

The OpenGL® ES Shading Language

Language Version: 1.10
Document Revision: 11
Editor: John Kessenich

Copyright (c) 2005 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality herein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be re-formatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or
fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes no,
and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy,
completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos
Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Table of Contents
1 Introduction...1

1.1 Acknowledgments..1
1.2 Change History...1
1.3 Overview.. 3
1.4 Error Handling..3
1.5 Typographical Conventions... 3

2 Overview of OpenGL ES Shading..4
2.1 Vertex Processor.. 4
2.2 Fragment Processor.. 4

3 Basics.. 5
3.1 Character Set.. 5
3.2 Source Strings.. 5
3.3 Preprocessor... 6
3.4 Comments.. 10
3.5 Tokens.. 10
3.6 Keywords..11
3.7 Identifiers... 12

4 Variables and Types..13
4.1 Basic Types.. 13

4.1.1 Void.. 14
4.1.2 Booleans... 14
4.1.3 Integers... 14
4.1.4 Floats.. 15
4.1.5 Vectors..16
4.1.6 Matrices.. 17
4.1.7 Samplers... 17
4.1.8 Structures..17
4.1.9 Arrays... 18

4.2 Scoping...19
4.3 TypeStorage Qualifiers...19

4.3.1 Default Storage Qualifiers.. 20
4.3.2 Const...20
4.3.3 Integral Constant Expressions.. 20
4.3.4 Attribute..21
4.3.5 Uniform.. 21
4.3.6 Varying... 22

4.4 Parameter Qualifiers...22
4.5 Precision and Precision Qualifiers... 23

4.5.1 Range and Precision... 23
4.5.2 Precision Qualifiers.. 24

4.5.3 Default Precision Qualifiers... 26
4.5.4 Available Precision Qualifiers..26

4.6 Variance and the Invariant Qualifier.. 27
4.6.1 The Invariant Qualifier... 27

4.7 Order of Qualification.. 28
5 Operators and Expressions..29

5.1 Operators.. 29
5.2 Array Subscripting... 30
5.3 Function Calls.. 30
5.4 Constructors... 30

5.4.1 Conversion and Scalar Constructors.. 30
5.4.2 Vector and Matrix Constructors... 31
5.4.3 Structure Constructors.. 32

5.5 Vector Components..32
5.6 Matrix Components..34
5.7 Structures and Fields.. 34
5.8 Assignments... 34
5.9 Expressions.. 35
5.10 Vector and Matrix Operations..37

6 Statements and Structure...39
6.1 Function Definitions...40

6.1.1 Function Calling Conventions..41
6.2 Selection...43
6.3 Iteration.. 43
6.4 Jumps..44

7 Built-in Variables..46
7.1 Vertex Shader Special Variables..46
7.2 Fragment Shader Special Variables... 46
7.3 Vertex Shader Built-In Attributes.. 48
7.4 Built-In Constants.. 48
7.5 Built-In Uniform State... 49
7.6 Varying Variables...52

8 Built-in Functions... 54
8.1 Angle and Trigonometry Functions..55
8.2 Exponential Functions..56
8.3 Common Functions.. 56
8.4 Geometric Functions.. 58
8.5 Matrix Functions.. 59
8.6 Vector Relational Functions...59
8.7 Texture Lookup Functions... 60
8.8 Fragment Processing Functions..62
8.9 Noise Functions..64

9 Shading Language Grammar...66
10 Appendix A: Standard Extensions..76

10.1 Standard Noise Language Extension..76
10.2 Standard Derivatives Extension... 78

1 Introduction

This document restates version 1.10 of the OpenGL Shading Language, document revision number 59.
Overview information not relevant to the language specification has been removed from sections 1 and 2.
Also, the original issues and acknowledgments sections have been removed. Tables and formulas have
been reformatted, and spelling errors corrected. Otherwise, the content is identical. Change bars and
markings show the changes made for the ES version of the language. Additions are underlined, deletions
are stricken through.

This specification requires __VERSION__ to be 110, and #version to accept 110.

1.1 Acknowledgments
This specification contains many contributions from discussions with members of the Khronos OpenGL
ES group, including Robert Simpson of Bitboys, John Kessenich, Barthold Lichtenbelt, and Nick Murphy
of 3Dlabs, Bill Marshall, John Jarvis, and John Boal of Alt Software, Ed Plowman of ARM, Aaftab
Munshi and Chris Grimm of ATI, Eisaku Ohbuchi, Eric Fausett, Yoshihiko Kuwahara, Keisuke Kirii,
Yukitaka Takemuta, and Max Kazakov of DMP, Jacob Strom of Ericsson, Young Seok Kim of ETRI,
Borgar Ljosland, Edvard Sørgård, Mario Blazevic, Justin Radeka, Jorn Nystaa, Remi Pedersen, and Frode
Heggelund of Falanx, Brian Murray of Freescale, Tero Sarkinnen and Timo Suoranta of Futuremark,
Mark Callow and Stanley Kao of Hi, Petri Kero, Ville Miettinen, and Jasin Bushnaief of Hybrid, Graham
Connor, John Howson, Ben Bowman, James McCarthy, and Nicolas Thibieroz of Imagination, Yong Moo
Kim and Woo Sedo Kim of LG Electronics, Hiroyasu Negishi and Yoshiyuki Kato of Mitsubishi, Jani
Vaarala, Kari Pulli, Tero Pihlajakoski, Jarkko Kemppainen, and Joonas Itäranta of Nokia, Tom
McReynolds, Gary King, and Neil Trevett of Nvidia, Andy Methley, Akira Uesaki, and Katzutaka Nishio
of Panasonic, Aleksandra Krstic of Qualcomm, Jitaek Lim and Kee Chang Lee of Samsung, Jon Leech
and Thomas Tannert of SGI, Steve Lee of SIS, Remi Arnaud, Axel Mamode, and Robin Green of Sony,
Dan Rice of Sun, Lane Roberts and Stefan von Cavallar of Symbian, Phil Huxley of Tao, Tom Olson of
Texas Instruments, and Hans-Martin Will of Vincent.

1

1 Introduction

1.2 Change History
Changes from Revision 10 of the OpenGL ES Shading Language specification:

• The extensions' macros are defined to a value of '1', not just defined. This is to conform to the correct
convention.

Changes from Revision 9 of the OpenGL ES Shading Language specification:

• Added formal extension for noise functions.

• Added formal extension for derivative functions.

• Made 3D textures available only if the 3D texture extension is enabled. This is part of an API
extension.

Changes from Revision 8 of the OpenGL ES Shading Language specification:

• Added the grammar at the end.

• Correct multiple qualifier order, to match existing parameter qualification order.

• Refined invariant declarations: takes a list, is globally scoped, and declared before use.

• Make spec. references refer to the 2.0 OpenGL spec. instead of version 1.4.

• Removed gl_MaxTextureUnits, as it is for fixed function only.

• Removed comment about point sprites being disabled.

• Reserved 'superp' for possible future super precision qualifier.

• Gave specific precision qualifiers to the built-in variables in section 7.

• Added a note in the built-in functions (chapter 8) about precision qualification for parameters and
return values.

Changes from Revision 7 of the OpenGL ES Shading Language specification:

• Added actual ranges and precisions.

• Stated what happens on floating point overflow.

• Change intermediate results precision to be based on operands' precision when possible, and not to
include the l-values' precision.

• Add the macro GL_ES to test for compilation for an ES system.

• Allow out of bounds array access behavior to be platform dependent.

Changes from Revision 6 of the OpenGL ES Shading Language specification:

• Added precision qualifiers highp , mediump , and lowp for floating point and integer types.

• Added invariant qualifier to say an output value is to be invariant. Remove the specific mechanism
itransform().

• Grammar was deleted, to be replaced later with correct ES grammar.

Changes from Revision 5 of the OpenGL ES Shading Language specification:

2

1 Introduction

• Fixed a lot of typos and English-level clarifications. Same typos were fixed in Revision 59 of the
OpenGL Shading Language specification to form Revision 60. These shared non-functional changes
are not identified with change bars or other markings.

Changes from Revision 59 of the OpenGL Shading Language specification:

• Most OpenGL state uniform variables are removed.

• All OpenGL state attribute variables are removed.

• All OpenGL state varying variables are removed.

• The output variables gl_ClipVertex and gl_FragDepth are removed.

• Point sprites are supported with the added built-in gl_PointCoord varying variable.

• The minimum maximum vertex attributes is changed from 16 to 8, the minimum maximum vertex-
uniform-components is changed from 512 to 384.

• Removed 1D and shadow textures.

• Proposed precision hints and minimum precisions are specified.

• Generic itransform() is added to replace the removed fix-functionality ftransform().

• dFdx(), dFdy(), and fwidth() are made optional.

• noise() is made optional.

• Other minor language fixes/simplifications. Static recursion is disallowed (dynamic recursion was
already disallowed). Error messages can be skipped. Behavior for writing outside an array is limited.
clamp() and smoothstep() domain descriptions are improved.

1.3 Overview
This document describes The OpenGL ES Shading Language.

Independent compilation units written in this language are called shaders. A program is a complete set
of shaders that are compiled and linked together. The aim of this document is to thoroughly specify the
programming language. The OpenGL entry points used to manipulate and communicate with programs
and shaders are defined in a separate specification.

