

OpenGL 2.0 Common
UNSIGNEDSHORT4 4 4 4 �
UNSIGNEDSHORT4 4 4 4 REV –
UNSIGNEDSHORT5 5 5 1 �
UNSIGNEDSHORT5 5 5 1 REV –
UNSIGNEDINT 8 8 8 8 –
UNSIGNEDINT 8 8 8 8 REV –
UNSIGNEDINT 10 10 10 2 –
UNSIGNEDINT 10 10 10 2 REV –

Table 3.2: Image Types

Texture Format
Color Buffer A L LA RGB RGBA

A � – – – –
L – � – – –
LA � � � – –
RGB – � – � –
RGBA � � � � �

Table 3.3: CopyTexture Internal Format/Color Buffer Combinations

20 Rasterization

3.8.2 Compressed Textures

Compressed textures are supported including sub-image specification; however, no method for reading back
a compressed texture image is included, so implementation vendors must provide separate tools for creating
compressed images. The generic compressed internal formats are not supported, so compression of textures
usingTexImage2D, TexImage3D is not supported. TheOEScompressed paletted texture extension
defines several compressed texture formats.

3.8.3 Texture Wrap Modes

Wrap modesREPEAT, CLAMPTO EDGEand MIRROREDREPEATare the only wrap modes supported for
texture coordinates. The texture parameters to specify the magnification and minification filters are sup-
ported. Texture priorities, LOD clamps, and explicit base and maximum level specification, auto mipmap
generation, depth texture and texture comparison modes are not supported. Texture objects are supported,
but proxy textures are not supported.

3.8.4 Texture Minification

The OpenGL 2.0 texture minification filters are supported by OpenGL ES 2.0. Mip-mapped non-power of
two textures are optional in OpenGL ES 2.0. If an implementation supports mip-mapped non-power of two
textures, it will export theOEStexture npot extension.

3.8.5 Texture Magnification

The OpenGL 2.0 texture magnification filters are supported by OpenGL ES 2.0

3.8.6 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters required to utilize the texture
for texture application is consistently defined. The definition of completeness varies depending on the
texture dimensionality.

For 2D and 3D textures, a texture iscompletein OpenGL ES if the following conditions all hold true:

• the set of mipmap arrays are specified with the same type and the same format.

• the dimensions of the arrays follow the sequence described in theMimapping discussion of section
3.8.8 of the OpenGL 2.0 specification.

For cube map textures, a texture iscube completeif the following conditions all hold true:

• the base level arrays of each of the six texture images making up the cube map have identical, positive,
and square dimensions.

• the base level arrays were specified with the same type and the same format.

Finally, a cube map texture ismipmap cube completeif, in addition to being cube complete, each of the
six texture images considered individually is complete.

For non power of two 2D, 3D textures and cubemaps, on implementations that do not supportOES-

texture npot extension, a texture is said to becompleteif the following additional conditions all hold
true:

Rasterization 21

• the minification filter isNEARESTor LINEAR.

• the texture wrap mode isCLAMPTO EDGE

The check for completeness is done when a given texture is used to render geometry.

3.8.7 Texture State

The state necessary for texture can be divided into two categories. First, there are the seven sets of mipmap
arrays (one for the two-dimensional texture target and six for the cube map texture targets) and their number.
Each array has associated with it a width, height (two-dimensional and cubemap only), an integer describing
the internal format of the image, a boolean describing whether the image is compressed or not, and an integer
size of a compressed image.

Each initial texture array is null (zero width, and height, internal format undefined, with the compressed
flag set to FALSE, a zero compressed size, and zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected minification and magnification filters, the wrap modes for
s, and t (two-dimensional and cubemap only), and a boolean flag indicating whether the texture is resident.
The value of the resident flag is determined by the GL and may change as a result of other GL operations,
and cannot be queried in OpenGL ES 2.0. In the initial state, the value assigned to TEXTUREMIN FILTER
is NEARESTMIPMAP LINEAR, and the value for TEXTUREMAG FILTER is LINEAR. s, and t wrap
modes are all set to REPEAT.

3.8.8 Texture Environments and Texture Functions

The OpenGL 2.0 texture environments are no longer supported. The fixed function texture functionality is
replaced by programmable fragment shaders.

OpenGL 2.0 Common
void TexImage1D(enum target, int level, int

internalFormat, sizei width, int border, enum

format, enum type, const void * pixels)

–

void TexImage2D(enum target, int level, int internalFormat, sizei width,

sizei height, int border, enum format, enum type, const void * pixels)

target = TEXTURE 2D, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE X, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE Y, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE Z, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEX, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEY, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEZ, border = 0 �‡

target = PROXY TEXTURE2D –
border > 0 –

void TexImage3D(enum target, int level, enum internalFormat, sizei width,

sizei height, sizei depth, int border, enum format, enum type, const

void * pixels)

target = TEXTURE 3D, border = 0 †‡
target = PROXY TEXTURE3D –
border > 0 –

22 Rasterization

OpenGL 2.0 Common
void GetTexImage(enum target, int level, enum format,

enum type, void * pixels)
–

void TexSubImage1D(enum target, int level, int xoffset,

sizei width, enum format, enum type, const void

* pixels)

–

void TexSubImage2D(enum target, int level, int xoffset,

int yoffset, sizei width, sizei height, enum format,

enum type, const void * pixels)

�‡

void TexSubImage3D(enum target, int level, int xoffset,

int yoffset, int zoffset, sizei width, sizei height,

sizei depth, enum format, enum type, const void

* pixels)

†‡

void CopyTexImage1D(enum target, int level, enum

internalformat, int x, int y, sizei width, int

border)

–

CopyTexImage2D(enum target, int level, enum internalformat, int x, int y,

sizei width, sizei height, int border)

border = 0 �‡

border > 0 –
void CopyTexSubImage1D(enum target, int level, int

xoffset, int x, int y, sizei width)
–

void CopyTexSubImage2D(enum target, int level, int

xoffset, int yoffset, int x, int y, sizei width,

sizei height)

�‡

void CopyTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, int x, int y,

sizei width, sizei height)

†‡

void CompressedTexImage1D(enum target, int level, enum

internalformat, sizei width, int border, sizei

imageSize, const void * data)

–

CompressedTexImage2D(enum target, int level, enum internalformat, sizei

width, sizei height, int border, sizei imageSize, const void * data)

target = TEXTURE 2D, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE X, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE Y, border = 0 �‡

target = TEXTURE CUBEMAPPOSITIVE Z, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEX, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEY, border = 0 �‡

target = TEXTURE CUBEMAPNEGATIVEZ, border = 0 �‡

target = PROXY TEXTURE2D –
border > 0 –

void CompressedTexImage3D(enum target, int level, enum internalformat, sizei

width, sizei height, sizei depth, int border, sizei imageSize, const

void * data)

target = TEXTURE 3D, border = 0 †‡

Rasterization 23

OpenGL 2.0 Common
target = PROXY TEXTURE3D –
border > 0 –

void CompressedTexSubImage1D(enum target, int level, int

xoffset, sizei width, enum format, sizei imageSize,

const void * data)

–

void CompressedTexSubImage2D(enum target, int level, int

xoffset, int yoffset, sizei width, sizei height,

enum format, sizei imageSize, const void * data)

�‡

void CompressedTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, sizei width,

sizei height, sizei depth, enum format, sizei

imageSize, const void * data)

†‡

void GetCompressedTexImage(enum target, int lod, void

* img)
–

void TexParameter{ixf}[v] (enum target, enum pname, T param)

target = TEXTURE 2D,TEXTURECUBEMAP �
target = TEXTURE 3D †
target = TEXTURE 1D –
pname = TEXTUREMIN FILTER,TEXTURE MAGFILTER �
pname = TEXTUREWRAPS,TEXTURE WRAPT �
pname = TEXTUREWRAPR †
pname = TEXTUREBORDERCOLOR –
pname = TEXTUREMIN LOD,TEXTUREMAXLOD –
pname = TEXTUREBASELEVEL,TEXTUREMAXLEVEL –
pname = TEXTURELODBIAS –
pname = DEPTHTEXTUREMODE –
pname = TEXTURECOMPAREMODE –
pname = TEXTURECOMPAREFUNC –
pname = TEXTUREPRIORITY –
pname = GENERATEMIPMAP –

void GetTexParameter{ixf}v(enum target, enum pname, T

* params)
�

void GetTexLevelParameter{ixf}v(enum target, int level,

enum pname, T * params)
–

void BindTexture(enum target, uint texture)

target = TEXTURE 2D,TEXTURECUBEMAP �
target = TEXTURE 3D †
target = TEXTURE 1D –

void DeleteTextures(sizei n, const uint * textures) �
void GenTextures(sizei n, uint * textures) �
boolean IsTexture(uint texture) �
boolean AreTexturesResident(sizei n, uint * textures,

boolean * residences)
–

24 Rasterization

OpenGL 2.0 Common
void PrioritizeTextures(sizei n, uint * textures, clampf

* priorities)
–

void Enable/Disable(enum cap)

cap = TEXTURE2D,TEXTURECUBEMAP –
cap = TEXTURE3D –
cap = TEXTURE1D,TEXTURE3D –

void TexEnv{ixf}[v] (enum target, enum pname, T param) –
void GetTexEnv{ixf}v(enum target, enum pname, T * params) –

■ Texturing with 2D images is a critical feature for entertainment, presentation, and engineering
applications. Cubemaps are also important since they can provide very useful functionality such
as reflections, per-pixel specular highlights etc. These features can also be implemented using 2D
textures. However more than 1 texture unit will be needed to do this (eg. dual paraboliod environment
mapping). Cubemaps allow efficient use of the available texture image units in hardware and are
therefore added to OpenGL ES 2.0. 3D textures are also very useful for rendering volumetric effects,
and have been used by quite a few games on the desktop and are therefore optionally supported.

1D textures are not supported since they can be described as a 2D texture with a height of one.
Texture objects are required for managing multiple textures. In some applications packing multiple
textures into a single large texture is necessary for performance, therefore subimage support is also
included. Copying from the framebuffer is useful for many shading algorithms. A limited set of for-
mats, types and internal formats is included. The RGB component ordering is always RGB or RGBA
rather than BGRA since there is no real perceived advantage to using BGRA. Format conversions
for copying from the framebuffer are more liberal than for images specified in application memory,
since an application usually has control over images authored as part of the application, but has little
control over the framebuffer format. Unsupported CopyTexture conversions generate an INVALID -
OPERATIONerror, since the error is dependent on the presence of a particular color component in
the colorbuffer. This behavior parallels the error treatment for attempts to read from a non-existent
depth or stencil buffer.

Texture borders are not included, since they are often not completely supported by full OpenGL
implementations. All filter modes are supported since they represent a useful set of quality and speed
options. Edge clamp and repeat wrap modes are both supported since these are most commonly
used. Texture priorities are not supported since they are seldom used by applications. Similarly, the
ability to control the LOD range and the base and maximum mipmap image levels is not included,
since these features are used by a narrow set of applications. Since all of the supported texture
parameters are scalar valued, the vector form of the parameter command is eliminated.

Auto mipmap generation has been removed since we can use the GenerateMipmapOES call imple-
mented by the OES framebuffer object extension to generate the mip-levels of a texture. There is no
reason to support two different methods for generating mip-levels of a texture.

Compressed textures are important for reducing space and bandwidth requirements. The OpenGL
2.0 compression infrastructure is retained and a simple palette-based compression format is added
as a required extension. ❑

Rasterization 25

3.9 Color Sum

TheColor Sumfunction is subsumed by the fragment shader, and therefore is not supported.

3.10 Fog

The Fog fixed fragment function can be implemented by the fragment shader. Fog is therefore no longer
supported.

OpenGL 2.0 Common
void Fogf[v](enum pname, T param) –
void Fogi[v](enum pname, T param) –
void Enable/Disable(FOG) –

3.11 Fragment Shaders

OpenGL ES 2.0 supports programmable fragment shader only and replaces the following fixed function
fragment processing:

• The texture environments and texture functions are not applied.

• Texture application is not applied.

• Color sum is not applied.

• Fog is not applied.

A fragment shader is an array of strings containing source code or a binary for the operations that are
meant to occur on each fragment that results from rasterizing a point, line segment or triangle/strip/fan. The
language used for fragment shaders is described in the OpenGL ES shading language.

Chapter 4

Per-Fragment Operations and the
Framebuffer

4.1 Per-Fragment Operations

All OpenGL 2.0 per-fragment operations are supported, except for occlusion queries, logic-ops, alpha test
and color index related operations. Depth and stencil operations are supported, but a selected config is not
required to include a depth or stencil buffer with the caveat thatan OpenGL ES 2.0 implementation must
support at least one config with a depth and stencil buffer with a depth bit depth of 16 or higher and
a stencil bit depth of 8 or higher.

4.1.1 Alpha Test

Alpha test is not supported since this can be done inside a fragment shader.

4.1.2 Stencil Test

StencilFuncSeparateandStencilOpSeparatetake a face argument which can be FRONT, BACK or FRONT-
AND BACK and indicates which set of state is affected.StencilFuncandStencilOpset front and back stencil
state to identical values.

StencilFunc andStencilFuncSeparatetake three arguments that control where the stencil test passes or
fails. ref is an integer reference value that is used in the unsigned stencil comparison.funcis a symbolic con-
stant that determines the stencil comparison function; the eight symbolic constants are NEVER, ALWAYS,
LESS, LEQUAL, EQUAL, GREATER, GREATER, or NOTEQUAL.

StencilOp andStencilOpSeparatetake three arguments that indicate what happens to the stored stencil
value if this or certain subsequent tests fail or pass. sfails indicates what action is taken if the stencil test
fails. The symbolic constants are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCRWRAP and
DECR WRAP. These correspond to keeping the current value, setting to zero, replacing with the refer-
ence value, incrementing with saturation, decrementing with saturation, bit-wise inverting it, incrementing
without saturation, and decrementing without saturation.

4.1.3 Blending

Blending works as defined in the OpenGL 2.0 specification. The only difference is thatBlendEquation
andBlendEquationSeparateonly support theFUNCADD, FUNCSUBTRACTandFUNCREVERSESUBTRACT

26

Per-Fragment Operations and the Framebuffer 27

modes for RGB and alpha.

