
EGL, OpenGL ES 1.x
and OpenGL ES 2.0

Lars M. Bishop
Handheld Developer Technologies, NVIDIA

EGL, OpenGL ES 1.x
and OpenGL ES 2.0

Lars M. Bishop
Handheld Developer Technologies, NVIDIA

GL ES Guiding PrinciplesGL ES Guiding Principles

• Create a compact but powerful 3D rendering
standard for embedded platforms
– Leverage the best and most appropriate parts of

OpenGL, without taking on legacy/baggage

– Extend the result to add functionality
required/desired by the embedded and mobile
multimedia space

– Be nimble and up-to-date (or ahead) w.r.t.
commercial 3D hardware and software

GL ES Version / Platform
Specification Methodology
GL ES Version / Platform
Specification Methodology

• Each profile in each version of GL ES is
specified as:
– A subset of a version of full OpenGL

– Additonal extensions and/or “core additions” that
add entrypoints or functionality suited to embedded
platforms

GL ES: Parallel TracksGL ES: Parallel Tracks

• Two tracks:
– GL ES 1.x: Fixed-function pipeline

implementations

– GL ES 2.x: Programmable pipeline
implementations

• The two tracks move in parallel, but are not
required to be backwards compatible

GL ES 1.xGL ES 1.x

• Focused on fixed-function hardware
– Although some vendors have added

programmable shading extensions

• Designed for both HW and SW
implementations
– Later versions of 1.x are more strongly focused on

HW-only implementations

GL ES 1.0GL ES 1.0

• Based on OpenGL 1.3

• Suited for both HW and SW implementations

• Includes a profile that is particularly well-
suited to SW-only implementations

GL 1.3 Features not in GL ES 1.0GL 1.3 Features not in GL ES 1.0

• “Workstation” features:
– Selection

– Feedback

– Evaluators

• In fact, these features are not in any version
of GL ES 1.x

GL 1.3 Features not in GL ES 1.0GL 1.3 Features not in GL ES 1.0

• Left out due to the code complexity they would add
to all GL ES 1.0 implementations
– Attribute stacks

– Display lists

• Not in 1.0, but added later (we’ll discuss them then)
– Vertex Buffer Objects (added as extension in some 1.0 HW)

– Most dynamic render state queries

– User clipping planes

GL 1.3 Features not in GL ES 1.0GL 1.3 Features not in GL ES 1.0

• Features that were less popular in modern
GL or that map poorly to modern HW
– Color index mode

– Quad and quad strip primitives

– General polygon primitives

– Immediate-mode rendering (glBegin/glEnd)

– Polygon mode (the mode is always GL_FILL)

– Line and polygon stippling (can be eumlated)

Supported “Real” DatatypesSupported “Real” Datatypes

• GLfloat (common profile only)

• GLfixed (common and lite profiles)
– All supported GL functions that use GLfloat are

replicated with versions (x) that accept GLfixed

– This is a “core addition” to GL ES 1.x

• GLdouble is not supported
– All GL functions that use GLdoubles are replaced

with fixed (x) and float (f) versions

GLfixed?GLfixed?

• 16.16 (some call it s15.16) format
– 16 bits of integral, 16 bits of fractional precision

– Range is [-32768, 32768)

– Precision is ~1.5x10-5

• Think of it as:
GLfixed fixedValue = (int)(floatValue * 65536.0f)

GLfixed fixedValue = (intValue << 16)

Why GLfixed?Why GLfixed?

• Many/most current handheld CPUs have no
floating-point HW

• Floating-point must then be emulated in SW

• Fixed-point numbers can give some of the
same features as floating-point, but standard
operations are fast on integer CPUs

ProfilesProfiles

• Common
– What we’ll consider GL ES 1.0 for today

• Common “Lite”
– GL ES 1.0 with only the fixed-point functions/data

– No support for floating-point

– Targeted mainly at SW-only implementations

GL ES 1.0 PipelineGL ES 1.0 Pipeline

APIAPI

Transform
and

Lighting

Transform
and

Lighting RasterizerRasterizerPrimitive
Assembly

Primitive
Assembly

Texture
Environment

Texture
Environment

Depth
Stencil

Depth
Stencil

Color
Sum

Color
Sum

Alpha
Test

Alpha
Test

FogFog

DitherDitherColor
Buffer
Blend

Color
Buffer
Blend

Vertex
Arrays

Vertex
Arrays

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

Walking Through the PipelineWalking Through the Pipeline

• Geometry specification

• Primitive rendering

• Transforms

• Vertex processing state (e.g. lighting)