1.4 Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. Either the compiler or the linker is required to reject Compilers are
required to return messages regarding lexically, grammatically, or semantically incorrect shaders.

1.5 Typographical Conventions

3

1 Introduction

Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in Section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

4

2 Overview of OpenGL ES Shading

The OpenGL ES Shading Language is actually two closely related languages. These languages are used
to create shaders for the programmable processors contained in the OpenGL processing pipeline.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex or fragment.

Any OpenGL state used by the shader is automatically tracked and made available to shaders. This
automatic state tracking mechanism allows the application to use existing OpenGL state commands for
state management and have the current values of such state automatically available for use in a shader.

2.1 Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL ES Shading Language to run on this processor are called vertex
shaders.

A vertex shader operates on one vertex at a time. The vertex processor does not replace graphics
operations that require knowledge of several vertices at a time. Vertex shaders must compute the
homogeneous position of the incoming vertex.

2.2 Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL ES Shading Language to run on this processor are called
fragment shaders.

A fragment shader cannot change a fragment's x/y position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update frame-buffer memory
or texture memory, depending on the current OpenGL state and the OpenGL command that caused the
fragments to be generated.

5

3 Basics

3.1 Character Set
The source character set used for the OpenGL ES shading languages is a subset of ASCII. It includes the
following characters:

The letters a-z, A-Z, and the underscore (_).

The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

The number sign (#) for preprocessor use.

White space: the space character, horizontal tab, vertical tab, form feed, carriage-return, and line-
feed.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any these combinations is simply referred to as a new-line.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character. The end of a source string is indicated to the compiler by a length, not a
character.

3.2 Source Strings
The source for a single shader is an array of strings of characters from the character set. A single shader
is made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader. Multiple shaders of the same language (vertex or fragment) can be linked together to form
a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed.

6

3 Basics

For this version of the OpenGL ES Shading Language, only one vertex and one fragment shader can be
linked together. The architecture of the system and this specification are designed to link together
multiple vertex and multiple fragment shaders, but this will not be supported until a future version of the
specification.

3.3 Preprocessor
There is a preprocessor that processes the source strings before they are compiled.

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension
#version

#line

The following operators are also available

defined

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new-
line. Preprocessing does not change the number or relative location of new-lines in a source string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader as ill-formed.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

__LINE__
__FILE__
__VERSION__
GL_ES

7

3 Basics

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL ES shading
language. The version of the shading language described in this document will have __VERSION__
substitute the decimal integer 110.

GL_ES will be defined and set to 1. This is not true for the non-ES OpenGL Shading Language, so it can
be used to do a compile time test to see whether a shader is running on ES system.

All macro names containing two consecutive underscores (__) are reserved for future use as predefined
macro names. All macro names prefixed with “GL_” (“GL” followed by a single underscore) are also
reserved.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.
Expressions following #if and #elif are restricted to expressions operating on literal integer constants, plus
identifiers consumed by the defined operator. Character constants are not supported. The operators
available are as follows.

Precedence Operator class Operators Associativity
 1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or | | Left to Right

8

3 Basics

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

There are no number sign based operators (no #, #@, ##, etc.), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the
C++ preprocessor, not those in the OpenGL ES Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a diagnostic message into the shader’s information log (see
the API in external documentation for how to access a shader’s information log). The message will be the
tokens following the #error directive, up to the first new-line. The implementation must then consider the
shader to be ill-formed.

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#version number

9

3 Basics

where number must be 110 for this specification’s version of the language (following the same convention
as __VERSION__ above), in which case the directive will be accepted with no errors or warnings. Any
number less than 110 will cause an error to be generated. Any number greater than the latest version of
the language a compiler supports will also cause an error to be generated. Version 110 of the language
does not require shaders to include this directive, and shaders that do not include a #version directive will
be treated as targeting version 110. Compilers for subsequent versions of this language are guaranteed, on
seeing the “#version 110” directive in a shader, to either support version 110, or to issue an error that
they do not support it.

The #version directive must occur in a shader before anything else, except for comments and white space.

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with respect to extensions are declared with the
#extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following

behavior Effect

require Behave as specified by the extension extension_name.
Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.
Warn on the #extension if the extension extension_name is not supported.
Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.
If all is specified, then warn on all detectable uses of any extension used.
Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.
If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.
Warn on the #extension if the extension extension_name is not supported.

10

3 Basics

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

#line must have, after macro substitution, one of the following two forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive
(including its new-line), the implementation will behave as if it is compiling at line number line+1 and
source string number source-string-number. Subsequent source strings will be numbered sequentially,
until another #line directive overrides that numbering.

3.4 Comments
Comments are delimited by /* and */, or by // and a new-line. The begin comment delimiters (/* or //) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. If a
comment resides entirely within a single line, it is treated syntactically as a single space.

3.5 Tokens
The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator

11

3 Basics

3.6 Keywords
The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

 attribute const uniform varying

 break continue do for while

 if else

 in out inout

 float int void bool true false

 lowp mediump highp precision invariant

 discard return

 mat2 mat3 mat4

 vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4

 sampler1D sampler2D sampler3D samplerCube

 sampler1DShadow sampler2DShadow

 struct

The following are the keywords reserved for future use. Using them will result in an error:

 asm

 class union enum typedef template this packed

 goto switch default

 inline noinline volatile public static extern external interface flat

 long short double half fixed unsigned superp

 input output

 hvec2 hvec3 hvec4 dvec2 dvec3 dvec4 fvec2 fvec3 fvec4

 sampler1D

 sampler1DShadow sampler2DShadow

 sampler2DRect sampler3DRect sampler2DRectShadow

 sizeof cast

 namespace using

12

3 Basics

In addition, all identifiers containing two consecutive underscores (__) are reserved as possible future
keywords.

The keyword sampler3D is only available if the extension OES_texture_3D is enabled, e.g.

#extension GL_OES_texture_3D : enable

3.7 Identifiers
Identifiers are used for variable names, function names, struct names, and field selectors (field selectors
select components of vectors and matrices similar to structure fields, as discussed in Section 5.5 “Vector
Components” and Section 5.6 “Matrix Components”). Identifiers have the form

identifier
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL, and may not be declared in a shader as
either a variable or a function.

13

4 Variables and Types

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL ES Shading Language is type safe. There are no implicit conversions between types.

4.1 Basic Types
The OpenGL ES Shading Language supports the following basic data types.

Type Meaning
void for functions that do not return a value

bool a conditional type, taking on values of true or false

int a signed integer

float a single floating-point scalar

vec2 a two component floating-point vector

vec3 a three component floating-point vector

vec4 a four component floating-point vector

bvec2 a two component Boolean vector

bvec3 a three component Boolean vector

bvec4 a four component Boolean vector

ivec2 a two component integer vector

ivec3 a three component integer vector

ivec4 a four component integer vector

mat2 a 2×2 floating-point matrix

mat3 a 3×3 floating-point matrix

mat4 a 4×4 floating-point matrix

sampler1D a handle for accessing a 1D texture

14

4 Variables and Types

Type Meaning
sampler2D a handle for accessing a 2D texture

sampler3D a handle for accessing a 3D texture

samplerCube a handle for accessing a cube mapped texture

sampler1DShadow a handle for accessing a 1D depth texture with comparison

sampler2DShadow a handle for accessing a 2D depth texture with comparison

The type sampler3D is only available if the extension name string GL_OES_texture_3D is enabled. In
addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

4.1.1 Void
Functions that do not return a value must be declared as void. There is no default function return type.

4.1.2 Booleans
To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as Boolean
constants. Booleans are declared and optionally initialized as in the follow example:

bool success; // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) can be any expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers
Integers are mainly supported as a programming aid. At the hardware level, real integers would aid
efficient implementation of loops and array indices, and referencing texture units. However, there is no
requirement that integers in the language map to an integer type in hardware. It is not expected that
underlying hardware has full support for a wide range of integer operations. Because of their intended
(limited) purpose, integers are limited to 16 bits of precision, plus a sign representation in both the vertex
and fragment languages. An OpenGL ES Shading Language implementation may convert integers to
floats to operate on them. An implementation is allowed to use more than 16 bits of precision to
manipulate integers. Hence, there is no portable wrapping behavior. Shaders that overflow the 16 bits of
precision may not be portable.

Integers are declared and optionally initialized with integer expressions as in the following example:

int i, j = 42;

15

4 Variables and Types

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16)
as follows.

integer-constant :
decimal-constant
octal-constant
hexadecimal-constant

decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

digit :
0
nonzero-digit

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

octal-digit : one of
0 1 2 3 4 5 6 7

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant. A leading unary minus sign (-) is interpreted as an arithmetic unary
negation, not as part of the constant. There are no letter suffixes.

4.1.4 Floats
Floats are available for use in a variety of scalar calculations. Floating-point variables are defined as in the
following example:

float a, b = 1.5;

16

4 Variables and Types

As an input value to one of the processing units, a floating-point variable is expected to match the IEEE
single precision floating-point definition for precision and dynamic range. It is not required that the
precision of internal processing match the IEEE floating-point specification for floating-point operations,
but the guidelines for precision established by the OpenGL 1.4 specification must be met. Similarly,
tTreatment of conditions such as divide by 0 may lead to an unspecified result, but in no case should such
a condition lead to the interruption or termination of processing.