OpenGL 2.0 Common
void Enable/Disable(SCISSOR TEST) �
void Scissor(int x, int y, sizei width, sizei height) �

void Enable/Disable(SAMPLE COVERAGE) �
void Enable/Disable(SAMPLE ALPHATO COVERAGE) �
void Enable/Disable(SAMPLE ALPHATO ONE) –
void SampleCoverage(clampf value, boolean invert) �

void Enable/Disable(ALPHA TEST) –
void AlphaFunc(enum func, clampf ref) –

void Enable/Disable(STENCIL TEST) �
void StencilFunc(enum func, int ref, uint mask) �
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask)
�

void StencilMask(uint mask) �
void StencilOp(enum fail, enum zfail, enum zpass) �
void StencilOpSeparate(enum face, enum fail, enum zfail,

enum zpass)
�

void Enable/Disable(DEPTH TEST) �
void DepthFunc(enum func) �
void DepthMask(boolean flag) �

void Enable/Disable(BLEND) �
void BlendFunc(enum sfactor, enum dfactor) �
void BlendFuncSeparate(enum srcRGB, enum dstRGB, enum

srcAlpha, enum dstAlpha)
�

void BlendEquation(enum mode) �
void BlendEquationSeparate(enum modeRGB, enum modeAlpha) �
void BlendColor(clampf red, clampf green, clampf blue,

clampf alpha)
�

void Enable/Disable(DITHER) �

void Enable/Disable(INDEX LOGIC OP) –

void Enable/Disable(COLORLOGIC OP) –
void LogicOp(enum opcode) –

void BeginQuery(enum target, uint id) –
void EndQuery(enum target) –

28 Per-Fragment Operations and the Framebuffer

OpenGL 2.0 Common
void GenQueries(sizei n, uint * ids) –
void DeleteQueries(sizei n, uint * ids) –

■ Scissor is useful for providing complete control over where pixels are drawn and some form of
window/drawing-surface scissoring is typically present in most rasterizers so the cost is small. Alpha
testing can be implemented in the fragment shader, therefore the API calls to do the fixed function
alpha test are removed. Stenciling is useful for drawing with masks and for a number of presentation
effects. Depth buffering is essential for many 3D applications and the specification should require
some form of depth buffer to be present. Blending is necessary for implementing transparency,
color sums, and some other useful rendering effects. Dithering is useful on displays with low color
resolution, and the inclusion doesn’t require dithering to be implemented in the renderer. Masked
operations are supported since they are often used in more complex operations and are needed to
achieve invariance. ❑

4.2 Whole Framebuffer Operations

All whole framebuffer operations are supported except for color index related operations, drawing to differ-
ent color buffers, and accumulation buffer.

OpenGL 2.0 Common
void DrawBuffer (enum mode) –
void IndexMask(uint mask) –
void ColorMask(boolean red, boolean green, boolean

blue, boolean alpha)
�

void Clear(bitfield mask) �
void ClearColor(clampf red, clampf green, clampf blue,

clampf alpha)
�

void ClearIndex(float c) –
void ClearDepth(clampd depth) –
void ClearDepthf(clampf depth) �
void ClearStencil(int s) �

void ClearAccum(float red, float green, float blue,

float alpha)
–

void Accum(enum op, float value) –

■ Multiple drawing buffers are not exposed; an application can only draw to the default buffer, so
DrawBuffer is not necessary. The accumulation buffer is not used in many applications, though it is
useful as a non-interactive antialiasing technique. ❑

4.3 Drawing, Reading, and Copying Pixels

ReadPixelsis supported with the following exceptions: the depth and stencil buffers cannot be read from and
the number of format and type combinations forReadPixelsis severely restricted. Two format/type com-
binations are supported: formatRGBAand typeUNSIGNEDBYTE for portability; and one implementation-
specific format/type combination queried using the tokensIMPLEMENTATIONCOLORREADFORMATOES

Per-Fragment Operations and the Framebuffer 29

andIMPLEMENTATIONCOLORREADTYPE OES(OESread format extension). The format and type com-
binations that can be returned from these queries are listed in Table3.1. CopyPixelsandReadBuffer are not
supported. Read operations return data from the default color buffer.

OpenGL 2.0 Common
void ReadBuffer(enum mode) –
void ReadPixels(int x, int y,sizei width, sizei height,

enum format, enum type, void * pixels)
�‡

void CopyPixels(int x, int y, sizei width, sizei height,

enum type)
–

■ Reading the color buffer is useful for some applications and also provides a platform independent
method for testing. The inclusion of the OESread format extension allows an implementation to
support a more efficient format without increasing the number of formats that must be supported.
Pixel copies can be implemented by reading to the host and then drawing to the color buffer (using
texture mapping for the drawing part). Image copy performance is important to many presentation
applications, so CopyPixelsmay be revisited in a future revision. Drawing to and reading from the
depth and stencil buffers is not used frequently in applications (though it would be convenient for
testing), so it is not included. ReadBuffer is not required since the concept of multiple drawing buffers
is not exposed. ❑

Chapter 5

Special Functions

5.1 Evaluators

Evaluators are not supported.

OpenGL 2.0 Common
void Map1{fd}(enum target, T u1, T u2, int stride, int

order, T points)
–

void Map2{fd}(enum target, T u1, T u2, int ustride, int

uorder, T v1, T v2, int vstride, int vorder, T

* points)

–

void GetMap{ifd}v(enum target, enum query, T * v) –
void EvalCoord{12}{fd}[v] (T coord) –
void MapGrid1 {fd}(int un, T u1, T u2) –
void MapGrid2 {fd}(int un, T u1, T u2, T v1, T v2) –
void EvalMesh1(enum mode, int i1, int i2) –
void EvalMesh2(enum mode, int i1, int i2, int j1, int

j2)
–

void EvalPoint1(int i) –
void EvalPoint2(int i, int j) –

■ Evaluators are not used by many applications other than sophisticated CAD applications. ❑

5.2 Selection

Selection is not supported.

OpenGL 2.0 Common
void InitNames(void) –
void LoadName(uint name) –
void PushName(uint name) –
void PopName(void) –
int RenderMode(enum mode) –
void SelectBuffer(sizei size, uint * buffer) –

30

Special Functions 31

■ Selection is not used by many applications. There are other methods that applications can use to
implement picking operations. ❑

5.3 Feedback

Feedback is not supported.

OpenGL 2.0 Common
void FeedbackBuffer(sizei size, enum type, float * buffer) –
void PassThrough(float token) –

■ Feedback is seldom used. ❑

5.4 Display Lists

Display lists are not supported.

OpenGL 2.0 Common
void NewList(uint list, enum mode) –
void EndList (void) –
void CallList (uint list) –
void CallLists(sizei n, enum type, const void * lists) –
void ListBase(uint base) –
uint GenLists(sizei range) –
boolean IsList(uint list) –
void DeleteLists(uint list, sizei range) –

■ Display lists are used by many applications — sometimes to achieve better performance and some-
times for convenience. The implementation complexity associated with display lists is too large for
the implementation targets envisioned for this specification. ❑

5.5 Flush and Finish

Flush andFinish are supported.

OpenGL 2.0 Common
void Flush(void) �
void Finish(void) �

■ Applications need some manner to guarantee rendering has completed, so Finish needs to be
supported. Flush can be trivially supported. ❑

32 Special Functions

5.6 Hints

Hints are retained except for the hints relating to the unsupported polygon smoothing and compression of
textures (including retrieving compressed textures) features.

OpenGL 2.0 Common
void Hint (enum target, enum mode)

target = PERSPECTIVE CORRECTIONHINT –
target = POINT SMOOTHHINT –
target = LINE SMOOTHHINT –
target = FOG HINT –
target = TEXTURE COMPRESSIONHINT –
target = POLYGON SMOOTHHINT –
target = GENERATE MIPMAPHINT �
target = FRAGMENT SHADERDERIVATIVE HINT �

■ Applications and implementations still need some method for expressing permissible speed versus
quality trade-offs. The implementation cost is minimal. There is no value in retaining the hints for
unsupported features. The PERSPECTIVECORRECTIONHINT is not supported because OpenGL
ES 2.0 requires that all attributes be perspectively interpolated. ❑

Chapter 6

State and State Requests

6.1 Querying GL State

State queries forstaticanddynamicstate are explicitly supported. The supported GL state queries can be
categorized into simple queries, enumerated queries, texture queries, pointer and string queries, and buffer
object queries.

The values of the strings returned byGetString are listed in Table6.1.

TheVERSIONstring is laid out as follows:

OpenGL<space>GL<space><version number><space><vendor-specific information>

TheSHADINGLANGUAGEVERSIONstring is laid out as follows:

OpenGL<space>ES<space><GLSL><space><version number><space><vendor-specific

information>

The version number either of the form major number.minor number or major number.minor num-
ber.release number, where the numbers all have one or more digits. The release number and vendor specific
information are optional. However, if present, then they pertain to the server and their format and contents
are implementation dependent.

As the specification is revised, theVERSIONstring is updated to indicate the revision. The string format
is fixed and includes the two-digit version number (X.Y).

Strings
VENDOR as defined by OpenGL 2.0
RENDERER as defined by OpenGL 2.0
VERSION ”OpenGL ES 2.0”
SHADINGLANGUAGEVERSION ”OpenGL ES GLSL 1.10”
EXTENSIONS as defined by OpenGL 2.0

Table 6.1: String State

33

34 State and State Requests

Client and server attribute stacks are not supported by OpenGL ES 2.0; consequently, the commands
PushAttrib , PopAttrib , PushClientAttrib , andPopClientAttrib are not supported. Gets are supported to allow
an application to save and restore dynamic state.

OpenGL 2.0 Common
void GetBooleanv(enum pname, boolean * params) �
void GetIntegerv(enum pname, int * params) �
void GetFloatv(enum pname, float * params) �
void GetDoublev(enum pname, double * params) –
boolean IsEnabled(enum cap) �
void GetClipPlane(enum plane, double eqn[4]) –
void GetClipPlanef(enum plane, float eqn[4]) –
void GetLightfv (enum light, enum pname, float * params) –
void GetLightiv (enum light, enum pname, int * params) –
void GetMaterialfv (enum face, enum pname, float * params) –
void GetMaterialiv (enum face, enum pname, int * params) –
void GetTexEnv{if}v(enum env, enum pname, T * params) –
void GetTexGen{ifd}v(enum env, enum pname, T * params) –
void GetTexParameter{ixf}v(enum target, enum pname, T

* params)
�

void GetTexLevelParameter{if}v(enum target, int lod, enum

pname, T * params)
–

void GetPixelMap{ui us f}v(enum map, T data) –
void GetMap{ifd}v(enum map, enum value, T data) –
void GetBufferParameteriv(enum target, enum pname, boolean

* params)
�

void GetTexImage(enum tex, int lod, enum format, enum

type, void * img)
–

void GetCompressedTexImage(enum tex, int lod, void * img) –
boolean IsTexture(uint texture) �
void GetPolygonStipple(void * pattern) –
void GetColorTable(enum target, enum format, enum type,

void * table)
–

void GetColorTableParameter{if}v(enum target, enum pname, T

params)
–

void GetPointerv(enum pname, void ** params) �
void GetString(enum name) �
boolean IsQuery(uint id) –
void GetQueryiv(enum target, enum pname, int * params) –
void GetQueryObjectiv(uint id, enum pname, int * params) –
void GetQueryObjectuiv(uint id, enum pname, uint * params) –
boolean IsBuffer(uint buffer) �
void GetBufferSubData(enum target, intptr offset,

sizeiptr size, void * data)
–

State and State Requests 35

OpenGL 2.0 Common
void GetBufferPointerv(enum target, enum pname, void

** params)
–

boolean IsShader(uint shader) �
boolean IsProgram(uint program) �
void GetProgramiv(uint program, enum pname, int * params) �
void GetAttachedShaders(uint program, size maxcount,

sizei * count, uint * shaders)
�

void GetProgramInfoLog(uint program, sizei bufsize,

sizei * length, char * infolog)
�

void GetShaderiv(uint shader, enum pname, int * params) �
void GetShaderInfoLog(uint shader, sizei bufsize, sizei

* length, char * infolog)
†

void GetShaderSource(uint shader, sizei bufsize, sizei

* length, char * source)
†

void GetUniform{if}v(uint program, int location, T

* params)
�

void GetVertexAttrib {fi}v(uint index, enum pname, T

* params)
�

void GetVertexAttribPointerv (uint index, enum pname, void

** pointer)
�

void PushAttrib (bitfield mask) –
void PopAttrib (void) –
void PushClientAttrib (bitfield mask) –
void PopClientAttrib (void) –

■ There are several reasons why one type or another of internal state needs to be queried by an ap-
plication. The application may need to dynamically discover implementation limits (pixel component
sizes, texture dimensions, etc.), or the application might be part of a layered library and it may need
to save and restore any state that it disturbs as part of its rendering. PushAttrib and PopAttrib can
be used to perform this but they are expensive to implement in hardware since we need an attribute
stack depth greater than 1. An attribute stack depth of 4 was proposed but was rejected because
an application would still have to handle stack overflow which was considered unacceptable. Gets
can be efficiently implemented if the implementation shadows states on the CPU. Gets also allow an
infinite stack depth so an application will never have to worry about stack overflow errors. The string
queries are retained as they provide important versioning, and extension information. ❑

6.2 State Tables

The following tables summarize state that is present in the OpenGL ES 2.0 specification. The tables also
indicate which state variables are obtained with what commands. State variables that can be obtained using
any of GetBooleanv, GetIntegerv, or GetFloatv are listed with just one of these commands - the one that
is most appropriate given the type of data to be returned. These state variables cannot be obtained using
IsEnabled. However, state variables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, and GetFloatv. State variables for which any other command is listed as
the query command can be obtained only by using that command.

36 State and State Requests

State appearing initalic indicates unnamed state. All state has initial values identical to those specified
in OpenGL 2.0.

State Exposed Queriable
Common

Get

Begin/end object – – –
Previous line vertex � – –
First line-vertex flag � – –
First vertex of line loop � – –
Line stipple counter – – –
Polygon vertices – – –
Number of polygon vertices – – –
Previous two triangle strip vertices � – –
Number of triangle strip vertices � – –
Triangle strip A/B pointer � – –
Quad vertices – – –
Number of quad strip vertices – – –

Table 6.4: GL Internal begin-end state variables

State and State Requests 37

State Exposed Queriable
Common

Get

CURRENTCOLOR – – –
CURRENTINDEX – – –
CURRENTTEXTURECOORDS – – –
CURRENTNORMAL – – –
Color associated with last vertex – – –
Color index associated with last vertex – – –
Texture coordinates associated with last vertex – – –
CURRENTRASTERPOSITION – – –
CURRENTRASTERDISTANCE – – –
CURRENTRASTERCOLOR – – –
CURERNTRASTERINDEX – – –
CURRENTRASTERTEXTURECOORDS – – –
CURRENTRASTERPOSITION VALID – – –
EDGEFLAG – –

Table 6.5: Current Values and Associated Data

38 State and State Requests

State Exposed Queriable
Common

Get

CLIENT ACTIVE TEXTURE – – –
VERTEXARRAY – – –
VERTEXARRAYSIZE – – –
VERTEXARRAYSTRIDE – – –
VERTEXARRAYTYPE – – –
VERTEXARRAYPOINTER – – –
NORMALARRAY – – –
NORMALARRAYSTRIDE – – –
NORMALARRAYTYPE – – –
NORMALARRAYPOINTER – – –
FOGCOORDARRAY – – –
FOGCOORDARRAYSTRIDE – – –
FOGCOORDARRAYTYPE – – –
FOGCOORDARRAYPOINTER – – –
COLORARRAY – – –
COLORARRAYSIZE – – –
COLORARRAYSTRIDE – – –
COLORARRAYTYPE – – –
COLORARRAYPOINTER – – –
SECONDARYCOLORARRAY – – –
SECONDARYCOLORARRAYSIZE – – –
SECONDARYCOLORARRAYSTRIDE – – –
SECONDARYCOLORARRAYTYPE – – –
SECONDARYCOLORARRAYPOINTER – – –
INDEX ARRAY – – –
INDEX ARRAYSTRIDE – – –
INDEX ARRAYTYPE – – –
INDEX ARRAYPOINTER – – –
TEXTURECOORDARRAY – – –
TEXTURECOORDARRAYSIZE – – –
TEXTURECOORDARRAYSTRIDE – – –
TEXTURECOORDARRAYTYPE – – –
TEXTURECOORDARRAYPOINTER – – –

Table 6.6: Vertex Array Data

State and State Requests 39

State Exposed Queriable
Common

Get

VERTEXATTRIB ARRAYENABLED � � GetVertexAttrib
VERTEXATTRIB ARRAYSIZE � � GetVertexAttrib
VERTEXATTRIB ARRAYSTRIDE � � GetVertexAttrib
VERTEXATTRIB ARRAYTYPE � � GetVertexAttrib
VERTEXATTRIB ARRAYNORMALIZED � � GetVertexAttrib
VERTEXATTRIB ARRAYPOINTER � � GetVertexAttribPointer
EDGEFLAG ARRAY – – –
EDGEFLAG ARRAYSTRIDE – – –
EDGEFLAG ARRAYPOINTER – – –
ARRAYBUFFERBINDING � � GetIntegerv
VERTEXARRAYBUFFERBINDING – – –
NORMALARRAYBUFFERBINDING – – –
FOGCOORDARRAYBUFFERBINDING – – –
COLORARRAYBUFFERBINDING – – –
SECONDARYCOLORARRAYBUFFERBINDING – – –
TEXTURECOORDARRAYBUFFERBINDING – – –
ELEMENTARRAYBUFFERBINDING � � GetIntegerv
VERTEXATTRIB ARRAYBUFFERBINDING � � GetIntegerv

Table 6.7: Vertex Array Data contd.