• Texture-related state

• Fragment processing state

Geometry specificationGeometry specification

• glBegin / glEnd are not supported
• Geometry is specified using vertex arrays

– glVertexPointer (2D, 3D, 4D)
– glNormalPointer (3D)
– glTexCoordPointer (2D, 3D, 4D)
– glColorPointer (4D)

• Interleaved arrays are supported
– But not via glInterleavedArrays

Per-object Vertex ComponentsPer-object Vertex Components

• Three “immediate mode” functions were kept
– glColor

– glNormal

– glMultiTexCoord

• These specify constant, per-object values

• The constant values are ignored if the
pointer for that component is enabled

Supported Vertex Component
Formats
Supported Vertex Component
Formats

• All components:
– GLfloat (common profile only)

• All components except color:
– GLfixed

– GLshort

– GLbyte

• Only valid for color
– GLubyte

Primitive renderingPrimitive rendering

• Indexed / non-indexed primitives supported:
– glDrawArrays

– glDrawElements

• The most popular primitives are supported:
– GL_LINES, GL_LINE_LOOP, GL_LINE_STRIP

– GL_TRIANGLES, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP

• Index arrays must be GLubyte or GLushort

TransformsTransforms

• Most matrices supported (as stacks)
– MODELVIEW

– PROJECTION

– TEXTURE_N

– NOT COLOR

• All matrix load/concat operations supported
– except the “TransposeMatrix” operations

• Matrices are in fixed-point or float (common)

Vertex processing stateVertex processing state

• glTexGen not supported

• Lighting is supported (up to 8 lights)
– But no support for separate secondary color

• Vertex normal rescaling and renormalization
are supported

Vertex LightingVertex Lighting

• glMaterial must be FRONT_AND_BACK
– Cannot have different front/back materials

• COLOR_MATERIAL mode is supported
– But only in AMBIENT_AND_DIFFUSE mode

• glLightModel only supports
– GL_AMBIENT

– GL_LIGHT_MODEL_TWO_SIDE

TexturingTexturing

• Only 2D, rectangular textures are supported
in GL ES 1.0
– 1D and 3D textures are out

– Cube map textures are out in GL ES 1.0 and 1.1

• Other unsupported texture features include
– Border and clamp-to-border addressing modes

– Texture proxies, prioritization, and residency

Texture Image FormatsTexture Image Formats

• RGB, RGBA, LUMINANCE, ALPHA and
LUMINANCE_ALPHA formats are supported

• UNSIGNED_BYTE is supported for the above types

• Also supports the following 16-bpp RGB(A) formats

– UNSIGNED_SHORT_5_6_5

– UNSIGNED_SHORT_4_4_4_4

– UNSIGNED_SHORT_5_5_5_1

Paletted TexturesPaletted Textures

• Supported via
glCompressedTex(Sub)Image2D
– Required extension

• Supports 4- or 8-bit palette indices (16/256
entries)

• Supports the following palette entry formats
– RGB 565, RGBA 4444, RGBA 5551
– RGB 888, RGBA 8888

• Palette must be specified with each texture
– Allows non-paletted implementations to implement easily

MipmappingMipmapping

• Fully supported, including all filtering modes

• Auto mipmap generation is not supported

• Explicit texture LOD control not supported

Texture EnvironmentsTexture Environments

• Multiple texture stages supported, but not required

• Most texture environment modes supported
– GL_REPLACE, GL_MODULATE

– GL_ADD

– GL_BLEND, GL_DECAL

• But not GL_COMBINE, thus no

– COMBINE_RGB, COMBINE_ALPHA

– SOURCE_{012}_RGB, SOURCE_{012}_ALPHA

Fragment processing stateFragment processing state

• Most of the GL fragment processing state is
supported in GL ES 1.0

• However, the pixel blending only supports
the additive equation, so
glBlendEquation is not needed/supported
– But all of the various blending functions are

available (src color, dest color, src alpha, etc)

Fragment Processing StateFragment Processing State

• While depth and stencil ops are available, an
implementation is not required to support
either of them

• Ditto multisample antialiasing

• Scissoring is supported

Whole-Framebuffer OpsWhole-Framebuffer Ops

• Setting the “draw buffer” is not supported, as
multiple drawing buffers are not supported

• Accumulation buffers are not supported

• Color masking is supported

• All standard clear operations are supported

Unsupported Raster/Pixel OpsUnsupported Raster/Pixel Ops

• Most pixel, bitmap, rectangle operations are
not in GL ES
– No glDrawPixels, glCopyPixels,
glPixelZoom, etc

• The entire imaging subset is unavailable as
well

Supported Raster/Pixel OpsSupported Raster/Pixel Ops

• glReadPixels is supported, but format
conversions are limited
– Still a good function to avoid…