Floating-point constants are defined as follows.

floating-constant :
fractional-constant exponent-partopt

digit-sequence exponent-part

fractional-constant :
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence

exponent-part :
e signopt digit-sequence
E signopt digit-sequence

sign : one of
+ –

digit-sequence :
digit
digit-sequence digit

A decimal point (.) is not needed if the exponent part is present.

4.1.5 Vectors

The OpenGL ES Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, or Booleans. Floating-point vector variables can be used to store a variety
of things that are very useful in computer graphics: colors, normals, positions, texture coordinates, texture
lookup results and the like. Boolean vectors can be used for component-wise comparisons of numeric
vectors. Defining vectors as part of the shading language allows for direct mapping of vector operations
on graphics hardware that is capable of doing vector processing. In general, applications will be able to
take better advantage of the parallelism in graphics hardware by doing computations on vectors rather
than on scalar values. Some examples of vector declaration are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 lessThan;

17

4 Variables and Types

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices
Matrices are another useful data type in computer graphics, and the OpenGL ES Shading Language
defines support for 2×2, 3×3, and 4×4 matrices of floating point numbers. Matrices are read from and
written to in column major order. Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;

Initialization of matrix values is done with constructors (described in Section 5.4 “Constructors”).

4.1.7 Samplers
Sampler types (e.g. sampler2D) are effectively opaque handles to textures. They are used with the built-
in texture functions (described in Section 8.7 “Texture Lookup Functions”) to specify which texture to
access. They can only be declared as function parameters or uniforms (see Section 4.3.5 “Uniform”).
Samplers are not allowed to be operands in expressions nor can they be assigned into. As uniforms, they
are initialized with the OpenGL API. As function parameters, only samplers may be passed to samplers
of matching type. This enables consistency checking between shader texture accesses and OpenGL
texture state before a shader is run.

4.1.8 Structures
User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
 float intensity;
 vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the complete correct grammar is as given in
Section 9 “Shading Language Grammar” .

struct-definition :
qualifiersopt struct nameopt { member-list } declaratorsopt ;

member-list :
member-declaration;
member-declaration member-list;

18

4 Variables and Types

member-declaration :
basic-type declarators;
embedded-struct-definition

embedded-struct-definition:
struct nameopt { member-list } declarator;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables and types, with the same scoping rules. The
optional qualifiers only applyapplies to any declarators, and is not part of the type being defined for
name.

Structures must have at least one member declaration. Member declarators may contain precision
qualifiers, but may do not contain any other qualifiers. Bit fields are not supported. Nor do they contain
any bit fields. Member types must be either already defined (there are no forward references), or defined
in-place by embedding another struct definition. Member declarations cannot contain initializers.
Member declarators can contain arrays. Such arrays must have a size specified, and the size must be an
integral constant expression that's greater than zero (see Section 4.3.3 “Integral Constant Expressions”).
Each level of structure has its own name space for names given in member declarators; such names need
only be unique within that name space.

Anonymous structures are not supported; so embedded structures must have a declarator. A name given
to an embedded struct is scoped at the same level as the struct it is embedded in.

Structures can be initialized at declaration time using constructors, as discussed in Section 5.4.3
“Structure Constructors” .

4.1.9 Arrays
Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When an array size is specified in a declaration, it must be an integral constant
expression (see Section 4.3.3 “Integral Constant Expressions”) greater than zero. If an array is indexed
with an expression that is not an integral constant expression, or if an array is passed as an argument to a
function, then its size must be declared before any such use. It is legal to declare an array without a size
and then later re-declare the same name as an array of the same type and specify a size. It is illegal to
declare an array with a size, and then later (in the same shader) index the same array with an integral
constant expression greater than or equal to the declared size. It is also illegal to index an array with a
negative constant expression. Arrays declared as formal parameters in a function declaration must specify
a size. Undefined behavior results from indexing an array with a non-constant expression that’s greater
than or equal to the array’s size or less than 0. Only one-dimensional arrays may be declared. All basic
types and structures can be formed into arrays. Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];

19

4 Variables and Types

There is no mechanism for initializing arrays at declaration time from within a shader.

Writing to an array with an index that is less than zero or greater than or equal to the array's size results in
undefined behavior. It is platform dependent how bounded this undefined behavior may be. It is possible
that it leads to instability of the underlying system or corruption of memory. However, a particular
platform may bound the behavior such that this is not the case.

4.2 Scoping
The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement. Otherwise, if it is declared as a statement within a compound statement, it is
scoped to the end of that compound statement. If it is declared as a parameter in a function definition, it is
scoped until the end of that function definition. A function body has a scope nested inside the function’s
definition. The if statement’s expression does not allow new variables to be declared, hence does not
form a new scope.

A variable declared as an empty array can be re-declared as an array of the same base type. Otherwise,
within one compilation unit, a variable with the same name cannot be re-declared in the same scope.
However, a nested scope can override an outer scope’s declaration of a particular variable name.
Declarations in a nested scope provide separate storage from the storage associated with an overridden
name. There is no way to access the overridden name.

All variables in the same scope share the same name space. Functions names are always identifiable as
function names based on context, and they have their own name space.

Shared globals are global variables declared with the same name in independently compiled units
(shaders) of the same language (vertex or fragment) that are linked together to make a single program.
Shared globals share the same name space, and must be declared with the same type. They will share the
same storage. Shared global arrays must have the same base type and the same size. Scalars must have
exactly the same type name and type definition. Structures must have the same name, sequence of type
names, and type definitions, and field names to be considered the same type. This rule applies recursively
for nested or embedded types. All initializers for a shared global must have the same value, or a link error
will result.

4.3 TypeStorage Qualifiers
Variable declarations may have one or morea storage qualifiers, specified in front of the type. These are
summarized as

Qualifier Meaning
< none: default > local read/write memory, or an input parameter to a function

const a compile-time constant, or a function parameter that is read-only

attribute linkage between a vertex shader and OpenGL for per-vertex data

uniform value does not change across the primitive being processed, uniforms
form the linkage between a shader, OpenGL, and the application

20

4 Variables and Types

Qualifier Meaning
varying linkage between a vertex shader and a fragment shader for interpolated

data

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

Global variables can only use the qualifiers const, attribute, uniform, or varying. Only one may be
specified.

Local variables can only use the storage qualifier const.

Function parameters can only use the in, out, inout, or const storage qualifiers. Parameter qualifiers are
discussed in more detail in Section 6.1.1 “Function Calling Conventions” .

Function return types and structure fields do not use storage qualifiers.

Data types for communication from one run of a shader to its next run (to communicate between
fragments or between vertices) do not exist. This would prevent parallel execution of the same shader on
multiple vertices or fragments.

Declarations of globals without a storage qualifier, or with just the const qualifier, may include
initializers, in which case they will be initialized before the first line of main() is executed. Such
initializers must have constant type. Global variables without storage qualifiers that are not initialized in
their declaration or by the application will not be initialized by OpenGL, but rather will enter main() with
undefined values.

4.3.1 Default Storage Qualifiers
If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other processors. For either global or local unqualified variables, the declaration will appear
to allocate memory associated with the processor it targets. This variable will provide read/write access
to this allocated memory.

4.3.2 Const
Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the basic
data types. It is an error to write to a const variable outside of its declaration, so they must be initialized
when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

21

4 Variables and Types

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be formed from literal values, other const variables (not including
function call parameters), or expressions of these.

Constructors may be used in such expressions, but function calls may not.

4.3.3 Integral Constant Expressions
An integral constant expression can be one of

• a literal integer value

• a global or local scalar integer variable qualified as const, not including function parameters qualified
as const

• an expression whose operands are integral constant expressions, including constructors, but excluding
function calls.

4.3.4 Attribute
The attribute qualifier is used to declare variables that are passed to a vertex shader from OpenGL on a
per-vertex basis. It is an error to declare an attribute variable in any type of shader other than a vertex
shader. Attribute variables are read-only as far as the vertex shader is concerned. Values for attribute
variables are passed to a vertex shader through the OpenGL vertex API or as part of a vertex array. They
convey vertex attributes to the vertex shader and are expected to change on every vertex shader run. The
attribute qualifier can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and mat4.
Attribute variables cannot be declared as arrays or structures.

Example declarations:

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord;

22

4 Variables and Types

All the standard OpenGL vertex attributes have built-in variable names to allow easy integration between
user programs and OpenGL vertex functions. See Section 7 “ Built-in Variables” for a list of the built-in
attribute names.

It is expected that graphics hardware will have a small number of fixed locations for passing vertex
attributes. Therefore, the OpenGL ES Shading language defines each non-matrix attribute variable as
having space for up to four floating-point values (i.e., a vec4). There is an implementation dependent limit
on the number of attribute variables that can be used and if this is exceeded it will cause a link error.
(Declared attribute variables that are not used do not count against this limit.) A float attribute counts the
same amount against this limit as a vec4, so applications may want to consider packing groups of four
unrelated float attributes together into a vec4 to better utilize the capabilities of the underlying hardware.
A mat4 attribute will use up the equivalent of 4 vec4 attribute variable locations, a mat3 will use up the
equivalent of 3 attribute variable locations, and a mat2 will use up 2 attribute variable locations. How this
space is utilized by the matrices is hidden by the implementation through the API and language.

Attribute variables are required to have global scope, and must be declared outside of function bodies,
before their first use.

4.3.5 Uniform
The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only and are initialized either directly by an
application via API commands, or indirectly by OpenGL.