State Exposed Queriable
Common

Get

BUFFERSIZE � � GetBufferParameteriv
BUFFERUSAGE � � GetBufferParameteriv
BUFFERACCESS � � GetBufferParameteriv
BUFFERMAPPED � � GetBufferParameteriv
BUFFERMAPPOINTER – – –

Table 6.8: Buffer Object State

40 State and State Requests

State Exposed Queriable
Common

Get

COLORMATRIX – – –
MODELVIEWMATRIX – – –
PROJECTIONMATRIX – – –
TEXTUREMATRIX – – –
VIEWPORT � � GetIntegerv
DEPTHRANGE � � GetFloatv
COLORMATRIX STACKDEPTH – – –
MODELVIEWSTACKDEPTH – – –
PROJECTIONSTACKDEPTH – – –
TEXTURESTACKDEPTH – – –
MATRIX MODE – – –
NORMALIZE – – –
RESCALENORMAL – – –
CLIP PLANE{0-5 } – – –
CLIP PLANE{0-5 } – – –

Table 6.9: Transformation State

State Exposed Queriable
Common

Get

FOGCOLOR – – –
FOGINDEX – – –
FOGDENSITY – – –
FOGSTART – – –
FOGEND – – –
FOGMODE – – –
FOG – – –
SHADEMODEL – – –

Table 6.10: Coloring

State and State Requests 41

State Exposed Queriable
Common

Get

LIGHTING – – –
COLORMATERIAL – – –
COLORMATERIAL PARAMETER – – –
COLORMATERIAL FACE – – –
AMBIENT (material) – – –
DIFFUSE (material) – – –
SPECULAR (material) – – –
EMISSION (material) – – –
SHININESS (material) – – –
LIGHT MODELAMBIENT – – –
LIGHT MODELLOCALVIEWER – – –
LIGHT MODELTWOSIDE – – –
LIGHT MODELCOLORCONTROL – – –
AMBIENT (light i) – – –
DIFFUSE (light i) – – –
SPECULAR (light i) – – –
POSITION (light i) – – –
CONSTANTATTENUATION – – –
LINEAR ATTENUATION – – –
QUADRATICATTENUATION – – –
SPOTDIRECTION – – –
SPOTEXPONENT – – –
SPOTCUTOFF – – –
LIGHT{0-7 } – – –
COLORINDEXES – – –

Table 6.11: Lighting

42 State and State Requests

State Exposed Queriable
Common

Get

POINT SIZE � � GetFloatv
POINT SMOOTH – – –
POINT SPRITE – – –
POINT SIZE MIN – – –
POINT SIZE MAX – – –
POINT FADETHRESHOLDSIZE – – –
POINT DISTANCEATTENUATION – – –
POINT SPRITE COORDORIGIN – – –
LINE WIDTH � � GetFloatv
LINE SMOOTH – – –
LINE STIPPLE PATTERN – – –
LINE STIPPLE REPEAT – – –
LINE STIPPLE – – –
CULL FACE � � IsEnabled
CULL FACEMODE � � GetIntegerv
FRONTFACE � � GetIntegerv
POLYGONSMOOTH – – –
POLYGONMODE – – –
POLYGONOFFSETFACTOR � � GetFloatv
POLYGONOFFSETUNITS � � GetFloatv
POLYGONOFFSETPOINT – – –
POLYGONOFFSETLINE – – –
POLYGONOFFSETFILL � � IsEnabled
POLYGONSTIPPLE – – –

Table 6.12: Rasterization

State Exposed Queriable
Common

Get

MULTISAMPLE – – –
SAMPLEALPHATO COVERAGE � � IsEnabled
SAMPLEALPHATO ONE – – –
SAMPLECOVERAGE � � IsEnabled
SAMPLECOVERAGEVALUE � � GetFloatv
SAMPLECOVERAGEINVERT � � GetBooleanv

Table 6.13: Multisampling

State and State Requests 43

State Exposed Queriable
Common

Get

TEXTURE1D – – –
TEXTURE2D – – –
TEXTURE3D – – –
TEXTURECUBEMAP – – –
TEXTUREBINDING 1D – – –
TEXTUREBINDING 2D � � GetIntegerv
TEXTUREBINDING 3D † † GetIntegerv
TEXTUREBINDING CUBEMAP � � GetIntegerv
TEXTURECUBEMAPPOSITIVE X – – –
TEXTURECUBEMAPNEGATIVEX – – –
TEXTURECUBEMAPPOSITIVE Y – – –
TEXTURECUBEMAPNEGATIVEY – – –
TEXTURECUBEMAPPOSITIVE Z – – –
TEXTURECUBEMAPNEGATIVEZ – – –
TEXTUREWIDTH � – –
TEXTUREHEIGHT � – –
TEXTUREDEPTH † – –
TEXTUREBORDER – – –
TEXTUREINTERNAL FORMAT � – –
TEXTUREREDSIZE � – –
TEXTUREGREENSIZE � – –
TEXTUREBLUE SIZE � – –
TEXTUREALPHASIZE � – –
TEXTURELUMINANCESIZE � – –
TEXTUREINTENSITY SIZE – – –
TEXTUREDEPTHSIZE – – –
TEXTURECOMPRESSED � – –
TEXTURECOMPRESSEDIMAGESIZE � – –
TEXTUREBORDERCOLOR – – –
TEXTUREMIN FILTER � � GetTexParameteriv
TEXTUREMAGFILTER � � GetTexParameteriv
TEXTUREWRAPS � � GetTexParameteriv
TEXTUREWRAPT � � GetTexParameteriv
TEXTUREWRAPR † † GetTexParameteriv
TEXTUREPRIORITY – – –
TEXTURERESIDENT – – –
TEXTUREMIN LOD � – –
TEXTUREMAXLOD � – –
TEXTUREBASELEVEL � – –
TEXTUREMAXLEVEL � – –
TEXTURELODBIAS – – –
DEPTHTEXTUREMODE – – –
TEXTURECOMPAREMODE – – –
TEXTURECOMPAREFUNC – – –
GENERATEMIPMAP – – –

Table 6.14: Texture Objects

44 State and State Requests

State Exposed Queriable
Common

Get

ACTIVE TEXTURE � � GetIntegerv
TEXTUREENVMODE – – –
TEXTUREENVCOLOR – – –
TEXTURELODBIAS – – –
TEXTUREGEN{STRQ} – – –
EYE PLANE – – –
OBJECTPLANE – – –
TEXTUREGENMODE – – –
COMBINERGB – – –
COMBINEALPHA – – –
SRC{012} RGB – – –
SRC{012} ALPHA – – –
OPERAND{012} RGB – – –
OPERAND{012} ALPHA – – –
RGBSCALE – – –
ALPHASCALE – – –

Table 6.15: Texture Environment and Generation

State Exposed Queriable
Common

Get

DRAWBUFFER – – –
INDEX WRITEMASK – – –
COLORWRITEMASK � � GetBooleanv
DEPTHWRITEMASK � � GetBooleanv
STENCIL WRITEMASK � � GetIntegerv
COLORCLEARVALUE � � GetFloatv
INDEX CLEARVALUE – – –
DEPTHCLEARVALUE � � GetIntegerv
STENCIL CLEARVALUE � � GetIntegerv
ACCUMCLEARVALUE – – –

Table 6.16: Framebuffer Control

State and State Requests 45

State Exposed Queriable
Common

Get

SCISSORTEST � � IsEnabled
SCISSORBOX � � GetIntegerv
ALPHATEST – – –
ALPHATEST FUNC – – –
ALPHATEST REF – – –
STENCIL TEST � � IsEnabled
STENCIL FUNC � � GetIntegerv
STENCIL VALUEMASK � � GetIntegerv
STENCIL REF � � GetIntegerv
STENCIL FAIL � � GetIntegerv
STENCIL PASSDEPTHFAIL � � GetIntegerv
STENCIL PASSDEPTHPASS � � GetIntegerv
STENCIL BACKFUNC � � GetIntegerv
STENCIL BACKVALUEMASK � � GetIntegerv
STENCIL BACKREF � � GetIntegerv
STENCIL BACKFAIL � � GetIntegerv
STENCIL BACKPASSDEPTHFAIL � � GetIntegerv
STENCIL BACKPASSDEPTHPASS � � GetIntegerv
DEPTHTEST � � IsEnabled
DEPTHFUNC � � GetIntegerv
BLEND � � IsEnabled
BLENDSRCRGB � � GetIntegerv
BLENDSRCALPHA � � GetIntegerv
BLENDDST RGB � � GetIntegerv
BLENDDST ALPHA � � GetIntegerv
BLENDEQUATIONRGB � � GetIntegerv
BLENDEQUATIONALPHA � � GetIntegerv
BLENDCOLOR � � GetFloatv
DITHER � � IsEnabled
INDEX LOGIC OP – – –
COLORLOGIC OP – – –
LOGIC OPMODE – – –

Table 6.17: Pixel Operations

46 State and State Requests

State Exposed Queriable
Common

Get

UNPACKSWAPBYTES – – –
UNPACKLSB FIRST – – –
UNPACKIMAGEHEIGHT – – –
UNPACKSKIP IMAGES – – –
UNPACKROWLENGTH – – –
UNPACKSKIP ROWS – – –
UNPACKSKIP PIXELS – – –
UNPACKALIGNMENT � � GetIntegerv
PACKSWAPBYTES – – –
PACKLSB FIRST – – –
PACKIMAGEHEIGHT – – –
PACKSKIP IMAGES – – –
PACKROWLENGTH – – –
PACKSKIP ROWS – – –
PACKSKIP PIXELS – – –
PACKALIGNMENT � � GetIntegerv
MAPCOLOR – – –
MAPSTENCIL – – –
INDEX SHIFT – – –
INDEX OFFSET – – –
REDSCALE – – –
GREENSCALE – – –
BLUE SCALE – – –
ALPHASCALE – – –
DEPTHSCALE – – –
REDBIAS – – –
GREENBIAS – – –
BLUE BIAS – – –
ALPHABIAS – – –
DEPTHBIAS – – –

Table 6.18: Pixels

State and State Requests 47

State Exposed Queriable
Common

Get

COLORTABLE – – –
POSTCONVOLUTIONCOLORTABLE – – –
POSTCOLORMATRIX COLORTABLE – – –
COLORTABLE FORMAT – – –
COLORTABLE WIDTH – – –
COLORTABLE REDSIZE – – –
COLORTABLE GREENSIZE – – –
COLORTABLE BLUE SIZE – – –
COLORTABLE ALPHASIZE – – –
COLORTABLE LUMINANCESIZE – – –
COLORTABLE INTENSITY SIZE – – –
COLORTABLE SCALE – – –
COLORTABLE BIAS – – –

Table 6.19: Pixels (cont.)

State Exposed Queriable
Common

Get

CONVOLUTION1D – – –
CONVOLUTION2D – – –
SEPARABLE2D – – –
CONVOLUTION – – –
CONVOLUTIONBORDERCOLOR – – –
CONVOLUTIONBORDERMODE – – –
CONVOLUTIONFILTER SCALE – – –
CONVOLUTIONFILTER BIAS – – –
CONVOLUTIONFORMAT – – –
CONVOLUTIONWIDTH – – –
CONVOLUTIONHEIGHT – – –

Table 6.20: Pixels (cont.)

48 State and State Requests

State Exposed Queriable
Common

Get

POSTCONVOLUTIONREDSCALE – – –
POSTCONVOLUTIONGREENSCALE – – –
POSTCONVOLUTIONBLUE SCALE – – –
POSTCONVOLUTIONALPHASCALE – – –
POSTCONVOLUTIONREDBIAS – – –
POSTCONVOLUTIONGREENBIAS – – –
POSTCONVOLUTIONBLUE BIAS – – –
POSTCONVOLUTIONALPHABIAS – – –
POSTCOLORMATRIX REDSCALE – – –
POSTCOLORMATRIX GREENSCALE – – –
POSTCOLORMATRIX BLUE SCALE – – –
POSTCOLORMATRIX ALPHASCALE – – –
POSTCOLORMATRIX REDBIAS – – –
POSTCOLORMATRIX GREENBIAS – – –
POSTCOLORMATRIX BLUE BIAS – – –
POSTCOLORMATRIX ALPHABIAS – – –
HISTOGRAM – – –
HISTOGRAMWIDTH – – –
HISTOGRAMFORMAT – – –
HISTOGRAMREDSIZE – – –
HISTOGRAMGREENSIZE – – –
HISTOGRAMBLUE SIZE – – –
HISTOGRAMALPHASIZE – – –
HISTOGRAMLUMINANCESIZE – – –
HISTOGRAMSINK – – –

Table 6.21: Pixels (cont.)

State and State Requests 49

State Exposed Queriable
Common

Get

MINMAX – – –
MINMAXFORMAT – – –
MINMAXSINK – – –
ZOOMX – – –
ZOOMY – – –
PIXEL MAPI TO I – – –
PIXEL MAPS TO S – – –
PIXEL MAPI TO {RGBA} – – –
PIXEL MAPR TO R – – –
PIXEL MAPG TO G – – –
PIXEL MAPB TO B – – –
PIXEL MAPA TO A – – –
PIXEL MAPx TO y SIZE – – –
READBUFFER – – –

Table 6.22: Pixels (cont.)