• glPixelStorei is limited to changing the:
– Packing alignment for glReadPixels

– Unpacking alignment for glTex[Sub]Image2D

SynchronizationSynchronization

• glFlush and glFinish are both supported

• As with GL apps, use of these should be
considered carefully

• Misuse can hurt performance

HintsHints

• A few of the GL hints are supported
• These are of particular interest to SW

implementations, where the image-quality vs.
performance tradeoffs may be worthwhile
– PERSPECTIVE_CORRECTION_HINT

– POINT_SMOOTH_HINT

– LINE_SMOOTH_HINT

– FOG_HINT

GL ES 1.1GL ES 1.1

• Based on OpenGL 1.5

• Focuses more on HW implementations

• Adds paths to better feed HW vertex
processing

• Adds more powerful texturing environment

Geometry SpecificationGeometry Specification

• Adds vertex and index buffer objects

• Based on full GL VBOs

• Important on handheld devices, which often
have slow/narrow system busses

• GL ES version has no support for memory
mapping
– No glMapBuffer / glUnmapBuffer

Rendering PrimitivesRendering Primitives

• Adds required support for point sprites

• Also requires point size arrays

• Put together, these make it more like that
applications can avoid having to use tri-
based “screen quad” particle systems

TransformationsTransformations

• Adds required matrix “get” functions
– Makes the matrix stack tops available to

applications

– Can avoid the need for applications to mirror the
GL ES matrix stacks or implement the stacks
themselves

Matrix Palette Skinning
(Optional)
Matrix Palette Skinning
(Optional)

• Adds support for an array of matrices per
object
– Not a stack of these arrays – just a single array

• Adds ability to set per-vertex arrays for:
– The set of matrix indices for each vertex

– The set of matrix weights for each vertex

Skinning Extension MinimaSkinning Extension Minima

• Requires at least a 9-matrix palette
• Requires at least 3 matrices per vertex
• These minima were a bit too low to be a

useful base case
– Implementations can support more, but

applications couldn’t depend on that in practice

• Thus, we’ll see an update in the GL ES 1.1
extension pack

Vertex Processing StateVertex Processing State

• Adds required support for at least one user-
supplied clipping plane
– Implementations can support/expose more

– A single plane can be useful for portal-based
rendering engines, thus the low minimum

TexturingTexturing

• Adds support for automatic mipmap
generation for incomplete textures
– Useful for rendered textures

• Automatic mipmap generation is enabled per
texture via the texture parameter
GENERATE_MIPMAP

Texturing EnvironmentTexturing Environment

• Requires support for at least two texture
stages

• Adds many more texture combine
environments
– Most importantly, adds DOT3!

– Adds all of the GL 1.5 modes except for the
complex texture crossbar mode (see extensions)

Render State RetrievalRender State Retrieval

• The ability to query many of the dynamic
render state values is added by the GL ES
1.1 spec
– Mainly added for “layered” applications that need

to implement their own pushing and popping of
rendering state when working together with
another rendering system that assumes that it is
the only modifier of rendering state

• See the spec for a list of supported state

EGLEGL

• EGL is GL ES’s native platform interface

• It is designed to replace the per-platform
systems used for GL
– e.g. WGL on MS Windows

• It does not implement or replace the native
platform’s windowing system or native
graphics system

EGLEGL

• EGL also allows for resource sharing and
synchronization of rendering between
multiple Khronos graphics APIs

What EGL ManagesWhat EGL Manages

• Display devices

• Rendering contexts

• Rendering surfaces

• We will discuss EGL1.1 for most of these
slides. It is focused on GL ES

• EGL1.2 generalizes many of the concepts to
support other Khronos APIs

GL ES ContextsGL ES Contexts

• Although contexts are used by all GL ES
rendering, GL ES cannot create them

• EGL is used to create contexts

• A context includes all client and server-side
rendering state

• Applications may (and often do) have more
than one context

Contexts and SharingContexts and Sharing

• Contexts can share “large” state items:
– Textures

– VBOs

• Each context can be passed a “share”
context, with which it will share these objects

• But be careful regarding modifications to
these objects between contexts
– See the docs for details on this

ConfigurationsConfigurations

• Configurations define the overall format of a
set of rendering buffers, including:
– Compatibility with Khronos rendering APIs

– Color format

– Depth/Stencil buffer (existence/bits)

– Multisample settings

– Compatibility with pixmap/offscreen/texture
rendering, native options

Configuration DiscoveryConfiguration Discovery

• EGL allows for applications to query all
available configurations with a set of desired
qualities using eglChooseConfig
– Returns an array of matching configs sorted by a

set of match metrics defined by EGL

– Applications can then narrow the list themselves

• EGL also allows the application to get the list
of all available configs via eglGetConfigs