An example declaration is:

uniform vec4 lightPosition;

23

4 Variables and Types

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined
uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

If multiple shaders are linked together, then they will share a single global uniform name space. Hence,
types of uniforms with the same name must match across all shaders that are linked into a single
executable.

4.3.6 Varying
Varying variables provide the interface between the vertex shader, the fragment shader, and the fixed
functionality between them. The vertex shader will compute values per vertex (such as color, texture
coordinates, etc.) and write them to variables declared with the varying qualifier. A vertex shader may
also read varying variables, getting back the same values it has written. Reading a varying variable in a
vertex shader returns undefined values if it is read before being written.

By definition, varying variables are set per vertex and are interpolated in a perspective-correct manner
over the primitive being rendered. If single-sampling, the interpolated value is for the fragment center. If
multi-sampling, the interpolated value can be anywhere within the pixel, including the fragment center or
one of the fragment samples.

A fragment shader may read from varying variables and the value read will be the interpolated value, as a
function of the fragment's position within the primitive. A fragment shader can not write to a varying
variable.

The type of varying variables with the same name declared in both the vertex and fragments shaders must
match, otherwise the link command will fail. Only those varying variables used (i.e. read) in the fragment
shader must be written to by the vertex shader; declaring superfluous varying variables in the vertex
shader is permissible.

Varying variables are declared as in the following example:

varying vec3 normal;

24

4 Variables and Types

The varying qualifier can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and
mat4, or arrays of these. Structures cannot be varying.

If no vertex shader is active, the fixed functionality pipeline of OpenGL will compute values for the built-
in varying variables that will be consumed by the fragment shader. Similarly, if no fragment shader is
active, the vertex shader is responsible for computing and writing to the varying variables that are needed
for OpenGL’s fixed functionality fragment pipeline.

Varying variables are required to have global scope, and must be declared outside of function bodies,
before their first use.

4.4 P arameter Qualifiers
Parameters can have these qualifiers.

Qualifier Meaning
< none: default > same is in

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

25

4 Variables and Types

Parameter qualifiers are discussed in more detail in Section 6.1.1 “Function Calling Conventions” .

4.5 Precision and Precision Qualifiers

4.5.1 Range and Precision
The range and precision used to store or represent floating point and integer variables depends on the
source of the value (varying, uniform, texture look-up, etc.), whether it's a vertex or a fragment shader,
and other details in the underlying implementation. Minimum storage requirements are declared through
use of precision qualifiers. Typically, the precision of operations must preserve the storage precisions of
the variables involved. The only exceptions allowed are for a small number of computationally intensive
built-in functions, e.g. atan(), which may return results at less than the declared precisions.

It is strongly advised that the vertex language provide a floating point range and precision matching that
of an IEEE single precision floating point number, or better. It is required that the vertex language
provide floating point variables whose range is at least (-262 , 2 62) and whose precision is at least one part
in 65536. This is stated in more detail in the following tables.

The vertex language must provide an integer precision of 16 bits, plus a sign bit.

It is useful, but not required, for the fragment language to provide the same floating point range and
precision as is required for the vertex shader. It is required that the fragment language provide floating
point variables whose range is at least (-16384, +16384) and whose precision of at least one part in 1024.
This is described in more detail in the following tables.

The fragment language must provide an integer precision of 10 bits, plus a sign bit.

The actual ranges and precisions provided by an implementation can be queried through the API. See the
OpenGL ES 2.0 specification for details on how to do this.

4.5.2 Precision Qualifiers
Any floating point or integer declaration can have the type preceded by one of these precision qualifiers:

Qualifier Meaning
highp Satisfies the minimum requirements for the vertex language described

above. Optional in the fragment language.

mediump Satisfies the minimum requirements above for the fragment language. Its
range and precision has to be greater than or the same as provided by lowp
and less than or the same as provided by highp.

lowp Range and precision that can be less than mediump, but still intended to
represent all color values for any color channel.

26

4 Variables and Types

For example:

lowp float color;
varying mediump vec2 Coord;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Precision qualifiers declare a minimum range and precision that the underlying implementation must use
when storing these variables. Implementations may use greater range and precision than requested, but
not less. The amount of increased range and precision used to implement a particular precision qualifier
can depend on the variable, the operations involving the variable, and other implementation dependent
details.

The required minimum ranges and precisions for precision qualifiers are

Qualifier Floating Point
Range

Floating Point
Magnitude Range

Floating Point
Precision

Integer
Range

highp
−262 , 262 2−62 , 262

Relative:

2−16
−216 , 216

mediump
−214 , 214 2−14 , 214

Relative:

2−10
−210 , 210

lowp −2, 2 2−8 , 2
Absolute:

2−8
−28 , 28

27

4 Variables and Types

where Floating Point Magnitude Range is the range of magnitudes of non-zero values. For
Floating Point Precision, relative means the precision for any value measured relative to that value,
for all non-zero values. For all precision levels, zero must be represented exactly.

If an implementation cannot provide the declared precision for storage of a variable in a shader, it must
result in a compilation or link error.

Integer ranges must be such that they can be accurately represented by the corresponding floating point
value of the same precision qualifier. That is, a highp int can be represented by a highp float, a
mediump int can be represented by a mediump float, and a lowp int can be represented by a lowp float.

The vertex language requires uses of lowp, mediump, and highp to all compile and link without error.
The fragment language requires uses of lowp and mediump to compile without error. Support for highp
is optional.

The actual range and precision provided by an implementation can be queried through the API.

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do floating
point constructors nor integer constructors when none of the constructor arguments have precision
qualifiers.

For this paragraph, “operation” includes operators, built-in functions, and constructors, and “operand”
includes function arguments and constructor arguments. The precision used to internally evaluate an
operation, and the precision qualification subsequently associated with any resulting intermediate values,
must be at least as high as the highest precision qualification of the operands consumed by the operation.
Some operands (e.g. literal constants) might not have a precision qualifier, in which case the precision
qualification will come from the other operands. If no operands have a precision qualifier, then the
precision qualifications of the operands of the next consuming operation in the expression will be used.
This rule can be applied recursively until a precision qualified operand is found. If necessary, it will also
include the precision qualification of l-values for assignments, of the declared variable for initializers, of
formal parameters for function call arguments, or of function return types for function return values. If an
entire expression is composed only of operands with no precision qualifier, and the result is not assigned
or passed as an argument, it is possible that the compiler will evaluate the entire expression at compile
time with compiler host precision, but, in general, the precision used to evaluate such an expression is
undefined.

For example, consider the statements.

uniform highp float h1;
highp float h2 = 2.3 * 4.7; // operation and result are highp precision
mediump float m;
m = 3.7 * h1 * h2; // all operations are highp precision
h2 = m * h1; // operation is highp precision
m = h2 – h1; // operation is highp precision
h2 = m + m; // addition and result at mediump precision
void f(highp p);
f(3.3); // 3.3 will be passed in at highp precision
if (2.0/3.0 > 0.6) // evaluated with undefined precision

28

4 Variables and Types

When the result of a floating point operation is larger (smaller) than what the required precision can store,
the result can be either the maximum (minimum) value that that precision can represent, or a
representation of infinity (negative infinity). It cannot result in, for example, wrapping behavior, or
generation of a NaN, or an exception condition. Similarly, if the result is closer to zero than what the
resulting precision can store, the result should be zero or a representation of a (correctly signed)
infinitesimal value.

Integer overflow behavior is undefined. It is possible that it wraps, or that it does not.

Precision qualifiers, as with other qualifiers, do not effect the basic type of the variable. In particular,
there are no constructors for precision conversions; constructors only convert types. Similarly, precision
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types.
As discussed in the next chapter, function input and output is done through copies, and therefore qualifiers
do not have to match.

The same object declared in different shaders that are linked together must have the same precision
qualification. This applies to attributes, varyings, uniforms, and globals.

4.5.3 Default Precision Qualifiers
The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int or float, and the
precision-qualifier can be lowp, mediump, or highp. Any other types or qualifiers will result in an error.
If type is float, the directive applies to non-precision-qualified floating point type (scalar, vector, and
matrix) declarations. If type is int, the directive applies to non-precision-qualified integer type (scalar and
vector) declarations. This includes global variable declarations, function return declarations, function
parameter declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost
statement it was declared in. Precision statements in nested scopes override precision statements in outer
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later
statements overriding earlier statements within that scope.

The vertex language has the following predeclared globally scoped default precision statements:

precision highp float;
precision highp int;

The fragment language has the following predeclared globally scoped default precision statement:

precision mediump int;

The fragment language has no default precision qualifier for floating point types.

4.5.4 Available Precision Qualifiers

29

4 Variables and Types

The built-in macro GL_FRAGMENT_PRECISION_HIGH is defined to one on systems supporting highp
precision in the fragment language

#define GL_FRAGMENT_PRECISION_HIGH 1

and is not defined on systems not supporting highp precision in the fragment language. When defined,
this macro is available in both the vertex and fragment languages.

4.6 Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same expression in
different shaders. For example, say two vertex shaders each set gl_Position with the same expression in
both shaders, and the input values into that expression are the same when both shaders run. It is possible,
due to independent compilation of the two shaders, that the values assigned to gl_Position are not exactly
the same when the two shaders run. In this example, this can cause problems with alignment of geometry
in a multi-pass algorithm.