State Exposed Queriable
Common

Get

ORDER – – –
COEFF – – –
DOMAIN – – –
MAP1x – – –
MAP2x – – –
MAP1GRID DOMAIN – – –
MAP2GRID DOMAIN – – –
MAP1GRID SEGMENTS – – –
MAP2GRID SEGMENTS – – –
AUTONORMAL – – –

Table 6.23: Evaluators

State Exposed Queriable
Common

Get

SHADERTYPE � � GetShaderiv
DELETESTATUS � � GetShaderiv
COMPILESTATUS † † GetShaderiv
INFO LOGLENGTH † † GetShaderiv
SHADERSOURCELENGTH † † GetShaderiv

Table 6.24: Shader Object State

50 State and State Requests

State Exposed Queriable
Common

Get

CURRENTPROGRAM � � GetIntegerv
DELETESTATUS � � GetProgramiv
LINK STATUS � � GetProgamiv
VALIDATE STATUS � � GetProgramiv
ATTACHEDSHADERS � � GetProgramiv
INFO LOGLENGTH � � GetProgramiv
ACTIVE UNIFORMS � � GetProgamiv
ACTIVE UNIFORMMAXLENGTH � � GetProgramiv
ACTIVE ATTRIBUTES � � GetProgramiv
ACTIVE ATTRIBUTESMAXLENGTH � � GetProgramiv

Table 6.25: Program Object State

State Exposed Queriable
Common

Get

VERTEXPROGRAMTWOSIDE – – –
CURRENTVERTEXATTRIB � � GetVertexAttributes
VERTEXPROGRAMPOINT SIZE � � IsEnabled

Table 6.26: Vertex Shader State

State Exposed Queriable
Common

Get

PERSPECTIVECORRECTIONHINT – – –
POINT SMOOTHHINT – – –
LINE SMOOTHHINT – – –
POLYGONSMOOTHHINT – – –
FOGHINT – – –
GENERATEMIPMAPHINT � � GetIntegerv
TEXTURECOMPRESSIONHINT – – –
FRAGMENTSHADERDERIVATIVE HINT � � GetIntegerv

Table 6.27: Hints

State and State Requests 51

State Exposed Queriable
Common

Get

MAXLIGHTS – – –
MAXCLIP PLANES – – –
MAXCOLORMATRIX STACKDEPTH – – –
MAXMODELVIEWSTACKDEPTH – – –
MAXPROJECTIONSTACKDEPTH – – –
MAXTEXTURESTACKDEPTH – – –
SUBPIXEL BITS � � GetIntegerv
MAX3D TEXTURESIZE † † GetIntegerv
MAXTEXTURESIZE � � GetIntegerv
MAXCUBEMAPTEXTURESIZE � � GetIntegerv
MAXPIXEL MAPTABLE – – –
MAXNAMESTACKDEPTH – – –
MAXLIST NESTING – – –
MAXEVAL ORDER – – –
MAXVIEWPORTDIMS � � GetIntegerv

Table 6.28: Implementation Dependent Values

State Exposed Queriable
Common

Get

MAXATTRIB STACKDEPTH – – –
MAXCLIENT ATTRIB STACKDEPTH – – –
Maximum size of a color table – – –
Maximum size of the histogram table – – –
AUXBUFFERS – – –
RGBAMODE – – –
INDEX MODE – – –
DOUBLEBUFFER – – –
ALIASED POINT SIZE RANGE � � GetFloatv
SMOOTHPOINT SIZE RANGE – – –
SMOOTHPOINT SIZE GRANULARITY – – –
ALIASED LINE WIDTHRANGE � � GetFloatv
SMOOTHLINE WIDTHRANGE – – –
SMOOTHLINE WIDTHGRANULARITY – – –

Table 6.29: Implementation Dependent Values (cont.)

52 State and State Requests

State Exposed Queriable
Common

Get

MAXCONVOLUTIONWIDTH – – –
MAXCONVOLUTIONHEIGHT – – –
MAXELEMENTSINDICES � � GetIntegerv
MAXELEMENTSVERTICES � � GetIntegerv
SAMPLEBUFFERS � � GetIntegerv
SAMPLES � � GetIntegerv
COMPRESSEDTEXTUREFORMATS � � GetIntegerv
NUMCOMPRESSEDTEXTUREFORMATS � � GetIntegerv
QUERYCOUNTERBITS – – –

Table 6.30: Implementation Dependent Values (cont.)

State Exposed Queriable
Common

Get

EXTENSIONS � � GetString
RENDERER � � GetString
SHADINGLANGUAGEVERSION � � GetString
VENDOR � � GetString
VERSION � � GetString
MAXTEXTUREUNITS – – –
MAXVERTEXATTRIBS � � GetIntegerv
MAXVERTEXUNIFORMCOMPONENTS � � GetIntegerv
MAXVARYINGFLOATS � � GetIntegerv
MAXCOMBINEDTEXTUREIMAGEUNITS � � GetIntegerv
MAXVERTEXTEXTUREIMAGEUNITS � � GetIntegerv
MAXTEXTUREIMAGEUNITS � � GetIntegerv
MAXTEXTURECOORDS – – –
MAXFRAGMENTUNIFORMCOMPONENTS � � GetIntegerv
MAXDRAWBUFFERS – – –

Table 6.31: Implementation Dependent Values (cont.)

State and State Requests 53

State Exposed Queriable
Common

Get

REDBITS � � GetIntegerv
GREENBITS � � GetIntegerv
BLUE BITS � � GetIntegerv
ALPHABITS � � GetIntegerv
INDEX BITS – – –
DEPTHBITS � � GetIntegerv
STENCIL BITS � � GetIntegerv
ACCUMBITS – – –

Table 6.32: Implementation Dependent Pixel Depths

State Exposed Queriable
Common

Get

LIST BASE – – –
LIST INDEX – – –
LIST MODE – – –
Server attribute stack – – –
ATTRIB STACKDEPTH – – –
Client attribute stack – – –
CLIENT ATTRIB STACKDEPTH – – –
NAMESTACKDEPTH – – –
RENDERMODE – – –
SELECTIONBUFFERPOINTER – – –
SELECTIONBUFFERSIZE – – –
FEEDBACKBUFFERPOINTER – – –
FEEDBACKBUFFERSIZE – – –
FEEDBACKBUFFERTYPE – – –
CURRENTQUERY – – –
Current error code(s) � � GetError
Corresponding error flags � � –

Table 6.33: Miscellaneous

State Exposed Queriable
Common

Get

IMPLEMENTATIONCOLORREADTYPE OES � � GetIntegerv
IMPLEMENTATIONCOLORREADFORMATOES � � GetIntegerv

Table 6.34: Core Additions and Extensions

Chapter 7

Core Additions and Extensions

The OpenGL ES 2.0 specification consists of two parts: a subset of the full OpenGL pipeline, and some
extended functionality that is drawn from a set of OpenGL ES-specific extensions to the full OpenGL
specification. Each extension is pruned to match the supported command subset and added as either a core
addition or a profile extension. Core additions differ from extensions in that the commands and tokens do
not include extension suffixes in their names.

The profile extensions are further divided into required (mandatory) and optional extensions. Required
extensions must be implemented as part of a conforming implementation, whereas the implementation of
optional extensions is left to the discretion of the implementor. Both types of extensions use extension
suffixes as part of their names, are present in theEXTENSIONSstring, and participate in function address
queries defined in the platform embedding layer.Profile extensions that subset existing OpenGL 2.0 func-
tionality are not required to use extension suffixes as part of their names. Required extensions have the
additional packaging constraint, that commands defined as part of a required extension must also be avail-
able as part of a static binding if core commands are also available in a static binding. The commands
comprising an optional extension may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprising a core addition are indistinguishable from
the original OpenGL subset. However, to increase application portability, an implementation may also
implement a core addition as an extension by including commands and tokens in the appropriate dynamic
and optional static bindings and the extension name in theEXTENSIONSstring.

■ Profile extensions preserve all traditional extension properties regardless of whether they are re-
quired or optional. Required extensions must be present; therefore, additionally providing static
bindings simplifies application usage and reinforces the ubiquity of the extension. Permitting core
additions to be included as extensions allows extensions that are promoted to core additions in later
revisions to continue to be available as extensions, retaining application compatibility. ❑

The OpenGL ES 2.0 specification addsOESread format , OEScompressed paletted texture ,
OESframebuffer object , OESstencil8 as required extensions;OESfbo render mipmap, OES-

rgb8 rgba8 , OESdepth24 , OESdepth32 , OESstencil1 , OESstencil4 , OESvertex half float ,
OEStexture float , OEStexture float linear , OESelement index uint , OESmapbuffer , OES-

texture 3D, OEStexture npot , OESfragment precision high , OEScompressed ETC1 RGB8-

texture , OESshader source andOESshader binary as optional extensions with the rule that atleast
one ofOESshader source or OESshader binary extension must be supported.

54

Core Additions and Extensions 55

Extension Name Common

OESread format required extension
OEScompressed paletted texture required extension
OESframebuffer object required extension
OESstencil8 required extension
OESfbo render mipmap optional extension
OESrgb8 rgba8 optional extension
OESdepth24 optional extension
OESdepth32 optional extension
OESstencil1 optional extension
OESstencil4 optional extension
OESvertex half float optional extension
OEStexture float optional extension
OEStexture float linear optional extension
OESelement index uint optional extension
OESmapbuffer optional extension
OEStexture 3D optional extension
OEStexture npot optional extension
OESfragment precision high optional extension
OEScompressed ETC1 RGB8texture optional extension
OESshader source optional extension
OESshader binary optional extension

Table 7.1: OES Extension Disposition

56 Core Additions and Extensions

7.1 Read Format

The OESread format extension allows implementation-specific pixel type and format parameters to be
queried by an application and used inReadPixelcommands. The format and type values must be from the
set of supported texture image format and type values specified in Table3.1.

7.2 Compressed Paletted Texture

TheOEScompressed paletted texture extension provides a method for specifying a compressed tex-
ture image as a color index image accompanied by a palette. The extension adds ten new texture internal
formats to specify different combinations of index width and palette color format:
PALETTE4 RGB8OES, PALETTE4 RGBA8OES, PALETTE4 R5 G6 B5 OES, PALETTE4 RGBA4OES,
PALETTE4 RGB5A1 OES, PALETTE8 RGB8OES, PALETTE8 RGBA8OES, PALETTE8 R5 G6 B5 OES,
PALETTE8 RGBA4OES, andPALETTE8 RGB5A1 OES. The state queries forNUMCOMPRESSEDTEXTURE-

FORMATSandCOMPRESSEDTEXTUREFORMATSinclude these formats.

7.3 Framebuffer Objects

TheOESframebuffer object extension defines a simple interface for drawing to rendering destinations
other than the buffers provided to the GL by the window-system.OESframebuffer object is a simpli-
fied version ofEXT framebuffer object with modifications to match the needs of OpenGL ES.

In this extension, these newly defined rendering destinations are known collectively as ”framebuffer-
attachable images”. This extension provides a mechanism for attaching framebuffer-attachable images to
the GL framebuffer as one of the standard GL logical buffers: color, depth, and stencil. When a framebuffer-
attachable image is attached to the framebuffer, it is used as the source and destination of fragment opera-
tions.

By allowing the use of a framebuffer-attachable image as a rendering destination, this extension enables
a form of ”offscreen” rendering. Furthermore, ”render to texture” is supported by allowing the images of a
texture to be used as framebuffer-attachable images. A particular image of a texture object is selected for use
as a framebuffer-attachable image by specifying the mipmap level, cube map face (for a cube map texture)
that identifies the image. The ”render to texture” semantics of this extension are similar to performing
traditional rendering to the framebuffer, followed immediately by a call to CopyTexSubImage. However,
by using this extension instead, an application can achieve the same effect, but with the advantage that the
GL can usually eliminate the data copy that would have been incurred by calling CopyTexSubImage.

This extension also defines a new GL object type, called a ”renderbuffer”, which encapsulates a single
2D pixel image. The image of renderbuffer can be used as a framebuffer-attachable image for generalized
offscreen rendering and it also provides a means to support rendering to GL logical buffer types which have
no corresponding texture format (stencil etc). A renderbuffer is similar to a texture in that both renderbuffers
and textures can be independently allocated and shared among multiple contexts. The framework defined
by this extension is general enough that support for attaching images from GL objects other than textures
and renderbuffers could be added by layered extensions.

To facilitate efficient switching between collections of framebuffer-attachable images, this extension
introduces another new GL object, called a framebuffer object. A framebuffer object contains the state
that defines the traditional GL framebuffer, including its set of images. Prior to this extension, it was the
window-system which defined and managed this collection of images, traditionally by grouping them into
a ”drawable”. The window-system API’s would also provide a function (i.e., eglMakeCurrent) to bind a

Core Additions and Extensions 57

drawable with a GL context. In this extension however, this functionality is subsumed by the GL and the
GL provides the function BindFramebufferOES to bind a framebuffer object to the current context. Later,
the context can bind back to the window-system-provided framebuffer in order to display rendered content.

Previous extensions that enabled rendering to a texture have been much more complicated. One ex-
ample is the combination ofARBpbuffer andARBrender texture , both of which are window-system
extensions. This combination requires calling MakeCurrent, an operation that may be expensive, to switch
between the window and the pbuffer drawables. An application must create one pbuffer per renderable tex-
ture in order to portably useARBrender texture . An application must maintain at least one GL context
per texture format, because each context can only operate on a single pixelformat or FBConfig. All of these
characteristics makeARBrender texture both inefficient and cumbersome to use.

OESframebuffer object , on the other hand, is both simpler to use and more efficient thanARB-

render texture . TheOESframebuffer object API is contained wholly within the GL API and has
no (non-portable) window-system components. UnderOESframebuffer object , it is not necessary to
create a second GL context when rendering to a texture image whose format differs from that of the window.
Finally, unlike the pbuffers ofARBrender texture , a single framebuffer object can facilitate rendering
to an unlimited number of texture objects.

7.4 Rendering to mip-levels of a texture attached to a framebuffer object

TheOESframebuffer object extension allows rendering to the base level of a texture only. TheOES-

fbo render mipmap extension removes this limitation by allowing implementations to support rendering
to any mip-level of a texture(s) that is attached to a framebuffer object(s). If this extension is supported,
FramebufferTexture2DOES, and FramebufferTexture3DOES can be used to render directly into any mip
level of a texture image

7.5 Additional Render Buffer Storage Formats

This is a list of six extensions:OESrgb8 rgba8 , OESdepth24 , OESdepth32 , OESstencil1 , OES-

stencil4 and OESstencil8 . These extensions addRGBA8, RGB8, DEPTHCOMPONENT24, DEPTH-

COMPONENT32, STENCIL INDEX1 OES, STENCIL INDEX4 OESandSTENCIL INDEX8 OESto the list of
supported render buffer storage formats.