Using ConfigurationsUsing Configurations

• Configurations are used during the creation
of both rendering contexts and rendering
surfaces

• Configurations are associated with a display
object, and do not change for the life of that
display object

SurfacesSurfaces

• Surfaces are EGL’s rendering buffer objects
• They can represent

– On-screen surfaces

– Off-screen GL ES surfaces

– Off-screen native surfaces

• They do not independently represent
ancillary buffers like depth buffers
– Ancillary buffers are part of the surface

Window SurfacesWindow Surfaces

• Window surfaces are onscreen surfaces that
allow visible rendering to the current display

• They are associated with a native platform
window handle

• Window surfaces can resize, depending on
the platform

• Remember that EGL is not a windowing
system in and of itself

PBuffer SurfacesPBuffer Surfaces

• PBuffers are offscreen surfaces that can be
used by GL ES and EGL

• They can be a different format than the
onscreen surfaces
– This requires an additional GL ES context

• Their most common use is rendered textures

EGL1.0 Render-to-textureEGL1.0 Render-to-texture

• In EGL1.0 and GL ES 1.1, render-to-texture
is done as follows:

1) Make a PBuffer surface current

2) Render to the PBuffer normally

3) Copy the PBuffer contents to a texture via
glCopyTex[Sub]Image2D

• This requires a copy from the PBuffer to the
texture (although often a very fast copy)

EGL1.1 Render-to-textureEGL1.1 Render-to-texture

• EGL1.1 adds a new interface for direct
render-to-texture: eglBindTexImage

• This allows a PBuffer to be bound directly as
a texture, with no copies (usually)

• But it requires a PBuffer per rendered texture
– Including any depth/stencil/ancillary buffers

• Support for render-to-texture is not required!
– EGL doc notes how to create a supported PBuffer

Direct Render-to-textureDirect Render-to-texture

• As we will see, both the GL ES 1.x and 2.x
tracks are moving to make direct render-to-
texture required in the latest versions

• This removes the need for the previously
mentioned render-to-texture methods in
terms of pure GL ES support moving forward

• However, other Khronos APIs (OpenVG) still
use PBuffers

Pixmap SurfacesPixmap Surfaces

• Pixmap surfaces are offscreen surfaces that
are “wrapped around” platform-native
graphics rendering surfaces

• They allow the mixing of platform-native
rendering and GL ES rendering

• By their nature, the exact way that these are
used is platform-dependent

Copying into PixmapsCopying into Pixmaps

• GL ES rendering buffers can be copied into
pixmaps using eglCopyBuffers

• Allow for the mixing of GL ES rendering and
native rendering

• Performance and exact feature support is
implementation-dependent

Surfaces and ContextsSurfaces and Contexts

• Surfaces are associated with a rendering
context dynamically via eglMakeCurrent

• A surface that is attached to a context must
be “compatible” with the context
– Have the same color/depth format as the context

– Have been created from the same display object

• PBuffers often require a new context
because they are a different pixel format

“Swapping” Buffers“Swapping” Buffers

• eglSwapBuffers causes the backbuffer of a
windowed surface to be shown onscreen

• The call has no effect on PBuffers and
Pixmaps

• Note that EGL does not guarantee swapping
or copying behavior. The backbuffer
contents are undefined after a swap

SynchronizationSynchronization

• EGL provides the interfaces to synchronizing
GL ES rendering and native rendering
– eglWaitGL waits for GL ES rendering to complete

• Similar to glFinish

– eglWaitNative waits for a specified native
rendering interface to complete

• EGL_CORE_NATIVE_ENGINE is always defined

• Other native APIs can be defined by platform extensions

Extension QueriesExtension Queries

• EGL also contains the interface for querying
EGL and GL ES extension functions
– eglGetProcAddress()

• GL ES is still used to query the
GL_EXTENSIONS string for GL ES
extensions
– glGetString(GL_EXTENSIONS)

EGL1.2EGL1.2

• EGL 1.2 extends many of the behaviors of EGL1.1
to other APIs, such as OpenVG
– Adds the concept of “current rendering API” via
eglBindAPI, which currently accepts:

• EGL_OPENGL_ES_API

• EGL_OPENVG_API

– Configurations include API compatibility bits (GL ES, VG)

– The concept of configuration compatibility allows more GL
ES configurations to be compatible with VG configurations

• E.g. VG does not care about stencil buffers

GL ES 1.1 Extension Pack and
Proposed GL ES 1.2 Reqs
GL ES 1.1 Extension Pack and
Proposed GL ES 1.2 Reqs