In general, such variance between shaders is allowed. When such variance does not exist for a particular
output variable, that variable is said to be invariant.

4.6.1 The Invariant Qualifier
To help ensure that a particular output variable is invariant, use the invariant qualifier. It can either be
used to qualify a previously declared variable as being invariant

invariant gl_Position; // make existing gl_Position be invariant

varying mediump vec3 Color;
invariant Color; // make existing Color be invariant

or as part of a declaration when a variable is declared

invariant varying mediump vec3 Color;

The invariant qualifier must appear before any storage qualifiers (varying) when combined with a
declaration. Only variables that are output from a shader can be declared as invariant. The invariant
keyword can be followed by a comma separated list of previously declared identifiers. All uses of
invariant must be at the global scope, and before any use of the variables being declared as invariant.

To guarantee invariance of a particular output variable in two shaders, the following must also be true:

• The output variable is declared as invariant in both shaders.

• The same values must be input to all shader input variables consumed by expressions and flow control
contributing to the value assigned to the output variable.

• The texture formats, texel values, and texture filtering are set the same way for any texture function
calls contributing to the value of the output variable.

30

4 Variables and Types

• A ll input values are all operated on in the same way. All operations in the consuming expressions and
any intermediate expressions must be the same, with the same order of operands and same
associativity, to give the same order of evaluation. Intermediate variables and functions must be
declared as the same type with the same explicit or implicit precision qualifiers. Any control flow
effecting the output value must be the same, and any expressions consumed to determine this control
flow must also follow these invariance rules.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded
by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

4.7 Order of Qualification
When multiple qualifications are present, they must follow a strict order. This order is as follows.

 invariant-qualifier storage-qualifier precision-qualifier

 storage-qualifier parameter-qualifier precision-qualifier

31

5 Operators and Expressions

5.1 Operators
The OpenGL ES Shading Language has the following operators. Those marked reserved are illegal.

Precedence Operator Class Operators Associativity
 1 (highest) parenthetical grouping () NA

2

array subscript
function call and constructor structure
field selector, swizzler
post fix increment and decrement

[]
()
.
++ --

Left to Right

3
prefix increment and decrement
unary (tilde is reserved)

++ --
+ - ~ !

Right to Left

4 multiplicative (modulus reserved) * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift (reserved) << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and (reserved) & Left to Right

10 bit-wise exclusive or (reserved) ^ Left to Right

11 bit-wise inclusive or (reserved) | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16

Assignment
arithmetic assignments (modulus, shift,
and bit-wise are reserved)

=
+= -=
*= /=
%= <<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right

32

5 Operators and Expressions

There is no address-of operator nor a dereference operator. There is no typecast operator, constructors
are used instead.

5.2 Array Subscripting
Array elements are accessed using the array subscript operator ([]). This is the only operator that
operates on arrays. An example of accessing an array element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is an integer.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or equal to
the size the array was declared with.

5.3 Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in Section 6.1 “Function Definitions” .

5.4 Constructors
Constructors use the function call syntax, where the function name is a basic-type keyword or structure
name, to make values of the desired type for use in an initializer or an expression. (See Section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

There is no fixed list of constructor prototypes. Constructors are not built-in functions. Syntactically, all
lexically correct parameter lists are valid. Semantically, the number of parameters must be of sufficient
size and correct type to perform the initialization. It is an error to include so many arguments to a
constructor that they cannot all be used. Detailed rules follow. The prototypes actually listed below are
merely a subset of examples.

5.4.1 Conversion and Scalar Constructors
Converting between scalar types is done as the following prototypes indicate:

int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
float(bool) // converts a Boolean value to a float
float(int) // converts an integer value to a float
bool(float) // converts a float value to a Boolean
bool(int) // converts an integer value to a Boolean

33

5 Operators and Expressions

When constructors are used to convert a float to an int, the fractional part of the floating-point value is
dropped.

When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to false, and non-
zero values are converted to true. When a constructor is used to convert a bool to an int or float, false is
converted to 0 or 0.0, and true is converted to 1 or 1.0.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors
Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0. If there are non-scalar parameters, and/or multiple scalar parameters, they will be assigned in
order, from left to right, to the components of the constructed value. In this case, there must be enough
components provided in the parameters to provide an initializer for every component in the constructed
value. If more components are provided in the last used argument to a constructor than are needed to
initialize the constructed value, the left most components of that argument are used, and the remaining
ones are ignored. It is an error to provide extra arguments beyond this last used argument. Matrices will
be constructed in column major order. It is an error to construct matrices from other matrices. This is
reserved for future use.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

Some useful vector constructors are as follows:

vec3(float) // initializes each component of with the float
vec4(ivec4) // makes a vec4 with component-wise conversion

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

34

5 Operators and Expressions

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

To initialize a matrix by specifying vectors, or by all 4, 9, or 16 floats for mat2, mat3 and mat4
respectively. The floats are assigned to elements in column major order.

mat2(vec2, vec2);
mat3(vec3, vec3, vec3);
mat4(vec4, vec4, vec4, vec4);

mat2(float, float,
 float, float);

mat3(float, float, float,
 float, float, float,
 float, float, float);

mat4(float, float, float, float,
 float, float, float, float,
 float, float, float, float,
 float, float, float, float);

A wide range of other possibilities exist, as long as enough components are present to initialize the matrix.
However, construction of a matrix from other matrices is currently reserved for future use.

5.4.3 Structure Constructors
Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
 float intensity;
 vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

35

5 Operators and Expressions

The arguments to the constructor must be in the same order and of the same type as they were declared in
the structure.

Structure constructors can be used as initializers or in expressions.

5.5 Vector Components
The names of the components of a vector are denoted by a single letter. As a notational convenience,
several letters are associated with each component based on common usage of position, color or texture
coordinate vectors. The individual components of a vector can be selected by following the variable
name with period (.) and then the component name.

The component names supported are:

{x, y, z, w} Useful when accessing vectors that represent points or normals

{r, g, b, a} Useful when accessing vectors that represent colors

{s, t, p, q} Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of a texture, r in OpenGL, has been renamed p so as to avoid the confusion
with r (for red) in a color.

Accessing components beyond those declared for the vector type is an error so, for example:

vec2 pos;
pos.x // is legal
pos.z // is illegal

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from
 // the same set.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

36

5 Operators and Expressions

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an l-value of vector type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors to provide numeric indexing. So in

vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the
subscript. The first component is at index zero. Behavior is undefined if the index is greater than or
equal to the size of the vector.

5.6 Matrix Components
The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the matrix. The leftmost column is column 0. A second subscript would then
operate on the column vector, as defined earlier for vectors. Hence, two subscripts select a column and
then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix (e.g., component [3]
[3] of a mat3).

5.7 Structures and Fields
As with vector components and swizzling, the fields of a structure are also selected using the period (.).

In total, the following operators are allowed to operate on a structure:

structure field selector .

equality == !=

assignment =

37

5 Operators and Expressions

The equality and assignment operators are only valid if the two operands’ types are of the same declared
structure. When using the equality operators, two structures are equal if and only if all the fields are
component-wise equal.

5.8 Assignments
Assignments of values to variable names are done with the assignment operator (=), like

lvalue = expression

38

5 Operators and Expressions

The assignment operator stores the value of expression into lvalue. It will compile only if expression and
lvalue have the same type. All desired type-conversions must be specified explicitly via a constructor. L-
values must be writable. Variables that are built-in types, entire structures, structure fields, l-values with
the field selector (.) applied to select components or swizzles without repeated fields, and l-values
dereferenced with the array subscript operator ([]) are all l-values. Other binary or unary expressions,
non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot be l-values.
The ternary operator (?:) is also not allowed as an l-value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.
Other assignment operators are

• The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide into (/=).
The expression

 lvalue op= expression

is equivalent to

 lvalue = lvalue op expression

and the l-value and expression must satisfy the semantic requirements of both op and equals (=).

• The assignments modulus into (%=), left shift by (<<=), right shift by (>>=), inclusive or into (|=),
and exclusive or into (^=) are reserved for future use.

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, int, float, all vector types, and all matrix types.

• Constructors of all types.

• Variable names of all types, except array names not followed by a subscript.

• Subscripted array names.

• Function calls that return values.

• Component field selectors and array subscript results.

• Parenthesized expression. Parentheses can be used to group operations. Operations within
parentheses are done before operations across parentheses.

39

5 Operators and Expressions

• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on integer and
floating-point typed expressions (including vectors and matrices). The two operands must be the same
type, or one can be a scalar float and the other a float vector or matrix, or one can be a scalar integer
and the other an integer vector. Additionally, for multiply (*), one can be a vector and the other a
matrix with the same dimensional size of the vector. These result in the same fundamental type
(integer or float) as the expressions they operate on. If one operand is scalar and the other is a vector
or matrix, the scalar is applied component-wise to the vector or matrix, resulting in the same type as
the vector or matrix. Dividing by zero does not cause an exception but does result in an unspecified
value. Multiply (*) applied to two vectors yields a component-wise multiply. Multiply (*) applied to
two matrices yields a linear algebraic matrix multiply, not a component-wise multiply. Multiply of a
matrix and a vector yields a linear algebraic transform. Use the built-in functions dot, cross, and
matrixCompMult to get, respectively, vector dot product, vector cross product, and matrix
component-wise multiplication.