7.6 Half-float Vertex Data

TheOESvertex half float extension adds a 16-bit floating pt data type to vertex data specified using
vertex arrays. The half float data type can be very useful in specifying vertex attribute data such as color,
normals, texture coordinates etc. By using half floats instead of floats, we reduce the memory requirements
by half. Not only does the memory footprint reduce by half, but the memory bandwidth required for vertex
transformations also reduces by the same amount approximately. Another advantage of using half floats
over short/byte data types is that we do not need to scale the data. For example, using SHORT for texture
coordinates implies that we need to scale the input texture coordinates in the shader or set an appropriate
scale matrix as the texture matrix for fixed function pipeline. Doing these additional scaling operations
impacts vertex transformation performance.

58 Core Additions and Extensions

7.7 Floating point Texture Formats

The OEStexture half float andOEStexture float extensions add texture internal formats with
16- and 32-bit floating-point components. The 32-bit floating-point components are in the standard IEEE
float format. The 16-bit floating-point components have 1 sign bit, 5 exponent bits, and 10 mantissa bits.
Floating-point components are clamped to the limits of the range representable by their format.

The OEStexture half float extension string indicates that the implementation supports 16-bit
floating pt texture formats. TheOEStexture float extension string indicates that the implementation
supports 32-bit floating pt texture formats. Both these extensions only requireNEARESTmagnification filter
andNEAREST, NEARESTMIPMAPNEARESTminification filters to be supported.

TheOEStexture half float linear andOEStexture float linear extensions extend theOES-

texture half float and OEStexture float extensions by supporting the remaining OpenGL ES
texture magnification and minification filters not required by theOEStexture half float andOES-

texture half float extensions.

7.8 Unsigned Integer Element Indices

The OESelement index uint extension supports unsigned int element indices. OpenGL ES 2.0 only
supportsubyte andushort element index values. This means that an element index array can only hold
upto 65536 vertices, which can restrict or make it difficult to specify objects that have greater than 65536
vertices. This extension implementuint element index values that exist in the OpenGL 2.0 specification.

7.9 Mapping Buffer Objects In Client Address Space

TheOESmapbuffer extension adds to the vertex buffer object functionality supported by OpenGL ES, by
allowing the entire data storage of a buffer object to be mapped into the client’s address space.

7.10 3D textures

The OEStexture 3D extension adds support for 3D textures. The OpenGL ES 2.0 texture wrap modes
and mip-mapping is supported for power of two 3D textures. Mip-mapping and texture wrap modes other
thanCLAMPTO EDGEare not supported for non-power of two 3D textures.

7.11 Non-power of two texture extensions

The OEStexture npot extensions adds support for theREPEATand MIRROREDREPEATtexture wrap
modes and the minification filters supported by OpenGL ES for non-power of two 2D textures and cube-
maps, and for 3D textures also if theOEStexture 3D extension is supported.

7.12 Supporting High Precision Float and Integer Data Types in Fragment
Shaders

The OESfragment precision high extension allows an implementation to support the optional high
precision qualifier forfloat andinteger data types in fragment shaders.

Core Additions and Extensions 59

7.13 Ericsson RGB compressed texture format

TheOEScompressed ETC1 RGB8texture extension implements support for RGB compressed textures
in the Ericsson Texture Compression (ETC) formats in OpenGL ES.

7.14 Loading and Compiling Shader Sources

The OESshader source extension adds the APIs defined by the OpenGL 2.0 specification to load and
compile shader sources and additional functions to release shader compiler resources, and to get information
on the range and precision of various data formats supported by vertex and fragment shaders.

7.15 Loading Shader Binaries

TheOESshader binary extension adds the ability to load pre-compiled shader binaries instead of using
the shader compiler to compile shader sources. This allows OpenGL ES 2.0 implementations to not require
a shader compiler which can be a significant savings in the memory footprint required on a handheld device.

This extension also allows the application to load one shader binary that contains a pre-compiled vertex
and fragment shader. By allowing a vertex and fragment shader to be compiled offline together into a single
binary, we can optimize vertex shader code so that it does not have code to output varying variables that are
not used by the fragment shader. This optimization, otherwise, would have to be done at the link stage in
the OpenGL ES implementation and can be quite expensive in terms of number of CPU cycles required and
the additional memory footprint required by the OpenGL ES implementation

Chapter 8

Packaging

8.1 Header Files

The header file structure is the same as in a full OpenGL distribution, using a single header file:gl.h .
Additional enumerantsVERSIONES CMx y , wherex andy are the major and minor version numbers as
described in Section6.1, are included in the header file. These enumerants indicate the version supported at
compile-time.

8.2 Libraries

Since OpenGL ES 2.0 only supports the common profile, the library name no longer needs to include the
profile name. The library name is defined aslibGLESv2x.z where.z is a platform-specific library suffix
(i.e., .a , .so , .lib , etc.). The symbols for the platform-specific embedding library are also included in the
link-library. Availability of static and dynamic function bindings is platform dependent. Rules regarding the
export of bindings for core additions, required extensions, and optional platform extensions are described
in Chapter7.

60

Appendix A

Acknowledgements

The OpenGL ES 2.0 specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of the con-
tributors, including the company that they represented at the time of their contribution:

Aaftab Munshi, ATI

Akira Uesaki, Panasonic

Aleksandra Krstic, Qualcomm

Andy Methley, Panasonic

Axel Mamode, Sony Computer Entertainment

Barthold Lichtenbelt, 3Dlabs

Benji Bowman, Imagination Technologies

Bill Marshall, Alt Software

Borgar Ljosland, Falanx

Brian Murray, Freescale

Chris Grimm, ATI

Daniel Rice, Sun

Ed Plowman, ARM

Edvard Sorgard, Falanx

Eisaku Ohbuch, DMP

Eric Fausett, DMP

Gary King, Nvidia

Gordon Grigor, ATI

Graham Connor, Imagination Technologies

Hans-Martin Will, Vincent

Hiroyasu Negishi, Mitsubishi

James McCarthy, Imagination Technologies

Jasin Bushnaief, Hybrid

61

62 Acknowledgements

Jitaek Lim, Samsung

John Howson, Imagination Technologies

John Kessenich, 3Dlabs

Jacob Str̈om, Ericsson

Jani Vaarala, Nokia

Jarkko Kemppainen, Nokia

John Boal, Alt Software

John Jarvis, Alt Software

Jon Leech, Silicon Graphics

Joonas Itaranta, Nokia

Jorn Nystad, Falanx

Justin Radeka, Falanx

Kari Pulli, Nokia

Katzutaka Nishio, Panasonic

Kee Chang Lee, Samsung

Keisuke Kirii, DMP

Lane Roberts, Symbian

Mario Blazevic, Falanx

Mark Callow, HI

Max Kazakov, DMP

Neil Trevett, 3Dlabs

Nicolas Thibieroz, Imagination Technologies

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Robin Green, Sony Computer Entertainment

Remi Arnaud, Sony Computer Entertainment

Robert Simpson, Bitboys

Stanley Kao, HI

Stefan von Cavallar, Symbian

Steve Lee, SIS

Tero Pihlajakoski, Nokia

Tero Sarkinnen, Futuremark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Acknowledgements 63

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

Woo Sedo Kim, LG Electronics

Yong Moo Kim, LG Electronics

Yoshihiko Kuwahara, DMP

Yoshiyuki Kato, Mitsubishi

Young Seok Kim, ETRI

Yukitaka Takemuta, DMP

Appendix B

OES Extension Specifications

B.1 OES read format

Name
OES_read_format

Name Strings

GL_OES_read_format

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: July 8, 2003
Author Revision: 0.2

Number

295

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension provides the capability to query an OpenGL
implementation for a preferred type and format combination
for use with reading the color buffer with the ReadPixels
command. The purpose is to enable embedded implementations

64

OES Extension Specifications 65

to support a greatly reduced set of type/format combinations
and provide a mechanism for applications to determine which
implementation-specific combination is supported.

IP Status

None

Issues

* Should this be generalized for other commands: DrawPixels, TexImage?

Resolved: No need to aggrandize.

New Procedures and Functions

None

New Tokens

IMPLEMENTATION_COLOR_READ_TYPE_OES 0x8B9A
IMPLEMENTATION_COLOR_READ_FORMAT_OES 0x8B9B

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.3 Drawing, Reading, and Copying Pixels

Section 4.3.2 Reading Pixels

(add paragraph)
A single format and type combination, designated the
preferred format, is associated with the state variables
IMPLEMENTATION_COLOR_READ_FORMAT_OES and
IMPLEMENTATION_COLOR_READ_TYPE_OES. The preferred format
indicates a read format type combination that provides optimal
performance for a particular implementation. The state values
are chosen from the set of regularly accepted format
and type parameters as shown in tables 3.6 and 3.5.

66 OES Extension Specifications

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

TBD

Errors

None

New State

None

New Implementation Dependent State

(table 6.28)

OES Extension Specifications 67

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ----- ----------- ----- ---------
x_FORMAT_OES Z_11 GetIntegerv - read format 4.3.2 -
x_TYPE_OES Z_20 GetIntegerv - read type 4.3.2 -

x_ = IMPLEMENTATION_COLOR_READ_

Revision History

02/20/2003 0.1
- Original draft.

07/08/2003 0.2
- Marked issue regarding extending to other commands to resolved.
- Hackery to make state table fit in 80 columns
- Removed Dependencies on section
- Added extension number and enumerant values

68 OES Extension Specifications

B.2 OES compressedpaletted texture

Name

OES_compressed_paletted_texture

Name Strings

GL_OES_compressed_paletted_texture

Contact

Affie Munshi, ATI (amunshi@ati.com)

Notice

IP Status

No known IP issues

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: 09 July 2003
Author Revision: 0.4

Number

294

Dependencies

Written based on the wording of the OpenGL ES 1.0 specification

Overview

The goal of this extension is to allow direct support of palettized
textures in OpenGL ES.

Palettized textures are implemented in OpenGL ES using the
CompressedTexImage2D call. The definition of the following parameters
"level" and "internalformat" in the CompressedTexImage2D call have
been extended to support paletted textures.

A paletted texture is described by the following data:

OES Extension Specifications 69

palette format
can be R5_G6_B5, RGBA4, RGB5_A1, RGB8, or RGBA8

number of bits to represent texture data
can be 4 bits or 8 bits per texel. The number of bits
also detemine the size of the palette. For 4 bits/texel
the palette size is 16 entries and for 8 bits/texel the
palette size will be 256 entries.

The palette format and bits/texel are encoded in the
"level" parameter.

palette data and texture mip-levels
The palette data followed by all necessary mip levels are
passed in "data" parameter of CompressedTexImage2D.

The size of palette is given by palette format and bits / texel.
A palette format of RGB_565 with 4 bits/texel imply a palette
size of 2 bytes/palette entry * 16 entries = 32 bytes.

The level value is used to indicate how many mip levels
are described. Negative level values are used to define
the number of miplevels described in the "data" component.
A level of zero indicates a single mip-level.

Issues

* Should glCompressedTexSubImage2D be allowed for modifying paletted
texture data.

RESOLVED: No, this would then require implementations that do not
support paletted formats internally to also store the palette
per texture. This can be a memory overhead on platforms that are
memory constrained.

* Should palette format and number of bits used to represent each
texel be part of data or internal format.

RESOLVED: Should be part of the internal format since this makes
the palette format and texture data size very explicit for the
application programmer.

* Should the size of palette be fixed i.e 16 entries for 4-bit texels
and 256 entries for 8-bit texels or be programmable.

RESOLVED: Should be fixed. The application can expand the palette
to 16 or 256 if internally it is using a smaller palette.

New Procedures and Functions

70 OES Extension Specifications

None

New Tokens

Accepted by the <level> parameter of CompressedTexImage2D

Zero and negative values. |level| + 1 determines the number of
mip levels defined for the paletted texture.

Accepted by the <internalformat> paramter of CompressedTexImage2D

PALETTE4_RGB8_OES 0x8B90
PALETTE4_RGBA8_OES 0x8B91
PALETTE4_R5_G6_B5_OES 0x8B92
PALETTE4_RGBA4_OES 0x8B93
PALETTE4_RGB5_A1_OES 0x8B94
PALETTE8_RGB8_OES 0x8B95
PALETTE8_RGBA8_OES 0x8B96
PALETTE8_R5_G6_B5_OES 0x8B97
PALETTE8_RGBA4_OES 0x8B98
PALETTE8_RGB5_A1_OES 0x8B99

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Add to Table 3.17: Specific Compressed Internal Formats

Compressed Internal Format Base Internal Format
========================== ====================
PALETTE4_RGB8_OES RGB
PALETTE4_RGBA8_OES RGBA
PALETTE4_R5_G6_B5_OES RGB
PALETTE4_RGBA4_OES RGBA
PALETTE4_RGB5_A1_OES RGBA
PALETTE8_RGB8_OES RGB
PALETTE8_RGBA8_OES RGBA
PALETTE8_R5_G6_B5_OES RGB
PALETTE8_RGBA4_OES RGBA
PALETTE8_RGB5_A1_OES RGBA

Add to Section 3.8.3, Alternate Image Specification

If <internalformat> is PALETTE4_RGB8, PALETTE4_RGBA8, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_A1, PALETTE8_RGB8, PALETTE8_RGBA8,
PALETTE8_R5_G6_B5, PALETTE8_RGBA4 or PALETTE8_RGB5_A1, the compressed
texture is a compressed paletted texture. The texture data contains the

OES Extension Specifications 71

palette data following by the mip-levels where the number of mip-levels
stored is given by |level| + 1. The number of bits that represent a
texel is 4 bits if <interalformat> is given by PALETTE4_xxx and is 8
bits if <internalformat> is given by PALETTE8_xxx.

Compressed paletted textures support only 2D images without
borders. CompressedTexImage2D will produce an INVALID_OPERATION
error if <border> is non-zero.

To determine palette format refer to tables 3.10 and 3.11 of Chapter
3 where the data ordering for different <type> formats are described.

Add table 3.17.1: Texel Data Formats for compressed paletted textures

PALETTE4_xxx:

7 6 5 4 3 2 1 0

| 1st | 2nd |
| texel | texel |

PALETTE8_xxx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 4th | 3nd | 2rd | 1st |
| texel | texel | texel | texel |

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

72 OES Extension Specifications

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

Additions to the AGL/GLX/WGL Specification

None

GLX Protocol

None

Errors

INVALID_OPERATION is generated by TexImage2D, CompressedTexSubImage2D,
CopyTexSubImage2D if <internalformat> is PALETTE4_RGB8_OES,
PALETTE4_RGBA8_OES, PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES,
PALETTE4_RGB5_A1_OES, PALETTE8_RG8_OES, PALETTE8_RGBA8_OES,
PALETTE8_R5_G6_B5_OES, PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES.

INVALID_VALUE is generated by CompressedTexImage2D if
if <internalformat> is PALETTE4_RGB8_OES, PALETTE4_RGBA8_OES,
PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES, PALETTE4_RGB5_A1_OES,
PALETTE8_RGB8_OES, PALETTE8_RGBA8_OES, PALETTE8_R5_G6_B5_OES,
PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES and <level> value is
neither zero or a negative value.

New State

The queries for NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS include these ten new formats.

Revision History
04/28/2003 0.1 (Affie Munshi)

- Original draft.

05/29/2003 0.2 (David Blythe)
- Use paletted rather than palettized. Change naming of internal

format tokens to match scheme used for other internal formats.