• GL ES 1.1 included a set of numerous
rendering feature extensions that were
designed to be supported as a set

• Implementations that supported all of the
items in the GL ES 1.1 Extension Pack were
likely to be conformant to GL ES 1.2 as well

• We’ll discuss them as one for now

Extended Matrix PalettesExtended Matrix Palettes

• Makes matrix palette skinning more useful by
increasing minima
– Requires at least 32 matrices entries in a palette

– Requires at least 4 matrices per vertex

• In general, this allows more skinned
geometry to be rendered in a single draw call

Cube Map Texture Coordinate
Generation
Cube Map Texture Coordinate
Generation

• Two modes of texgen are enabled
• REFLECTION_MAP

– Uses generated reflection vectors to reference the
cube map

• NORMAL_MAP

– Uses the eye-space normals directly to reference
the cube map

Cube Map ImagesCube Map Images

• Adds the ability to specify 6-faced cube map texture
images for cube mapping:
– glBindTexture(GL_TEXTURE_CUBE_MAP,…

– glTexImage2D(GL_TEXTURE_CUBE_MAP_…

– glCompressedTexImage2D(GL_TEXTURE_CUBE_MAP_…

• There are several restrictions on cube map images
– Each face of a cube map must be square

– All faces of a cube map must be the same size

Texture AddressingTexture Addressing

• Adds mirrored texture wrapping

• Automatically makes any texture a
“repeating”
– i.e. without sharp border transitions

• In theory, at least – careful authoring is still
required to avoid obvious texture repeated
and “bookmatching” artifacts

Texture EnvironmentTexture Environment

• Adds support for the texture crossbar

• This allows a texture from any unit to be
used as a source to any texturing stage

• Still not as flexible as pixel shading, which
has lead some 1.x vendors to expose
proprietary pixel shading extensions

Pixel Blending EquationPixel Blending Equation

• 1.1 supports only additive alpha blending
– C = CSS + CDD (GL_FUNC_ADD)

• The extension pack adds support for two
others
– C = CSS – CDD (GL_FUNC_SUBTRACT)
– C = CDS – CSD (GL_FUNC_REVERSE_SUBTRACT)

• Can also support independent RGB and
Alpha blending equations/functions

Stencil Action AdditionsStencil Action Additions

• Adds required support for two new stencil
actions:
– DEC_WRAP

– INC_WRAP

• These are particularly useful for even/odd-
based techniques with low-range stencil
buffers

Framebuffer ObjectsFramebuffer Objects

• A render-to-texture extension that is a subset
of GL’s EXT_framebuffer_object

• Allows for direct render-to-texture, including
rendering to cube map faces
– (Generally) avoids the overhead inherent in the
glCopyTexImage2D rendered texture method

– Allows for fewer GL ES contexts and better buffer
sharing than the eglBindTexImage method

FBOs and PBuffersFBOs and PBuffers

• With the intention to make the GL ES 1.1
extension pack required for 1.2, FBOs
become a required feature

• This greatly reduces the need for PBuffer
support in the 1.x track moving forward

• Applications that can assume this version will
not need to write “fallback” code for “copy-to-
texture” or EGL’s “bind texture”

GL ES 2.0GL ES 2.0

• Designed to feed programmable-pipeline 3D
hardware

• Based on OpenGL 2.0, but is shaders-only

• Really two parts
– The APIs (discussed here)

– The shading language (described elsewhere)

GL ES 2.0 and GL ES 1.xGL ES 2.0 and GL ES 1.x

• GL ES 2.0 is not backwards compatible with
GL ES 1.x!

• This is a part of the more general GL ES
goal of not carrying around outdated API
entrypoints for the sake of backwards
compatibility

GL ES 2.0: The Big ChangesGL ES 2.0: The Big Changes

• The GL 2.0 fixed-function vertex transform
pipeline is not supported
– GL ES 2.0 only supports vertex shaders

• The GL 2.0 fixed-function texture
environment pipeline is not supported
– GL ES 2.0 only supports fragment shaders

Reminder: GL ES 1.x PipelineReminder: GL ES 1.x Pipeline

APIAPI

Transform
and

Lighting

Transform
and

Lighting RasterizerRasterizerPrimitive
Assembly

Primitive
Assembly

Texture
Environment

Texture
Environment

Depth
Stencil

Depth
Stencil

Color
Sum

Color
Sum

Alpha
Test

Alpha
Test

FogFog

DitherDitherColor
Buffer
Blend

Color
Buffer
Blend

Vertex
Buffers
Objects

Vertex
Buffers
Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

GL ES 2.0 PipelineGL ES 2.0 Pipeline

APIAPI
Vertex
Shader

Vertex
Shader RasterizerRasterizerPrimitive

Assembly
Primitive
Assembly

Fragment
Shader

Fragment
Shader

Depth
Stencil

Depth
Stencil DitherDitherColor

Buffer
Blend

Color
Buffer
Blend

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

GL ES 2.0 APIsGL ES 2.0 APIs

• What does this mean for the GL ES 2.0
APIs?