• The operator modulus (%) is reserved for future use.

• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++) operate
on integer or floating-point values (including vectors and matrices). These result with the same type
they operated on. For post- and pre-increment and decrement, the expression must be one that could
be assigned to (an l-value). Pre-increment and pre-decrement add or subtract 1 or 1.0 to the contents
of the expression they operate on, and the value of the pre-increment or pre-decrement expression is
the resulting value of that modification. Post-increment and post-decrement expressions add or
subtract 1 or 1.0 to the contents of the expression they operate on, but the resulting expression has the
expression’s value before the post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than or
equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is scalar
Boolean. The operands’ types must match. To do component-wise comparisons on vectors, use the
built-in functions lessThan, lessThanEqual, greaterThan, and greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types except arrays. They result
in a scalar Boolean. For vectors, matrices, and structures, all components of the operands must be
equal for the operands to be considered equal. To get component-wise equality results for vectors, use
the built-in functions equal and notEqual.

• The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two Boolean
expressions and result in a Boolean expression. And (&&) will only evaluate the right hand operand
if the left hand operand evaluated to true. Or (| |) will only evaluate the right hand operand if the left
hand operand evaluated to false. Exclusive or (^^) will always evaluate both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a Boolean
expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of the right-
most expression in a comma separated list of expressions. All expressions are evaluated, in order,
from left to right.

40

5 Operators and Expressions

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is true, it
selects to evaluate the second expression, otherwise it selects to evaluate the third expression. Only
one of the second and third expressions is evaluated. The second and third expressions must be the
same type, but can be of any type other than an array. The resulting type is the same as the type of the
second and third expressions.

• Operators and (&), or (|), exclusive or (^), not (~), right-shift (>>), left-shift (<<). These operators
are reserved for future use.

For a complete specification of the syntax of expressions, see Section 9 “Shading Language Grammar” .

When the operands are of a different type they must fit into one of the following rules:

• one of the arguments is a float (i.e. a scalar), in which case the result is as if the scalar value was
replicated into a vector or matrix before being applied.

• the left argument is a floating-point vector and the right is a matrix with a compatible dimension in
which case the * operator will do a row vector matrix multiplication.

• the left argument is a matrix and the right is a floating-point vector with a compatible dimension in
which case the * operator will do a column vector matrix multiplication.

5.10 Vector and Matrix Operations
With a few exceptions, operations are component-wise. When an operator operates on a vector or matrix,
it is operating independently on each component of the vector or matrix, in a component-wise fashion.
For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

41

5 Operators and Expressions

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply. They require the
size of the operands match.

vec3 v, u;
mat3 m;

u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

And

mat m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for vectors and matrices of size 2 and 4.

All unary operations work component-wise on their operands. For binary arithmetic operations, if the two
operands are the same type, then the operation is done component-wise and produces a result that is the
same type as the operands. If one operand is a scalar float and the other operand is a vector or matrix,
then the operation proceeds as if the scalar value was replicated to form a matching vector or matrix
operand.

42

6 Statements and Structure

The fundamental building blocks of the OpenGL ES Shading Language are:

• statements and declarations

• function definitions

• selection (if-else)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:
function-prototype { statement-list }

statement-list:
statement
statement-list statement

statement:
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

43

6 Statements and Structure

simple-statement:
declaration-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in Section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return returnValue;
}

44

6 Statements and Structure

where returnType must be present and include a type. Each of the typeN must include a type and can
optionally include a parameter qualifier, the qualifier in, out, inout, and/or const, and a precision
qualifier.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments, but not as the return type. When arrays are declared as formal
parameters, their size must be included. An array is passed to a function by using the array name without
any subscripting or brackets, and the size of the array argument passed in must match the size specified in
the formal parameter declaration.

Structures are also allowed as arguments. The return type can also be structure.

See Section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

float myfunc (float f, // f is an input parameter
 out float g); // g is an output parameter

Functions that return no value must be declared as void. Functions that accept no input arguments need
not use void in the argument list because prototypes (or definitions) are required and therefore there is no
ambiguity when an empty argument list "()" is declared. The idiom “(void)” as a parameter list is
provided for convenience.

Function names can be overloaded. This allows the same function name to be used for multiple functions,
as long as the argument list types differ. If functions’ names and argument types match, then their return
type and parameter qualifiers must also match. No qualifiers are included when checking if types match,
function signature matching is based on parameter type only. Overloading is used heavily in the built-in
functions. When overloaded functions (or indeed any functions) are resolved, an exact match for the
function's signature is sought. This includes exact match of array size as well. No promotion or demotion
of the return type or input argument types is done. All expected combination of inputs and outputs must
be defined as separate functions.

For example, the built-in dot product function has the following prototypes:

float dot (float x, float y);
float dot (vec2 x, vec2 y);
float dot (vec3 x, vec3 y);
float dot (vec4 x, vec4 y);

45

6 Statements and Structure

User-defined functions can have multiple declarations, but only one definition. A shader can redefine
built-in functions. If a built-in function is redeclared in a shader (i.e. a prototype is visible) before a call
to it, then the linker will only attempt to resolve that call within the set shaders that are linked with it.

The function main is used as the entry point to a shader. A shader need not contain a function named
main, but one shader in a set of shaders linked together to form a single program must. This function
takes no arguments, returns no value, and must be declared as type void:

void main()
{
 ...
}

The function main can contain uses of return. See Section 6.4 “Jumps” for more details.

6.1.1 Function Calling Conventions
Functions are called by value-return. This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit. Because the function works with
local copies of parameters, there are no issues regarding aliasing of variables within a function. At call
time, input arguments are evaluated in order, from left to right. However, the order in which output
parameters are copied back to the caller is undefined. To control what parameters are copied in and/or
out through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied in.
This should be used whenever possible to avoid unnecessarily copying parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and copied
out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

Only precision qualifiers are No qualifier is allowed on the return type of a function.

function-prototype :
precision-qualifier type function-name(const-qualifier parameter-qualifier precision-qualifier
type name array-specifier, ...)

type :
any basic type, structure name, or structure definition

const-qualifier :
empty
const

46

6 Statements and Structure

parameter-qualifier :
empty
in
out
inout

name :
empty
identifier

array-specifier :
empty
[integral-constant-expression]

However, the const qualifier cannot be used with out or inout. The above is used for function
declarations (i.e. prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Behavior is undefined if recursion is used. Recursion means that the static call graph of the program
contains cycles. Recursion means having any function appearing more than once at any one time in the
run-time stack of function calls. That is, a function may not call itself either directly or indirectly.
Compilers may give diagnostic messages when this is detectable at compile time, but not all such cases
can be detected at compile time.

6.2 Selection
Conditional control flow in the shading language is done by either if, or if-else:

if (bool-expression)
 true-statement

or

if (bool-expression)
 true-statement
else
 false-statement

47

6 Statements and Structure

If the expression evaluates to true, then true-statement is executed. If it evaluates to false and there is an
else part then false-statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

6.3 Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
 sub-statement

while (condition-expression)
 sub-statement

do
 statement
while (condition-expression)

48

6 Statements and Structure

See Section 9 “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-
expression evaluates to true, then the body of the loop is executed. After the body is executed, a for loop
will then evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating
until the condition-expression evaluates to false. The loop is then exited, skipping its body and skipping
its loop-expression. Variables modified by the loop-expression maintain their value after the loop is
exited, provided they are still in scope. Variables declared in init-expression or condition-expression are
only in scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

6.4 Jumps
These are the jumps:

jump_statement:
continue;
break;
return;
return expression;
discard; // in the fragment shader language only

49

6 Statements and Structure

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the inner most loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is to
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops. It is simply an immediate exit of the inner-most loop
containing the break. No further execution of condition-expression or loop-expression is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any buffers will occur. It would typically be used within a conditional statement, for example:

if (intensity < 0.0)
 discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

50

7 Built-in Variables

7.1 Vertex Shader Special Variables
Some OpenGL operations still continue to occur in fixed functionality in between the vertex processor
and the fragment processor. Other OpenGL operations continue to occur in fixed functionality after the
fragment processor. Shaders communicate with the fixed functionality of OpenGL through the use of
built-in variables.

The variable gl_Position is available only in the vertex language and is intended for writing the
homogeneous vertex position. All executions of a well-formed vertex shader must write a value into this
variable. It can be written at any time during shader execution. It may also be read back by the shader
after being written. This value will be used by primitive assembly, clipping, culling, and other fixed
functionality operations that operate on primitives after vertex processing has occurred. Compilers may
generate a diagnostic message if they detect gl_Position is not written, or read before being written, but
not all such cases are detectable. Results are undefined if a vertex shader is executed and does not write
gl_Position.

The variable gl_PointSize is available only in the vertex language and is intended for a vertex shader to
write the size of the point to be rasterized. It is measured in pixels.

The variable gl_ClipVertex is available only in the vertex language and provides a place for vertex
shaders to write the coordinate to be used with the user clipping planes. The user must ensure the clip
vertex and user clipping planes are defined in the same coordinate space. User clip planes work properly
only under linear transform. It is undefined what happens under non-linear transform.