07/08/2003 0.3 (David Blythe)
- Add official enumerant values and extension number.

07/09/2003 0.4 (David Blythe)
- Note that [NUM_]COMPRESSED_TEXTURE_FORMAT queries include the

new formats.

07/21/2004 0.5 (Affie Munshi)
- Fixed PALETTE_8xxx drawing

OES Extension Specifications 73

B.3 OES framebuffer object

Name

OES_framebuffer_object

Name Strings

GL_OES_framebuffer_object

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: July 18, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

EXT_framebuffer_object is required.

Overview

This extension defines a simple interface for drawing to rendering
destinations other than the buffers provided to the GL by the
window-system. OES_framebuffer_object is a simplified version
of EXT_framebuffer_object with modifications to match the needs of
OpenGL ES.

In this extension, these newly defined rendering destinations are
known collectively as "framebuffer-attachable images". This
extension provides a mechanism for attaching framebuffer-attachable
images to the GL framebuffer as one of the standard GL logical
buffers: color, depth, and stencil. When a framebuffer-attachable
image is attached to the framebuffer, it is used as the source and
destination of fragment operations as described in Chapter 4.

74 OES Extension Specifications

By allowing the use of a framebuffer-attachable image as a rendering
destination, this extension enables a form of "offscreen" rendering.
Furthermore, "render to texture" is supported by allowing the images
of a texture to be used as framebuffer-attachable images. A
particular image of a texture object is selected for use as a
framebuffer-attachable image by specifying the mipmap level, cube
map face (for a cube map texture) that identifies the image.
The "render to texture" semantics of this extension are similar to
performing traditional rendering to the framebuffer, followed
immediately by a call to CopyTexSubImage. However, by using this
extension instead, an application can achieve the same effect,
but with the advantage that the GL can usually eliminate the data copy
that would have been incurred by calling CopyTexSubImage.

This extension also defines a new GL object type, called a
"renderbuffer", which encapsulates a single 2D pixel image. The
image of renderbuffer can be used as a framebuffer-attachable image
for generalized offscreen rendering and it also provides a means to
support rendering to GL logical buffer types which have no
corresponding texture format (stencil etc). A renderbuffer
is similar to a texture in that both renderbuffers and textures can
be independently allocated and shared among multiple contexts. The
framework defined by this extension is general enough that support
for attaching images from GL objects other than textures and
renderbuffers could be added by layered extensions.

To facilitate efficient switching between collections of
framebuffer-attachable images, this extension introduces another new
GL object, called a framebuffer object. A framebuffer object
contains the state that defines the traditional GL framebuffer,
including its set of images. Prior to this extension, it was the
window-system which defined and managed this collection of images,
traditionally by grouping them into a "drawable". The window-system
API’s would also provide a function (i.e., eglMakeCurrent) to bind a
drawable with a GL context. In this extension however, this
functionality is subsumed by the GL and the GL provides the function
BindFramebufferOES to bind a framebuffer object to the current context.
Later, the context can bind back to the window-system-provided framebuffer
in order to display rendered content.

Previous extensions that enabled rendering to a texture have been
much more complicated. One example is the combination of
ARB_pbuffer and ARB_render_texture, both of which are window-system
extensions. This combination requires calling MakeCurrent, an
operation that may be expensive, to switch between the window and
the pbuffer drawables. An application must create one pbuffer per
renderable texture in order to portably use ARB_render_texture. An
application must maintain at least one GL context per texture
format, because each context can only operate on a single
pixelformat or FBConfig. All of these characteristics make
ARB_render_texture both inefficient and cumbersome to use.

OES Extension Specifications 75

OES_framebuffer_object, on the other hand, is both simpler to use
and more efficient than ARB_render_texture. The
OES_framebuffer_object API is contained wholly within the GL API and
has no (non-portable) window-system components. Under
OES_framebuffer_object, it is not necessary to create a second GL
context when rendering to a texture image whose format differs from
that of the window. Finally, unlike the pbuffers of
ARB_render_texture, a single framebuffer object can facilitate
rendering to an unlimited number of texture objects.

Please refer to the EXT_framebuffer_object extension for a
detailed explaination of how framebuffer objects are supposed to work,
the issues and their resolution. This extension can be found at
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES

RGB565_OES 0x8D62

New Procedures and Functions

boolean IsRenderbufferOES(uint renderbuffer);
void BindRenderbufferOES(enum target, uint renderbuffer);
void DeleteRenderbuffersOES(sizei n, const uint * renderbuffers);
void GenRenderbuffersOES(sizei n, uint * renderbuffers);

void RenderbufferStorageOES(enum target, enum internalformat,
sizei width, sizei height);

void GetRenderbufferParameterivOES(enum target, enum pname, int * params);

boolean IsFramebufferOES(uint framebuffer);
void BindFramebufferOES(enum target, uint framebuffer);
void DeleteFramebuffersOES(sizei n, const uint * framebuffers);
void GenFramebuffersOES(sizei n, uint * framebuffers);

enum CheckFramebufferStatusOES(enum target);

void FramebufferTexture2DOES(enum target, enum attachment,
enum textarget, uint texture,
int level);

void FramebufferRenderbufferOES(enum target, enum attachment,
enum renderbuffertarget, uint renderbuffer);

void GetFramebufferAttachmentParameterivOES(enum target, enum attachment,
enum pname, int * params);

void GenerateMipmapOES(enum target);

76 OES Extension Specifications

OES_framebuffer_object implements the functionality defined by EXT_framebuffer_object
with the following limitations:

- there is no support for DrawBuffer{s}, ReadBuffer{s}.

- FramebufferTexture2DOES can be used to render
directly into the base level of a texture image only. Rendering to any
mip-level other than the base level is not supported.

- FramebufferTexture3DOES is not supported as OpenGL ES 1.1 and 2.0 does
not support 3D textures. Support for 3D textures in OpenGL ES 2.0 is
provided by the OES_texture_3D optional extension. FramebufferTexture3DOES
has been moved to this extension specification.

- section 4.4.2.1 of the EXT_framebuffer_object spec describes the function
RenderbufferStorageEXT. This function establishes the data storage, format,
and dimensions of a renderbuffer object’s image. <target> must be
RENDERBUFFER_EXT. <internalformat> must be one of the internal formats
from table 3.16 or table 2.nnn which has a base internal format of RGB, RGBA,
DEPTH_COMPONENT, or STENCIL_INDEX.

The above paragraph is modified by OES_framebuffer_object and states thus:

"This function establishes the data storage, format, and
dimensions of a renderbuffer object’s image. <target> must be RENDERBUFFER_OES.
<internalformat> must be one of the sized internal formats from the following
table which has a base internal format of RGB, RGBA, DEPTH_COMPONENT,
or STENCIL_INDEX"

The following formats are required:

Sized Base
Internal Format Internal format
--------------- ---------------
RGB565_OES RGB
RGBA4 RGBA
RGB5_A1 RGBA
DEPTH_COMPONENT_16 DEPTH_COMPONENT

The following formats are optional:

Sized Base
Internal Format Internal format
--------------- ---------------
RGBA8 RGBA
RGB8 RGB
DEPTH_COMPONENT_24 DEPTH_COMPONENT
DEPTH_COMPONENT_32 DEPTH_COMPONENT
STENCIL_INDEX1_OES STENCIL_INDEX
STENCIL_INDEX4_OES STENCIL_INDEX

OES Extension Specifications 77

STENCIL_INDEX8_OES STENCIL_INDEX

The optional formats are described by the OES_rgb8_rgba8, OES_depth24,
OES_depth32, OES_stencil1, OES_stencil4, and OES_stencil8 extensions.
Even though these formats are optional in this extension, the OpenGL ES
APIs (1.x and 2.x versions) can mandate some or all of these optional formats.

If RenderbufferStorageOES is called with an <internalformat> value that is
not supported by the OpenGL ES implementation, an INVALID_ENUM error will
be generated.

Revision History

02/25/2005 Aaftab Munshi First draft of extension
04/27/2005 Aaftab Munshi Added additional limitations to simplify

OES_framebuffer_object implementations
07/06/2005 Aaftab Munshi Added GetRenderbufferStorageFormatsOES

removed limitations that were added to OES
version of RenderbufferStorage,
and FramebufferTexture2DOES.

07/07/2005 Aaftab Munshi Removed GetRenderbufferStorageFormatsOES
after discussions with Jeremy Sandmel,
and added specific extensions for the
optional renderbuffer storage foramts

07/18/2005 Aaftab Munshi Added comment that optional formats can
be mandated by OpenGL ES APIs.

78 OES Extension Specifications

B.4 OES fbo render mipmap

Name

OES_fbo_render_mipmap

Name Strings

GL_OES_fbo_render_mipmap

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: July 6, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required.

Overview

OES_framebuffer_object allows rendering to the base level of a
texture only. This extension removes this limitation by
allowing implementations to support rendering to any mip-level
of a texture(s) that is attached to a framebuffer object(s).

If this extension is supported, FramebufferTexture2DOES, and
FramebufferTexture3DOES can be used to render directly into
any mip level of a texture image

Issues

New Tokens

OES Extension Specifications 79

None.

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

80 OES Extension Specifications

B.5 OES rgb8 rgba8

Name

OES_rgb8_rgba8

Name Strings

GL_OES_rgb8_rgba8

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables RGB8 and RGBA8 renderbuffer
storage formats

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

RGB8 0x8051
RGBA8 0x8058

OES Extension Specifications 81

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

82 OES Extension Specifications

B.6 OES depth24

Name

OES_depth24

Name Strings

GL_OES_depth24

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables 24-bit depth components as a valid
render buffer storage format.

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

DEPTH_COMPONENT24 0x81A6

OES Extension Specifications 83

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

84 OES Extension Specifications

B.7 OES depth32

Name

OES_depth32

Name Strings

GL_OES_depth32

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables 32-bit depth components as a valid
render buffer storage format.

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

DEPTH_COMPONENT32 0x81A7

OES Extension Specifications 85

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

86 OES Extension Specifications

B.8 OES stencil1

Name

OES_stencil1

Name Strings

GL_OES_stencil1

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 18, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables 1-bit stencil component as a valid
render buffer storage format.

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

STENCIL_INDEX1_OES 0x8D46

OES Extension Specifications 87

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/18/2005 Aaftab Munshi Created the extension

88 OES Extension Specifications

B.9 OES stencil4

Name

OES_stencil4

Name Strings

GL_OES_stencil4

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 18, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables 4-bit stencil component as a valid
render buffer storage format.

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

STENCIL_INDEX4_OES 0x8D47

OES Extension Specifications 89

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/18/2005 Aaftab Munshi Created the extension

90 OES Extension Specifications

B.10 OESstencil8

Name

OES_stencil8

Name Strings

GL_OES_stencil8

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 18, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

OES_framebuffer_object is required

Overview

This extension enables 8-bit stencil component as a valid
render buffer storage format.

Issues

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES:

STENCIL_INDEX8_OES 0x8D48

OES Extension Specifications 91

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/18/2005 Aaftab Munshi Created the extension

92 OES Extension Specifications

B.11 OESvertex half float

Name

OES_vertex_half_float

Name Strings

GL_OES_vertex_half_float

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Number

Dependencies

This extension is written against the OpenGL 2.0 specification

Overview

This extension adds a 16-bit floating pt data type (aka half float)
to vertex data specified using vertex arrays. The 16-bit floating-point
components have 1 sign bit, 5 exponent bits, and 10 mantissa bits.

The half float data type can be very useful in specifying vertex attribute
data such as color, normals, texture coordinates etc. By using half floats
instead of floats, we reduce the memory requirements by half. Not only does
the memory footprint reduce by half, but the memory bandwidth required for
vertex transformations also reduces by the same amount approximately.
Another advantage of using half floats over short/byte data types is that we
do not needto scale the data. For example, using SHORT for texture coordinates
implies that we need to scale the input texture coordinates in the shader or
set an appropriate scale matrix as the texture matrix for fixed function pipeline.
Doing these additional scaling operations impacts vertex transformation
performance.

Issues

OES Extension Specifications 93

1. Should there be a half-float version of VertexAttrib{1234}[v] functions

RESOLUTION: No.

There is no reason to support this, as these functions are not
performance or memory footprint critical. It is much more important that the
vertex data specified using vertex arrays be able to support half float data
format.

New Procedures and Functions

None

New Tokens

Accepted by the <type> parameter of VertexPointer, NormalPointer,
ColorPointer, SecondaryColorPointer, IndexPointer, FogCoordPointer,
TexCoordPointer, and VertexAttribPointer

HALF_FLOAT_OES 0x8D61

Additions to Chapter 2 of the OpenGL 2.0 Specification (OpenGL Operation)

Add a new section 2.1.2. This new section is copied from the
ARB_texture_float extension.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit
exponent (E), and a 10-bit mantissa (M). The value of a 16-bit
floating-point number is determined by the following:

(-1)ˆS * 0.0, if E == 0 and M == 0,
(-1)ˆS * 2ˆ-14 * (M / 2ˆ10), if E == 0 and M != 0,
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if 0 < E < 31,
(-1)ˆS * INF, if E == 31 and M == 0, or
NaN, if E == 31 and M != 0,

where

S = floor((N mod 65536) / 32768),
E = floor((N mod 32768) / 1024), and
M = N mod 1024.

Implementations are also allowed to use any of the following
alternative encodings:

(-1)ˆS * 0.0, if E == 0 and M != 0,
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if E == 31 and M == 0, or
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if E == 31 and M != 0,

Any representable 16-bit floating-point value is legal as input

94 OES Extension Specifications

to a GL command that accepts 16-bit floating-point data. The
result of providing a value that is not a floating-point number
(such as infinity or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a
denormalized number or negative zero to GL must yield predictable
results.

Modifications to section 2.8 (Vertex Arrays)

Add HALF_FLOAT_OES as a valid <type> value in Table 2.4.

For <type> the values BYTE, SHORT, INT, FLOAT, and DOUBLE indicate
types byte, short, int, float, and double, respectively; and the values
UNSIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT indicate types ubyte,
ushort, and uint, respectively. A <type> value of HALF_FLOAT_OES represents
a 16-bit floating point number with 1 sign bits, 5 exponent bits,
and 10 mantissa bits.

Errors

None

New State

None

Revision History

June 15, 2005 Aaftab Munshi First draft of extension.
June 22, 2005 Aaftab Munshi Renamed HALF_FLOAT token to HALF_FLOAT_OES

OES Extension Specifications 95

B.12 OEStexture float

Name

OES_texture_half_float
OES_texture_float

Name Strings

GL_OES_texture_half_float, GL_OES_texture_float

Contact

IP Status

Please refer to the ARB_texture_float extension.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: June 22, 2005

Number

Dependencies

This extension is written against the OpenGL ES 2.0 Specification.

This extension is derived from the ARB_texture_float extension.

Overview

These extensions add texture formats with 16- (aka half float) and 32-bit
floating-point components. The 32-bit floating-point components
are in the standard IEEE float format. The 16-bit floating-point
components have 1 sign bit, 5 exponent bits, and 10 mantissa bits.
Floating-point components are clamped to the limits of the range
representable by their format.