• It means that a large number of GL 2.0
entrypoints simply disappear from GL ES 2.0

• This leads to a simple, lean, uncomplicated
and yet flexible API spec

Supported TypesSupported Types

• Unlike GL ES 1.x, 2.0 does not support fixed-
point and floating-point versions of command
parameters

• To simplify the APIs, only floating-point are
supported for most “Real” parameters

• Fixed-point data is still supported for vertex
attributes

Geometry SpecificationGeometry Specification

• No fixed function pipeline means that all
geometry is specified generally

• Vertex components are specified via integer
indices to identify them
– Without specifying how they are used in the shader

– Thus, no “vertex”, “normal”, “texcoord”, etc

• These are called vertex “attributes”

AttributesAttributes

• Vertex attributes can each be specified in the
API as 1D, 2D, 3D or 4D

• Attributes appears in the vertex shader as a
global value, but the value differs per vertex

• Implementations must support at least 8
attribute vectors
– Note that each attribute “costs” the same

– So pack 1-3D values in sets of 4 into attributes

Attribute Specification FunctionsAttribute Specification Functions

• glVertexAttribPointer sets arrays of
per-vertex attributes
– Supports all types; fixed, float, byte, short, etc

• glVertexAttribf[v] sets per-primitive
constant attributes
– Float only, as performance/memory is not an issue

for per-primitive values

– Not the only/best way to do per-primitive constants

VBOsVBOs

• Support for VBOs is required

• MapBuffer and UnmapBuffer are not
required
– But support for them is exposed in an optional

extension

TransformationsTransformations

• None of the GL transform and matrix stack
functions are supported

• GL ES 2.0 has no notion of matrix stacks

• All transforms are passed to the shaders as
shader constants (uniforms)

• The application is responsible for managing
and concatenating transform matrices

LightingLighting

• None of the GL lighting functions are
supported through the APIs

• Per-vertex lighting can be computed in the
vertex shader

• Per-pixel lighting can be computed via a
collaboration between the vertex and pixel
shaders

Other Vertex FeaturesOther Vertex Features

• User clipping planes are not supported
– If special clipping is required, it must be done in

the fragment shader (using fragment kill) based on
values computed in the vertex shader

• TexGen is not supported
– Easier and much more general to compute in the

vertex shader

Passing Data to Vertex ShadersPassing Data to Vertex Shaders

• “Global” data such as transforms or lighting vectors
are passed to the vertex shader as Uniforms

• Uniforms are specified as
– Scalar floats or ints

– 2-4D float or int vectors

– 2x2, 3x3, or 4x4 float matrices (and matrix arrays)

• At least 384 total components must be supported
within a vertex shader in GL ES 2.0
– Vector or matrix uniforms take up multiple components

Mapping Uniforms and AttributesMapping Uniforms and Attributes

• Uniforms and attributes are named with
strings in shader code

• But both are specified/mapped in the API
using numbered indices

• GL ES allows these mappings to be queried

• This makes shader code more general
avoiding over-coupling of app code and
shader code

Mapping FunctionsMapping Functions

• glGetUniformLocation maps the name
of a uniform in a shader to its index

• glGetAttribLocation does the same for
per-vertex attributes

• glGetActiveAttrib/Uniform allows for
all active attributes and uniforms in a shader
to be queried (type, name, index, etc)

Vertex Shaders and TexturesVertex Shaders and Textures

• Vertex shaders can also read textures!

• But this functionality is more limited than in
the fragment shader

• See the GL ES Shading Language manual
for details

Vertex Shader OutputVertex Shader Output

• Vertex shaders write their output to values called
“varying”

• They are read/write values in the vertex shader

• They are passed as inputs to the fragment shader

• They do not appear in the API, as they go directly
from the vertex shader to the fragment shader

VaryingVarying

• Varyings are floats, and can be
– Scalars

– 1-4D vectors

– 2x2, 3x3, or 4x4 matrices

• Implementations must support at least 32
floating-point varying components (8 4-vecs)

• These are interpolated and provided as per-
fragment values to the fragment shader

Vertex Shader Special VarsVertex Shader Special Vars

• There are two other special output variables
within a shader:
– gl_Position must be written with the

homogeneous position of the vertex

– gl_PointSize may be written with the size of a
point when rendering point sprites