These built-in vertex shader variables for communicating with fixed functionality are intrinsically
declared with the following types:

highp vec4 gl_Position; // must be written to
mediump float gl_PointSize; // may be written to
vec4 gl_ClipVertex; // may be written to

51

7 Built-in Variables

If gl_PointSize or gl_ClipVertex any of these variables are not written to, their values are undefined. Any
of these variablesThey can be read back by the shader after writing to them, to retrieve what was written.
Reading them before writing them results in undefined behavior. If they are written more than once, it is
the last value written that is consumed by the subsequent operations.

These built-in variables have global scope.

7.2 Fragment Shader Special Variables
The output of the fragment shader is processed by the fixed function operations at the back end of the
OpenGL pipeline. Fragment shaders output values to the OpenGL pipeline using the built-in variables
gl_FragColor, and gl_FragData, and gl_FragDepth, unless the discard keyword is executed.

These variables may be written to more than once within a fragment shader. If so, the last value assigned
is the one used in the subsequent fixed function pipeline. The values written to these variables may be
read back after writing them. Reading from these variables before writing to them results in an undefined
value. The fixed functionality computed depth for a fragment may be obtained by reading
gl_FragCoord.z, described below.

Writing to gl_FragColor specifies the fragment color that will be used by the subsequent fixed
functionality pipeline. If subsequent fixed functionality consumes fragment color and an execution of a
fragment shader does not write a value to gl_FragColor then the fragment color consumed is undefined.

If the frame buffer is configured as a color index buffer then behavior is undefined when using a fragment
shader.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and a shader does not write gl_FragDepth, then the fixed function value for depth
will be used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth, and
there is an execution path through the shader that does not set gl_FragDepth, then the value of the
fragment’s depth may be undefined for executions of the shader that take that path. That is, if a shader
statically contains a write to gl_FragDepth, then it is responsible for always writing it.

(A shader contains a static assignment to a variable x if, after pre-processing, the shader contains a
statement that would write to x, whether or not run-time flow of control will cause that statement to be
executed.)

The variable gl_FragData is an array. Writing to gl_FragData[n] specifies the fragment data that will be
used by the subsequent fixed functionality pipeline for data n. If subsequent fixed functionality consumes
fragment data and an execution of a fragment shader does not write a value to it, then the fragment data
consumed is undefined.

If a shader statically assigns a value to gl_FragColor, it may not assign a value to any element of
gl_FragData. If a shader statically writes a value to any element of gl_FragData, it may not assign a
value to gl_FragColor. That is, a shader may assign values to either gl_FragColor or gl_FragData, but
not both.

If a shader executes the discard keyword, the fragment is discarded, and the values of gl_FragDepth,
gl_FragColor, and gl_FragData become irrelevant.

52

7 Built-in Variables

The variable gl_FragCoord is available as a read-only variable from within fragment shaders and it holds
the window relative coordinates x, y, z, and 1/w values for the fragment. This value is the result of the
fixed functionality that interpolates primitives after vertex processing to generate fragments. The z
component is the depth value that would be used for the fragment’s depth if a shader contained no writes
to gl_FragDepthwill be used for the fragment's depth. This is useful for invariance if a shader
conditionally computes gl_FragDepth but otherwise wants the fixed functionality fragment depth.

The fragment shader has access to the read-only built-in variable gl_FrontFacing whose value is true if
the fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by
selecting one of two colors calculated by the vertex shader.

The built-in variables that are accessible from a fragment shader are intrinsically given types as follows:

mediump vec4 gl_FragCoord;
 bool gl_FrontFacing;
mediump vec4 gl_FragColor;
mediump vec4 gl_FragData[gl_MaxDrawBuffers];
float gl_FragDepth;

However, they do not behave like variables with no storage qualifier; their behavior is as described above.
These built-in variables have global scope.

7.3 Vertex Shader Built-In Attributes
There are no built-in attribute names in OpenGL ES.

The following attribute names are built into the OpenGL vertex language and can be used from within a
vertex shader to access the current values of attributes declared by OpenGL. All page numbers and
notations are references to the OpenGL 1.4 specification.

//
// Vertex Attributes, p. 19.
//
attribute vec4 gl_Color;
attribute vec4 gl_SecondaryColor;
attribute vec3 gl_Normal;
attribute vec4 gl_Vertex;
attribute vec4 gl_MultiTexCoord0;
attribute vec4 gl_MultiTexCoord1;
attribute vec4 gl_MultiTexCoord2;
attribute vec4 gl_MultiTexCoord3;
attribute vec4 gl_MultiTexCoord4;
attribute vec4 gl_MultiTexCoord5;
attribute vec4 gl_MultiTexCoord6;
attribute vec4 gl_MultiTexCoord7;
attribute float gl_FogCoord;

7.4 Built-In Constants

53

7 Built-in Variables

The following built-in constants are provided to vertex and fragment shaders.

//
// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.
//
const int gl_MaxLights = 8; // GL 1.0
; // GL 1.06const int gl_MaxClipPlanes =
const int gl_MaxTextureUnits = 2; // GL 1.3
const int gl_MaxTextureCoords = 2; // ARB_fragment_program
const mediump int gl_MaxVertexAttribs = 816;
const mediump int gl_MaxVertexUniformComponents = 384512;
const mediump int gl_MaxVaryingFloats = 32;
const mediump int gl_MaxVertexTextureImageUnits = 0;
const mediump int gl_MaxCombinedTextureImageUnits = 2;
const mediump int gl_MaxTextureImageUnits = 2;
const mediump int gl_MaxFragmentUniformComponents = 64;
const mediump int gl_MaxDrawBuffers = 1;

7.5 Built-In Uniform State
As an aid to accessing OpenGL processing state, the following uniform variables are built into the
OpenGL ES Shading Language. All page numbers and notations are references to the 1.42.0
specification. If an implementation does not support highp precision in the fragment language, and state
is listed as highp, then that state will only be available as mediump in the fragment language.

//
// Matrix state. p. 31, 32, 37, 39, 40.
//
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

//
// Derived matrix state that provides inverse and transposed versions
// of the matrices above. Poorly conditioned matrices may result
// in unpredictable values in their inverse forms.
//
uniform mat3 gl_NormalMatrix; // transpose of the inverse of the
 // upper leftmost 3x3 of gl_ModelViewMatrix

54

7 Built-in Variables

uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixInverseTranspose;
uniform mat4 gl_ProjectionMatrixInverseTranspose;
uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];

//
// Normal scaling p. 39.
//
uniform float gl_NormalScale;

//
// Depth range in window coordinates, p. 4533
//
struct gl_DepthRangeParameters {
 highp float near; // n
 highp float far; // f
 highp float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;

//
// Clip planes p. 42.
//
uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

//
// Point Size, p. 66, 67.
//
struct gl_PointParameters {
 float size;
 float sizeMin;
 float sizeMax;
 float fadeThresholdSize;
 float distanceConstantAttenuation;
 float distanceLinearAttenuation;
 float distanceQuadraticAttenuation;
};

uniform gl_PointParameters gl_Point;

55

7 Built-in Variables

//
// Material State p. 50, 55.
//
struct gl_MaterialParameters {
 vec4 emission; // Ecm
 vec4 ambient; // Acm
 vec4 diffuse; // Dcm
 vec4 specular; // Scm
 float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

//
// Light State p 50, 53, 55.
//

struct gl_LightSourceParameters {
 vec4 ambient; // Acli
 vec4 diffuse; // Dcli
 vec4 specular; // Scli
 vec4 position; // Ppli
 vec4 halfVector; // Derived: Hi
 vec3 spotDirection; // Sdli
 float spotExponent; // Srli
 float spotCutoff; // Crli
 // (range: [0.0,90.0], 180.0)
 float spotCosCutoff; // Derived: cos(Crli)
 // (range: [1.0,0.0],-1.0)
 float constantAttenuation; // K0
 float linearAttenuation; // K1
 float quadraticAttenuation;// K2
};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters {
 vec4 ambient; // Acs
};

uniform gl_LightModelParameters gl_LightModel;

//
// Derived state from products of light and material.
//

struct gl_LightModelProducts {
 vec4 sceneColor; // Derived. Ecm + Acm * Acs
};

56

7 Built-in Variables

uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;

struct gl_LightProducts {
 vec4 ambient; // Acm * Acli
 vec4 diffuse; // Dcm * Dcli
 vec4 specular; // Scm * Scli
};

uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

//
// Texture Environment and Generation, p. 152, p. 40-42.
//
uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

//
// Fog p. 161
//
struct gl_FogParameters {
 vec4 color;
 float density;
 float start;
 float end;
 float scale; // Derived: 1.0 / (end - start)
};

uniform gl_FogParameters gl_Fog;

57

7 Built-in Variables

7.6 Varying Variables
Unlike user-defined varying variables, the built-in varying variables don’t have a strict one-to-one
correspondence between the vertex language and the fragment language. Two sets are provided, one for
each language. Their relationship is described below.

The following built-in varying variables are available to write to in a vertex shader. A particular one
should be written to if any functionality in a corresponding fragment shader or fixed pipeline uses it or
state derived from it. Otherwise, behavior is undefined.

varying vec4 gl_FrontColor;
varying vec4 gl_BackColor;
varying vec4 gl_FrontSecondaryColor;
varying vec4 gl_BackSecondaryColor;
varying vec4 gl_TexCoord[]; // at most will be gl_MaxTextureCoords
varying float gl_FogFragCoord;

For gl_FogFragCoord, the value written will be used as the “c” value on page 160 of the OpenGL 1.4
Specification by the fixed functionality pipeline. For example, if the z-coordinate of the fragment in eye
space is desired as “c”, then that's what the vertex shader should write into gl_FogFragCoord.