The OES_texture_half_float extension string indicates that the
implementation supports 16-bit floating pt texture foramts.

The OES_texture_float extension string indicates that the
implementation supports 32-bit floating pt texture formats.

Both these extensions only require NEAREST magnification filter and
NEAREST, and NEAREST_MIPMAP_NEAREST minification filters to be supported.

96 OES Extension Specifications

Issues

1. What should we do if magnification filter for a texture with half-float
or float channels is set to LINEAR.

RESOLUTION: This will be an error and the texture will be marked as
incomplete. Only the NEAREST filter is supported.

The cost of doing a LINEAR filter for these texture formats can be
quite prohibitive. There was a discussion on having the shader
generate code to do LINEAR filter by making individual texture calls with a
NEAREST filter but again the computational and memory b/w costs decided
against mandating this approach. The decision was that this extension
would only enable NEAREST magnification filter. Support for LINEAR
magnification filter would be done through a separate extension.

2. What should we do if minification filter is set to LINEAR or
LINEAR_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_LINEAR

RESOLUTION: This will be an error and the texture will be marked as
incomplete. Only the NEAREST and NEAREST_MIPMAP_NEAREST minification
filters are supported.

This was decided for the same reasons given in issue #1. The decision
was that this extension would only enable NEAREST and NEAREST_MIPMAP_NEAREST
minification filters, and the remaining OpenGL ES minification filters
would be supported through a separate extension.

New Procedures and Functions

None

New Tokens

Accepted by the <type> parameter of TexImage2D, TexImage3D

HALF_FLOAT_OES 0x8D61
FLOAT 0x1406

Additions to Chapter 2 of the OpenGL ES 2.0 Specification (OpenGL Operation)

Add a new section called 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit
exponent (E), and a 10-bit mantissa (M). The value of a 16-bit
floating-point number is determined by the following:

(-1)ˆS * 0.0, if E == 0 and M == 0,
(-1)ˆS * 2ˆ-14 * (M / 2ˆ10), if E == 0 and M != 0,
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if 0 < E < 31,
(-1)ˆS * INF, if E == 31 and M == 0, or

OES Extension Specifications 97

NaN, if E == 31 and M != 0,

where

S = floor((N mod 65536) / 32768),
E = floor((N mod 32768) / 1024), and
M = N mod 1024.

Implementations are also allowed to use any of the following
alternative encodings:

(-1)ˆS * 0.0, if E == 0 and M != 0,
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if E == 31 and M == 0, or
(-1)ˆS * 2ˆ(E-15) * (1 + M/2ˆ10), if E == 31 and M != 0,

Any representable 16-bit floating-point value is legal as input
to a GL command that accepts 16-bit floating-point data. The
result of providing a value that is not a floating-point number
(such as infinity or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a
denormalized number or negative zero to GL must yield predictable
results.

Revision History

04/29/2005 0.1 Original draft.
06/29/2005 0.2 Added issues on why only NEAREST and

NEAREST_MIPMAP_NEAREST filters are required.

98 OES Extension Specifications

B.13 OEStexture float linear

Name

OES_texture_half_float_linear
OES_texture_float_linear

Name Strings

GL_OES_texture_half_float_linear, GL_OES_texture_float_linear

Contact

IP Status

Please refer to the ARB_texture_float extension.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: July 7, 2005

Number

Dependencies

This extension is written against the OpenGL ES 2.0 Specification.

This extension is derived from the ARB_texture_float extension.

OES_texture_half_float and OES_texture_float are required.

Overview

These extensions expand upon the OES_texture_half_float and
OES_texture_float extensions by allowing support for LINEAR
magnification filter and LINEAR, NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST and LINEAR_MIPMAP_NEAREST minification
filters.

Issues

None

New Procedures and Functions

OES Extension Specifications 99

None

New Tokens

None

Revision History

07/06/2005 0.1 Original draft

100 OES Extension Specifications

B.14 OESelement index uint

Name

OES_element_index_uint

Name Strings

GL_OES_element_index_uint

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

Overview

OpenGL ES 2.0 supports DrawElements with <type> value of
UNSIGNED_BYTE and UNSIGNED_SHORT. This extension adds
support for UNSIGNED_INT <type> values.

Issues

New Tokens

Accepted by the <type> parameter of DrawElements:

UNSIGNED_INT 0x1405

New Procedures and Functions

OES Extension Specifications 101

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

102 OES Extension Specifications

B.15 OESmapbuffer

Name

OES_mapbuffer

Name Strings

GL_OES_mapbuffer

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

Overview

This extension adds to the vertex buffer object functionality supported
by OpenGL ES 2.0, by allowing the entire data storage of a
buffer object to be mapped into the client’s address space.

Issues

New Tokens

Accepted by the <value> parameter of GetBufferParameteriv:

BUFFER_MAPPED 0x88BC

Accepted by the <pname> parameter of GetBufferPointerv:

OES Extension Specifications 103

BUFFER_MAP_POINTER 0x88BD

New Procedures and Functions

void * MapBuffer(enum target, enum access)

void UnmapBuffer(enum target)

Please refer to the OpenGL 2.0 specification for details on how
these functions work.

Errors

None.

New State

(table 6.8)
Initial

Get Value Type Get Command Value Description
--------- ---- ----------- ----- -----------
BUFFER_MAPPED B GetBufferParameteriv FALSE buffer map flag
BUFFER_MAP_POINTER Y GetBufferPointerv NULL mapped buffer pointer

Revision History

7/6/2005 Aaftab Munshi Created the extension

104 OES Extension Specifications

B.16 OEStexture 3D

Name

OES_texture_3D

Name Strings

GL_OES_texture_3D

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 6, 2005

Number

Dependencies

OpenGL ES 2.0 is required.
OES_framebuffer_object is required.

Overview

This extension adds support for 3D textures. The OpenGL ES 2.0
texture wrap modes and mip-mapping is supported for power of
two 3D textures. Mip-mapping and texture wrap modes other than
CLAMP_TO_EDGE are not supported for non-power of two 3D textures.

The OES_texture_npot extension, if supported, will enable
mip-mapping and other wrap modes for non-power of two 3D textures.

Issues

New Tokens

Accepted by the <target> parameter of TexImage3D, TexSubImage3D, CopyTexSubImage3D,

OES Extension Specifications 105

CompressedTexImage3D and CompressedTexSubImage3D, GetTexParameteriv, and
GetTexParameterfv:

TEXTURE_3D 0x806F

Accepted by the <pname> parameter of TexParameteriv, TexParameterfv,
GetTexParameteriv, and GetTexParameterfv:

TEXTURE_WRAP_R 0x8072

Accepted by the <pname> parameter of GetBooleanv, GetIntegerv, and GetFloatv:

MAX_3D_TEXTURE_SIZE 0x8073
TEXTURE_BINDING_3D 0x806A

New Procedures and Functions

void TexImage3D(enum target, int level, enum internalFormat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void * pixels)

Similar to 2D textures and cubemaps, <internalFormat> must
match <format>. Please refer to table 3.1 of the OpenGL ES 2.0
specification for a list of valid <format> and <type> values.
No texture borders are supported.

void TexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type, const void * pixels)

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height)

CopyTexSubImage3D is supported. The internal format parameter can be
any of the base internal formats described for TexImage2D and TexImage3D
subject to the constraint that color buffer components can be dropped during
the conversion to the base internal format, but new components cannot
be added. For example, an RGB color buffer can be used to create LUMINANCE
or RGB textures, but not ALPHA, LUMINANCE ALPHA, or RGBA textures.
Table 3.3 of the OpenGL ES 2.0 specification summarizes the allowable
framebuffer and base internal format combinations.

void CompressedTexImage3D(enum target, int level, enum internalformat,
sizei width, sizei height, sizei depth,
int border, sizei imageSize, const void * data)

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,

106 OES Extension Specifications

enum format, sizei imageSize, const void * data)

void FramebufferTexture3DOES(enum target, enum attachment,
enum textarget, uint texture,
int level, int zoffset);

FramebufferTexture3DOES is derived from FramebufferTexture3DEXT.
Please refer to the EXT_framebuffer_object extension specification
for a detailed description of FramebufferTexture3DEXT. The only exception
is that FramebufferTexture3DES can be used to render directly into the
base level of a 3D texture image only. The OES_fbo_render_mip_levels
extension removes this limitation and allows rendering to any mip-level
of a 3D texture

Changes to the OpenGL ES Shading Language Specification

The "sampler3D" keyword is reserved.

The following builtin functions will be supported

vec4 texture3D (sampler3D sampler, vec3 coord [, float bias])
vec4 texture3DProj (sampler3D sampler, vec4 coord [, float bias])
vec4 texture3DLod (sampler3D sampler, vec3 coord, float lod)
vec4 texture3DProjLod (sampler3D sampler, vec4 coord, float lod)

Please refer to the OpenGL 2.0 shading language specification for a
description of the above functions.

Errors

None.

New State

Get Value Type Get Command Value Description
--------- ---- ----------- ----- -----------
TEXTURE_BINDING_3D Z+ GetIntegerv 0 texture object

bound to TEXTURE_3D
TEXTURE_WRAP_R 1xZ2 GetTexParameteriv REPEAT texture coord "r"

wrap mode
MAX_3D_TEXTURE_SIZE Z+ GetIntegerv 16 maximum 3D texture

image dimension

Revision History

7/6/2005 Aaftab Munshi Created the extension

OES Extension Specifications 107

B.17 OEStexture npot

Name

OES_texture_npot

Name Strings

GL_OES_texture_npot

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 6, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

OES_texture_3D is also referenced.

Overview

This extension adds support for the REPEAT and MIRRORED_REPEAT
texture wrap modes and the minification filters supported for
non-power of two 2D textures, cubemaps and for 3D textures, if
the OES_texture_3D extension is supported.

Section 3.8.6 of the OpenGL ES 2.0 specification describes
the rules for a 2D, 3D textures or cubemap to be complete. There
were specific rules added for non-power of two textures i.e.
if the texture wrap mode is not CLAMP_TO_EDGE or minification
filter is not NEAREST or LINEAR and the texture is a non-power
of two texture, then the texture would be marked as incomplete.

108 OES Extension Specifications

This rule that determines if a non-power of two 2D, 3D texture or
cubemap is texture complete is no longer applied by an implementation
that supports this extension.

Issues

New Tokens

None.

New Procedures and Functions

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

OES Extension Specifications 109

B.18 OESfragment precision high

Name

OES_fragment_precision_high

Name Strings

GL_OES_fragment_precision_high

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

Overview

This extension allows an implementation to support the optional
high precision qualifier for float and integer data types in
fragment shaders.

Issues

None

New Tokens

None.

New Procedures and Functions

110 OES Extension Specifications

None.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

OES Extension Specifications 111

B.19 OEScompressedETC1 RGB8 texture

Name

OES_compressed_ETC1_RGB8_texture:

Name Strings

GL_OES_compressed_ETC1_RGB8_texture

Contact

Jacob Strom (jacob.strom@ericsson.com)

IP Status

See Ericsson’s "IP Statement"

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: July 28, 2005

Number

-

Dependencies

Written based on the wording of the OpenGL ES 1.0 specification

Overview

The goal of this extension is to allow direct support of
compressed textures in the Ericsson Texture Compression (ETC)
formats in OpenGL ES.

ETC-compressed textures are handled in OpenGL ES using the
CompressedTexImage2D call.

The definition of the "internalformat" parameter in the
CompressedTexImage2D call has been extended to support
ETC-compressed textures.

Issues

None

112 OES Extension Specifications

New Procedures and Functions

None

New Tokens

Accepted by the <internalformat> parameter of CompressedTexImage2D

ETC1_RGB8_OES 0x8D64

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL
Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Add to Table 3.17: Specific Compressed Internal Formats

Compressed Internal Formats Base Internal Format
=========================== ====================
ETC1_RGB8_OES RGB

Add to Section 3.8.3, Alternate Image Specification

ETC1_RGB8_OES:
==============

If <internalformat> is ETC1_RGB8_OES, the compressed texture is an
ETC1 compressed texture. The texture data contains mip-levels
where the number of mip-levels stored is given by |level| + 1. The
number of bits that represent a 4x4 texel block is 64 bits if
<internalformat> is given by ETC1_RGB8_OES.

Each 64-bit word contains information about a 4x4 pixel block as
shown in Figure 3.9.1. There are two modes in ETC1; the
’individual’ mode and the ’differential’ mode. Which mode is
active for a particular 4x4 block is controlled by bit 33, which
we call ’diffbit’. If diffbit = 0, the ’individual’ mode is
chosen, and if diffbit = 1, then the ’differential’ mode is
chosen. The bit layout for the two modes are different: The bit
layout for the individual mode is shown in Tables 3.17.1a and
3.17.1c, and the bit lay out for the differential mode is laid out
in Tables 3.17.1b and 3.17.1c.

In both modes, the 4x4 block is divided into two subblocks of
either size 2x4 or 4x2. This is controlled by bit 32, which we
call ’flipbit’. If flipbit=0, the block is divided into two 2x4
subblocks side-by-side, as shown in Figure 3.9.2. If flipbit=1,

OES Extension Specifications 113

the block is divided into two 4x2 subblocks on top of each other,
as shown in Figure 3.9.3.

In both individual and differential mode, a ’base color’ for each
subblock is stored, but the way they are stored is different in
the two modes:

In the ’individual’ mode (diffbit = 0), the base color for
subblock 1 is derived from the codewords R1 (bit 63-60), G1 (bit
55-52) and B1 (bit 47-44), see Table 3.17.1a. These four bit
values are extended to RGB888 by replicating the four higher order
bits in the four lower order bits. For instance, if R1 = 14 =
1110b, G1 = 3 = 0011b and B1 = 8 = 1000b, then the red component
of the base color of subblock 1 becomes 11101110b = 238, and the
green and blue components become 00110011b = 51 and 10001000b =
136. The base color for subblock 2 is decoded the same way, but
using the 4-bit codewords R2 (bit 59-56), G2 (bit 51-48)and B2
(bit 43-40) instead. In summary, the base colors for the subblocks
in the individual mode are:

base col subblock1 = extend_4to8bits(R1, G1, B1)
base col subblock2 = extend_4to8bits(R2, G2, B2)

In the ’differential’ mode (diffbit = 1), the base color for
subblock 1 is derived from the five-bit codewords R1’, G1’ and
B1’. These five-bit codewords are extended to eight bits by
replicating the top three highest order bits to the three lowest
order bits. For instance, if R1’ = 28 = 11100b, the resulting
eight-bit red color component becomes 11100111b = 231. Likewise,
if G1’ = 4 = 00100b and B1’ = 3 = 00011b, the green and blue
components become 00100001b = 33 and 00011000b = 24
respectively. Thus, in this example, the base color for subblock 1
is (231, 33, 24). The five bit representation for the base color
of subblock 2 is obtained by modifying the 5-bit codewords R1’ G1’
and B1’ by the codewords dR2, dG2 and dB2. Each of dR2, dG2 and
dB2 is a 3-bit two-complement number that can hold values between
-4 and +3. For instance, if R1’ = 28 as above, and dR2 = 100b =
-4, then the five bit representation for the red color component
is 28+(-4)=24 = 11000b, which is then extended to eight bits to
11000110b = 198. Likewise, if G1’ = 4, dG2 = 2, B1’ = 3 and dB2 =
0, the base color of subblock 2 will be RGB = (198, 49, 24). In
summary, the base colors for the subblocks in the differential
mode are:

base col subblock1 = extend_5to8bits(R1’, G1’, B1’)
base col subblock2 = extend_5to8bits(R1’+dR2, G1’+dG2, B1’+dG2)

Note that these additions are not allowed to under- or overflow
(go below zero or above 31). (The compression scheme can easily
make sure they don’t.) For over- or underflowing values, the
behavior is undefined for all pixels in the 4x4 block. Note also
that the extension to eight bits is performed _after_ the

114 OES Extension Specifications

addition.