Overall Vertex Shader BlockOverall Vertex Shader Block

Attribute 0Attribute 0

UniformsUniforms TexturesTextures

Attribute 1Attribute 1

Attribute 2Attribute 2

Attribute 3Attribute 3

Attribute 4Attribute 4

Attribute 5Attribute 5

Attribute 6Attribute 6

Attribute 7Attribute 7

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Temporary
variables

Temporary
variables

gl_Positiongl_Position

Vertex ShaderVertex Shader

gl_PointSizegl_PointSize

Viewport TransformationsViewport Transformations

• glViewport and glDepthRange are supported

• These happen post-vertex shader and are
still fixed-function operations

The Fragment PipelineThe Fragment Pipeline

• The GL 2.0 pipeline stages:

• Are all replaced in GL ES 2.0 by:

Texture
Environment

Texture
Environment Color

Sum
Color
Sum Alpha

Test
Alpha
TestFogFog

Fragment
Shader

Fragment
Shader

Inputs to the Fragment ShaderInputs to the Fragment Shader

• The varyings output from the vertex shader

• Several built-in read-only variables:
– gl_FragCoord: window-relative fragment position

– gl_FrontFacing: true if the fragment is front-
facing, false if it is back-facing

• Uniforms are also supported for fragment
shaders
– Implementation may only support 64 components

TexturesTextures

• Of course, textures are also supported in
fragment shaders

• Including:
– Cube maps

– Non-power-of-2 textures
• But mipmapping and texture repeat are not required

– 3D textures are optional (see extensions)

– Dependent texturing (in shader)

Fragement Shader OutputFragement Shader Output

• Fragment shaders must output the final
fragment color into the output register
– gl_FragColor

Overall Fragment Shader BlockOverall Fragment Shader Block

UniformsUniforms TexturesTextures

Temporary
variables

Temporary
variables

gl_FragColorgl_FragColor

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Fragment ShaderFragment Shader

gl_FragCoordgl_FragCoord

gl_FrontFacinggl_FrontFacing

Final Programming ModelFinal Programming Model

Vertex
Shader

Vertex
Shader

Fragment
Shader

Fragment
Shader

Primitive
Assembly

& Rasterize

Primitive
Assembly

& Rasterize

Per-Sample
Operations

Per-Sample
Operations

Attributes
(~8 4-vectors)
Attributes

(~8 4-vectors)

Vertex Uniforms
(~384 components)
Vertex Uniforms

(~384 components)

Varyings
(~8 4-vectors)

Varyings
(~8 4-vectors)

Fragment Uniforms
(~64 components)

Fragment Uniforms
(~64 components)

Loading and Using ShadersLoading and Using Shaders

• GL 2.0 requires that the shader compiler be
in the implementation, and only loads shader
source code
– This could be too slow or heavyweight for GL ES

• GL ES 2.0 allows implementations to support
either (or both) of the following two methods:
– GL 2.0 model: load source and compile

– Load platform-specific precompiled binary shaders

Replaced Fragment APIsReplaced Fragment APIs

• Obviously, fragment shaders make parts of
the per-fragment pipeline redundant

• These fixed-function APIs from GL 2.0 are
replaced by fragment shaders
– Texture environments

– Color summing

– Alpha testing

Supported Fragment APIsSupported Fragment APIs

• Depth testing is supported
– The spec requires a config with 16 bits of depth

• Stencil testing is supported
– The spec requires a config with 8 bits of stencil

• Pixel blending is supported
– Supported modes similar to GL ES 1.2

Whole Framebuffer APIsWhole Framebuffer APIs

• Roughly equivalent to GL ES 1.2
– Support for color masking

– Support for glReadPixels

– No support for glCopyPixels

– No support for multiple draw buffers

– No support for accumulation buffers

GL ES 2.0 Required ExtensionsGL ES 2.0 Required Extensions

• OES_read_format

– Platform-specific format support for
glReadPixels

• OES_stencil8

– Requires at least one configuration with a depth
buffer and 8 bits of stencil

• OES_framebuffer_object

– Made required (like the slated GL ES 1.2 spec)

GL ES 2.0 Optional ExtensionsGL ES 2.0 Optional Extensions

• GL ES 2.0 includes a lot of standard but
optional extensions

• The ones listed here are a subset

FBO Render MipmapFBO Render Mipmap

• OES_fbo_render_mipmap

• Adds mipmap-level rendering options to
framebuffer objects

• If supported, adds the ability to render into
any mipmap level of a texture

Half Float Vertex ComponentsHalf Float Vertex Components

• OES_vertex_half_float

• Adds support for vertex attributes that are
16-bit floating-point

• Format
– 1 sign bit

– 5 exponent bits

– 10 mantissa bits

Floating-point TexturesFloating-point Textures

• OES_texture_half_float
OES_texture_float

– Support 16- and 32-bit floating-point textures with
only NEAREST texture filtering (w/ mipmapping)

• OES_texture_half_float_linear
OES_texture_float_linear

– As above, but add linear texture filtering

• 16-bit formats are the same as for attributes

32-bit Element Indices32-bit Element Indices

• OES_element_index_uint adds support
for 32-bit index array elements

• Allows for very large objects to be drawn in a
single call

Other Texture ExtensionsOther Texture Extensions

• 3D Textures
– OES_texture_3D

• Non Power-of-two Textures
– OES_texture_npot

– Adds repeat wrapping and mipmapping to non-
power-of-two textures

– If 3D textures are also supported, this indicates
that 3D non-power-of-two textures are supported

ETC Compressed TexturesETC Compressed Textures

• OES_compressed_ETC1_RGB8_texture

• Adds support for Ericsson’s texture
compression formats

High-precision FragmentsHigh-precision Fragments

• OES fragment precision high

• Adds support for “high precision” qualifiers in
fragment shader code

• Supported on floating-point and integer types
in fragment shaders

	GL ES Guiding Principles
	GL ES Version / Platform Specification Methodology
	GL ES: Parallel Tracks
	GL ES 1.x
	GL ES 1.0
	GL 1.3 Features not in GL ES 1.0
	GL 1.3 Features not in GL ES 1.0
	GL 1.3 Features not in GL ES 1.0
	Supported “Real” Datatypes
	GLfixed?
	Why GLfixed?
	Profiles
	GL ES 1.0 Pipeline
	Walking Through the Pipeline
	Geometry specification
	Per-object Vertex Components
	Supported Vertex Component Formats
	Primitive rendering
	Transforms
	Vertex processing state
	Vertex Lighting
	Texturing
	Texture Image Formats
	Paletted Textures
	Mipmapping
	Texture Environments
	Fragment processing state
	Fragment Processing State
	Whole-Framebuffer Ops
	Unsupported Raster/Pixel Ops
	Supported Raster/Pixel Ops
	Synchronization
	Hints
	GL ES 1.1
	Geometry Specification
	Rendering Primitives
	Transformations
	Matrix Palette Skinning (Optional)
	Skinning Extension Minima
	Vertex Processing State
	Texturing
	Texturing Environment
	Render State Retrieval
	EGL
	EGL
	What EGL Manages
	GL ES Contexts
	Contexts and Sharing
	Configurations
	Configuration Discovery
	Using Configurations
	Surfaces
	Window Surfaces
	PBuffer Surfaces
	EGL1.0 Render-to-texture
	EGL1.1 Render-to-texture
	Direct Render-to-texture
	Pixmap Surfaces
	Copying into Pixmaps
	Surfaces and Contexts
	“Swapping” Buffers
	Synchronization
	Extension Queries
	EGL1.2
	GL ES 1.1 Extension Pack and Proposed GL ES 1.2 Reqs
	Extended Matrix Palettes
	Cube Map Texture Coordinate Generation
	Cube Map Images
	Texture Addressing
	Texture Environment
	Pixel Blending Equation
	Stencil Action Additions
	Framebuffer Objects
	FBOs and PBuffers
	GL ES 2.0
	GL ES 2.0 and GL ES 1.x
	GL ES 2.0: The Big Changes
	Reminder: GL ES 1.x Pipeline
	GL ES 2.0 Pipeline
	GL ES 2.0 APIs
	Supported Types
	Geometry Specification
	Attributes
	Attribute Specification Functions
	VBOs
	Transformations
	Lighting
	Other Vertex Features
	Passing Data to Vertex Shaders
	Mapping Uniforms and Attributes
	Mapping Functions
	Vertex Shaders and Textures
	Vertex Shader Output
	Varying
	Vertex Shader Special Vars
	Overall Vertex Shader Block
	Viewport Transformations
	The Fragment Pipeline
	Inputs to the Fragment Shader
	Textures
	Fragement Shader Output
	Overall Fragment Shader Block
	Final Programming Model
	Loading and Using Shaders
	Replaced Fragment APIs
	Supported Fragment APIs
	Whole Framebuffer APIs
	GL ES 2.0 Required Extensions
	GL ES 2.0 Optional Extensions
	FBO Render Mipmap
	Half Float Vertex Components
	Floating-point Textures
	32-bit Element Indices
	Other Texture Extensions
	ETC Compressed Textures
	High-precision Fragments