After obtaining the base color, the operations are the same for
the two modes ’individual’ and ’differential’. First a table is
chosen using the table codewords: For subblock 1, table codeword 1
is used (bits 39-37), and for subblock 2, table codeword 2 is used
(bits 36-34), see Table 3.17.1. The table codeword is used to
select one of eight modifier tables, see Table 3.17.2. For
instance, if the table code word is 010b = 2, then the modifier
table [-29, -9, 9 29] is selected. Note that the values in Table
3.17.2 are valid for all textures and can therefore be hardcoded
into the decompression unit.

Next, we identify which modifier value to use from the modifier
table using the two ’pixel index’ bits. The pixel index bits are
unique for each pixel. For instance, the pixel index for pixel d
(see Figure 3.9.1) can be found in bits 19 (most significant bit,
MSB), and 3 (least significant bit, LSB), see Table 3.17.1c. Note
that the pixel index for a particular texel is always stored in
the same bit position, irrespectively of bits ’diffbit’ and
’flipbit’. The pixel index bits are decoded using table
3.17.3. If, for instance, if the pixel index bits are 01b = 1, and
the modifier table [-29, -9, 9, 29] is used, then the modifier
value selected for that pixel is 29 (see table 3.17.3). This
modifier value is now used to additively modify the base
color. For example, if we have the base color (231, 8, 16), we
should add the modifier value 29 to all three components: (231+29,
8+29, 16+29) resulting in (260, 37, 45). These values are then
clamped to [0, 255], resulting in the color (255, 37, 45), and we
are finished decoding the texel.

ETC1 compressed textures support only 2D images without
borders. CompressedTexture2D will produce an INVALID_OPERATION if
<border> is non-zero.

Add table 3.17.1: Texel Data format for ETC1 compressed
textures:

ETC1_RGB8_OES:

a) bit layout in bits 63 through 32 if diffbit = 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

| base col1 | base col2 | base col1 | base col2 |
| R1 (4bits)| R2 (4bits)| G1 (4bits)| G2 (4bits)|

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

| base col1 | base col2 | table | table |diff|flip|

OES Extension Specifications 115

| B1 (4bits)| B2 (4bits)| cw 1 | cw 2 |bit |bit |

b) bit layout in bits 63 through 32 if diffbit = 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

| base col1 | dcol 2 | base col1 | dcol 2 |
| R1’ (5 bits) | dR2 | G1’ (5 bits) | dG2 |

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

| base col 1 | dcol 2 | table | table |diff|flip|
| B1’ (5 bits) | dB2 | cw 1 | cw 2 |bit |bit |

c) bit layout in bits 31 through 0 (in both cases)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

| most significant pixel index bits |
| p| o| n| m| l| k| j| i| h| g| f| e| d| c| b| a|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
--

| least significant pixel index bits |
| p| o| n| m| l| k| j| i| h| g| f| e| d| c | b | a |

--

Add table 3.17.2: Intensity modifyer sets for ETC1 compressed textures:

table codeword modifier table
------------------ ----------------------

0 -8 -2 2 8
1 -17 -5 5 17
2 -29 -9 9 29
3 -42 -13 13 42
4 -60 -18 18 60
5 -80 -24 24 80
6 -106 -33 33 106
7 -183 -47 47 183

Add table 3.17.3 Mapping from pixel index values to modifyer values for
ETC1 compressed textures:

pixel index value

116 OES Extension Specifications

msb lsb resulting modifyer value

----- ----- -------------------------
1 1 -b (large negative value)
1 0 -a (small negative value)
0 0 a (small positive value)
0 1 b (large positive value)

Add figure 3.9.1: Pixel layout for a ETC1 compressed block:

---- ---- ---- ----
|a |e |i |m |
| | | | |

---- ---- ---- ----
|b |f |j |n |
| | | | |

---- ---- ---- ----
|c |g |k |o |
| | | | |

---- ---- ---- ----
|d |h |l |p |
| | | | |

---- ---- ---- ----

Add figure 3.9.2: Two 2x4-pixel subblocks side-by-side:

subblock 1 subblock 2
---- ---- ---- ----

a e	i m
b f	j n
c g	k o
d h	l p

---- ---- ---- ----

Add figure 3.9.3: Two 4x2-pixel subblocks on top of each other:

---- ---- ---- ----
|a e i m |
| |
| | subblock 1

OES Extension Specifications 117

|b f j n |
| |

|c g k o |
| |
| | subblock 2
|d h l p |
| |

---- ---- ---- ----

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special
Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specification

None

GLX Protocol

None

Errors

INVALID_OPERATION is generated by TexImage2D, CompressedTexSubImage2D,
CopyTexSubImage2D if <internalformat> is ETC1_RGB8_OES.

INVALID VALUE is generated by CompressedTexImage2D if
<internalformat> is ETC1_RGB8_OES and <level> value is neither
zero or a negative value.

New State

The queries for NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS include ETC1_RGB8_OES.

118 OES Extension Specifications

Revision History
04/20/2005 0.1 (Jacob Strom)

- Original draft.
04/26/2005 0.2 (Jacob Strom)

- Minor bugfixes.
05/10/2005 0.3 (Jacob Strom)

- Minor bugfixes.
06/30/2005 0.9 (Jacob Strom)

- Merged iPACKMAN and iPACKMANalpha.
07/04/2005 0.92 (Jacob Strom)

- Changed name from iPACKMAN to Ericsson Texture Compression
07/07/2005 0.98 (Jacob Strom)

- Removed alpha formats
07/27/2005 1.00 (Jacob Strom)

- Added token value for ETC1_RGB8_OES
07/28/2005 1.001 (Jacob Strom)

- Changed typos found by Eric Fausett

OES Extension Specifications 119

B.20 OESshader source

Name

OES_shader_source

Name Strings

GL_OES_shader_source

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 06, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

Overview

This extension adds the APIs defined by the OpenGL 2.0 specification
to load and compile shader sources and additional functions to release
shader compiler resources, and to get information on the range and
precision of various data formats supported by vertex and fragment shaders.

Issues

New Tokens

Accepted by the <pname> parameter of GetShaderiv

COMPILE_STATUS 0x8B81
INFO_LOG_LENGTH 0x8B84

120 OES Extension Specifications

SHADER_SOURCE_LENGTH 0x8B88

New Procedures and Functions

void CompileShader(uint shader)

void ShaderSource(uint shader, sizei count, const char ** string, const int * length)

void GetShaderInfoLog(uint shader, sizei bufsize, sizei * length, char * infolog)

void GetShaderSource(uint shader, sizei bufsize, sizei * length, char * source)

void ReleaseShaderCompilerOES(void)

void GetShaderPrecisionFormatOES(enum shadertype, enum precisiontype,
int * range, int * precision)

Additions to Chapter 2 of the OpenGL 2.0 specification

Section 2.15.1 Shader Objects

Add the following paragraphs

The command

void ReleaseShaderCompilerOES(void)

allows the OpenGL ES implementation to release the resources allocated
by the shader compiler. This is a hint from the application and is no
indicator that the compiler will not be used in the future. If shader
sources are loaded and compiled after ReleaseShaderCompilerOES has been called,
the CompileShader call is supposed to successfully compile the shaders provided
there are no errors in the shader source(s).

The command

void GetShaderPrecisionFormatOES(enum shadertype, enum precisiontype,
int * range, int * precision)

returns the range and precision for various precision formats supported
by the implementation. <shadertype> can be VERTEX_SHADER or FRAGMENT_SHADER.
<precisiontype> can be LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_INT,
MEDIUM_INT or HIGH_INT. The precision formats described above must be supported
by a vertex shader. Support for HIGH_FLOAT in a fragment shader is optional.

<range> returns the minimum and maximum representable range as a log based 2 number.
<precision> returns the precision as a log based 2 number.

Please refer to the OpenGL ES 2.0 shading language specification for the minimum
recommended precision and range values.

Errors

OES Extension Specifications 121

Please refer to section 2.15 of the OpenGL 2.0 specification.

New State

Initial
Get Value Type Get Command Value Description
--------- ---- ----------- ----- -----------
COMPILE_STATUS B GetShaderiv False Last compile succeded
INFO_LOG_LENGTH Z+ GetShaderiv 0 Length of info log
SHADER_SOURCE_LENGTH Z+ GetShaderiv 0 Length of source code

Revision History

7/6/2005 Aaftab Munshi Created the extension

122 OES Extension Specifications

B.21 OESshader binary

Name

OES_shader_binary

Name Strings

GL_OES_shader_binary

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modifed Date: July 07, 2005

Number

Dependencies

OpenGL ES 2.0 is required.

Overview

This extension adds the ability to load pre-compiled shader
binaries instead of using the shader compiler to compile
shader sources. This allows OpenGL ES 2.0 implementations
to not require a shader compiler which can be a significant
savings in the memory footprint required on a handheld device.

This extension also allows the application to load one shader binary
that contains a pre-compiled vertex and fragment shader. By allowing
a vertex and fragment shader to be compiled offline together into a
single binary, we can optimize vertex shader code so that it does not
have code to output varying variables that are not used by the
fragment shader. This optimization, otherwise, would have to be done at

OES Extension Specifications 123

the link stage in the OpenGL ES implementation and can be quite expensive
in terms of number of CPU cycles required and the additional memory footprint
required by the OpenGL ES implementation

Issues

1. Should a GetShaderBinary call be supported?

RESOLUTION: No.

The following reasons were given for not supporting GetShaderBinary:
- a lot of complexity in managing associated state with a read-back binary
- use case for get binary not that strong
- decided to get more experience with ES 2.0 before implementing get binary.

when we have more experience with compiler implementations and real market
usage models

New Tokens

Accepted by the <binaryformat> parameter of ShaderBinaryOES

PLATFORM_BINARY_OES 0x8D63

New Procedures and Functions

void ShaderBinaryOES(int n, uint * shaders,
enum binaryformat, const void * binary, int length)

void GetShaderPrecisionFormatOES(enum shadertype, enum precisiontype,
int * range, int * precision)

Additions to Chapter 2 of the OpenGL 2.0 specification

Section 2.15.1 Shader Objects

Add the following paragraphs

A precompiled shader binary can be loaded with the following command:

void ShaderBinaryOES(int n, uint * shaders,
enum binaryformat, const void * binary, int length);

This call takes a list of <n> shader handles described by <shaders>.
Each shader handle refers to a unique shader type i.e. a vertex shader or a
fragment shader etc. The <binary> points to the pre-compiled binary code.
This allows the ability to individually load binary vertex, or fragment shaders
or load a executable binary that contains the optimized pair of vertex and
fragment shaders stored in the same binary. <binaryformat> has been added in case
OpenGL ES 2.x decides to add a set of approved, open binary formats in the

124 OES Extension Specifications

future. For now, <binaryformat> can only be set to PLATFORM_BINARY indicating
that the binary is platform specific.

The bits that represent this binary is implementation specific.

If ShaderBinary failed, GetError can be used to return the appropriate error.
A failed binary load does not restore the old state of shaders for which the
binary was being loaded.

The command

void GetShaderPrecisionFormatOES(enum shadertype, enum precisiontype,
int * range, int * precision)

returns the range and precision for various precision formats supported
by the implementation. <shadertype> can be VERTEX_SHADER or FRAGMENT_SHADER.
<precisiontype> can be LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_INT,
MEDIUM_INT or HIGH_INT. The precision formats described above must be supported
by a vertex shader. Support for HIGH_FLOAT in a fragment shader is optional.

<range> returns the minimum and maximum representable range as a log based 2 number.
<precision> returns the precision as a log based 2 number.

Please refer to the OpenGL ES 2.0 shading language specification for the minimum
recommended precision and range values.

Section 2.15.2 Program Objects

NOTE: How shaders are collected together to form a program object remains the
same as it is described in the OpenGL 2.0 specification with a modification
made to the LinkProgram API. The modification states as follows:

"The LinkProgram call can fail if an optimized vertex / fragment
shader binary pair are not linked together".

This is to avoid having to do the work of regenerating vertex shader binary
code based on varying variables that are actually used by the fragment shader.
This can happen if vertex and fragment shaders are individually loaded as
distinct binaries via separate ShaderBinaryOES calls.

Errors

None.

New State

None.

Revision History

7/6/2005 Aaftab Munshi Created the extension

OES Extension Specifications 125

7/7/2005 Aaftab Munshi Added <binaryformat> enum

	Overview
	Conventions

	OpenGL Operation
	OpenGL Fundamentals
	Fixed-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Rectangles
	Coordinate Transformations
	Clipping
	Current Raster Position
	Colors and Coloring
	Vertex Shaders

	Rasterization
	Invariance
	Antialiasing
	Points
	Point Sprite Rasterization

	Line Segments
	Polygons
	Pixel Rectangles
	Bitmaps
	Texturing
	Copy Texture
	Compressed Textures
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Completeness
	Texture State
	Texture Environments and Texture Functions

	Color Sum
	Fog
	Fragment Shaders

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Alpha Test
	Stencil Test
	Blending

	Whole Framebuffer Operations
	Drawing, Reading, and Copying Pixels

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	State Tables

	Core Additions and Extensions
	Read Format
	Compressed Paletted Texture
	Framebuffer Objects
	Rendering to mip-levels of a texture attached to a framebuffer object
	Additional Render Buffer Storage Formats
	Half-float Vertex Data
	Floating point Texture Formats
	Unsigned Integer Element Indices
	Mapping Buffer Objects In Client Address Space
	3D textures
	Non-power of two texture extensions
	Supporting High Precision Float and Integer Data Types in Fragment Shaders
	Ericsson RGB compressed texture format
	Loading and Compiling Shader Sources
	Loading Shader Binaries

	Packaging
	Header Files
	Libraries

	Acknowledgements
	OES Extension Specifications
	OES_read_format
	OES_compressed_paletted_texture
	OES_framebuffer_object
	OES_fbo_render_mipmap
	OES_rgb8_rgba8
	OES_depth24
	OES_depth32
	OES_stencil1
	OES_stencil4
	OES_stencil8
	OES_vertex_half_float
	OES_texture_float
	OES_texture_float_linear
	OES_element_index_uint
	OES_mapbuffer
	OES_texture_3D
	OES_texture_npot
	OES_fragment_precision_high
	OES_compressed_ETC1_RGB8_texture
	OES_shader_source
	OES_shader_binary