As with all arrays, indices used to subscript gl_TexCoord must either be an integral constant expressions,
or this array must be re-declared by the shader with a size. The size can be at most
gl_MaxTextureCoords. Using indexes close to 0 may aid the implementation in preserving varying
resources.

The following varying variables are available to read from in a fragment shader. The gl_Color and
gl_SecondaryColor names are the same names as attributes passed to the vertex shader. However, there is
no name conflict, because attributes are visible only in vertex shaders and the following are only visible in
a fragment shader.

varying vec4 gl_Color;
varying vec4 gl_SecondaryColor;
varying vec4 gl_TexCoord[]; // at most will be gl_MaxTextureCoords
varying float gl_FogFragCoord;

The values in gl_Color and gl_SecondaryColor will be derived automatically by the system from
gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor based on which
face is visible. If fixed functionality is used for vertex processing, then gl_FogFragCoord will either be
the z-coordinate of the fragment in eye space, or the interpolation of the fog coordinate, as described in
section 3.10 of the OpenGL 1.4 Specification. The gl_TexCoord[] values are the interpolated
gl_TexCoord[] values from a vertex shader or the texture coordinates of any fixed pipeline based vertex
functionality.

Indices to the fragment shader gl_TexCoord array are as described above in the vertex shader text.

The following varying variables are available to read from in a fragment shader:

58

7 Built-in Variables

varying mediump vec2 gl_PointCoord;

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point primitive
the current fragment is located. They range from 0.0 to 1.0 across the point. This is described in more
detail in Section 3.3.1 Basic Point Rasterization of version 2.0 of the OpenGL Specification, where point
sprites are discussed. If the current primitive is not a point, then the values read from gl_PointCoord are
undefined.

59

8 Built-in Functions

The OpenGL ES Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture
map. There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but they
are very common and may have direct hardware support. It is a very hard problem for the compiler to
map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The trigonometry
functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

User code can replace built-in functions with their own if they choose, by simply re-declaring and defining
the same name and argument list.

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vec4, genType is used as the argument. For any specific use of a function, the
actual type has to be the same for all arguments and for the return type. Similarly for mat, which can be a
mat2, mat3, or mat4.

Precision qualifiers for parameters and return values are not shown. The precision qualification of built-in
function formal parameters is irrelevant. A call to a built-in function will return a precision qualification
matching the highest precision qualification of the call's input arguments. See Section 4.5.2 “Precision
Qualifiers” for more detail.

60

8 Built-in Functions

8.1 Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees) Converts degrees to radians, i.e.


180
⋅degrees

genType degrees (genType radians) Converts radians to degrees, i.e.
180


⋅radians

genType sin (genType angle) The standard trigonometric sine function.

genType cos (genType angle) The standard trigonometric cosine function.

genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine. Returns an angle whose sine is x. The range

of values returned by this function is [−
2

,
2]

Results are undefined if ∣x∣1.

genType acos (genType x) Arc cosine. Returns an angle whose cosine is x. The
range of values returned by this function is [0, π].
Results are undefined if ∣x∣1.

genType atan (genType y, genType x) Arc tangent. Returns an angle whose tangent is y/x. The
signs of x and y are used to determine what quadrant the
angle is in. The range of values returned by this
function is [− ,]. Results are undefined if x and
y are both 0.

genType atan (genType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this function

is [−
2

,
2] .

61

8 Built-in Functions

8.2 Exponential Functions
These all operate component-wise. The description is per component.

Syntax Description
genType pow (genType x, genType y) Returns x raised to the y power, i.e., x y

Results are undefined if x < 0.
Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., ex.

genType log (genType x) Returns the natural logarithm of x, i.e., returns the value
y which satisfies the equation x = ey.
Results are undefined if x <= 0.

genType exp2 (genType x) Returns 2 raised to the x power, i.e., 2x

genType log2 (genType x) Returns the base 2 logarithm of x, i.e., returns the value
y which satisfies the equation x=2 y

Results are undefined if x <= 0.

genType sqrt (genType x) Returns  x .
Results are undefined if x < 0.

genType inversesqrt (genType x)
Returns

1
 x

.

Results are undefined if x <= 0.

8.3 Common Functions
These all operate component-wise. The description is per component.

Syntax Description
genType abs (genType x) Returns x if x >= 0, otherwise it returns –x.

genType sign (genType x) Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0

62

8 Built-in Functions

Syntax Description
genType floor (genType x) Returns a value equal to the nearest integer that is less

than or equal to x

genType ceil (genType x) Returns a value equal to the nearest integer that is
greater than or equal to x

genType fract (genType x) Returns x – floor (x)

genType mod (genType x, float y) Modulus. Returns x – y ∗ floor (x/y)

genType mod (genType x, genType y) Modulus. Returns x – y ∗ floor (x/y)

genType min (genType x, genType y)
genType min (genType x, float y)

Returns y if y < x, otherwise it returns x

genType max (genType x, genType y)
genType max (genType x, float y)

Returns y if x < y, otherwise it returns x.

genType clamp (genType x,
 genType minVal,
 genType maxVal)
genType clamp (genType x,
 float minVal,
 float maxVal)

Returns min (max (x, minVal), maxVal)

Results are undefined if minVal > maxVal.

Note that colors and depths written by fragment shaders
will be clamped by the implementation after the
fragment shader runs.

genType mix (genType x,
 genType y,
 genType a)
genType mix (genType x,
 genType y,
 float a)

Returns the linear blend of x and y, i.e.
x⋅1−a  y⋅a

genType step (genType edge, genType x)
genType step (float edge, genType x)

Returns 0.0 if x < edge, otherwise it returns 1.0

genType smoothstep (genType edge0,
 genType edge1,
 genType x)
genType smoothstep (float edge0,
 float edge1,
 genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
performs smooth Hermite interpolation between 0 and 1
when edge0 < x < edge1. This is useful in cases where
you would want a threshold function with a smooth
transition. This is equivalent to:

 genType t;
 t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t);

Results are undefined if edge0 >= edge1.

63

8 Built-in Functions

8.4 Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description
float length (genType x) Returns the length of vector x, i.e.,

 x [0]2x [1]2...

float distance (genType p0, genType p1) Returns the distance between p0 and p1, i.e.
length (p0 – p1)

float dot (genType x, genType y) Returns the dot product of x and y, i.e.,
x [0]⋅y [0]x [1]⋅y [1]...

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.

[x [1]⋅y [2]− y [1]⋅x [2]
x [2]⋅y [0]− y [2]⋅x [0]
x [0]⋅y [1]− y [0]⋅x [1]]

genType normalize (genType x) Returns a vector in the same direction as x but with a
length of 1.

vec4 ftransform() For vertex shaders only. This function will ensure that
the incoming vertex value will be transformed in a way
that produces exactly the same result as would be
produced by OpenGL’s fixed functionality transform. It
is intended to be used to compute gl_Position, e.g.,

 gl_Position = ftransform()

This function should be used, for example, when an
application is rendering the same geometry in separate
passes, and one pass uses the fixed functionality path to
render and another pass uses programmable shaders.

genType faceforward(genType N,
 genType I,
 genType Nref)

If dot(Nref, I) < 0 return N, otherwise return –N.

64

8 Built-in Functions

Syntax Description
genType reflect (genType I, genType N) For the incident vector I and surface orientation N,

returns the reflection direction:
I – 2 ∗ dot(N, I) ∗ N
N must already be normalized in order to achieve the
desired result.

genType refract(genType I, genType N,
 float eta)

For the incident vector I and surface normal N, and the
ratio of indices of refraction eta, return the refraction
vector. The result is computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0)
 return genType(0.0)
else
 return eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and the
surface normal N must already be normalized to get the
desired results.

8.5 Matrix Functions

Syntax Description
mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise, i.e.,

result[i][j] is the scalar product of x[i][j] and y[i][j].

Note: to get linear algebraic matrix multiplication, use
the multiply operator (*).

65

8 Built-in Functions

8.6 Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce scalar
Boolean results. For vector results, use the following built-in functions. Below, “bvec” is a placeholder
for one of bvec2, bvec3, or bvec4, “ivec” is a placeholder for one of ivec2, ivec3, or ivec4, and “vec” is a
placeholder for vec2, vec3, or vec4. In all cases, the sizes of the input and return vectors for any
particular call must match.

Syntax Description
bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(bvec x, bvec y)

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x == y.

Returns the component-wise compare of x != y.

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true only if all components of x are true.

bvec not(bvec x) Returns the component-wise logical complement of x.

66

8 Built-in Functions

8.7 Texture Lookup Functions
Texture lookup functions are available to both vertex and fragment shaders. However, level of detail is
not computed by fixed functionality for vertex shaders, so there are some differences in operation between
vertex and fragment texture lookups. The functions in the table below provide access to textures through
samplers, as set up through the OpenGL API. Texture properties such as size, pixel format, number of
dimensions, filtering method, number of mip-map levels, depth comparison, and so on are also defined by
OpenGL API calls. Such properties are taken into account as the texture is accessed via the built-in
functions defined below.

If a non-shadow texture call is made to a sampler that represents a depth texture with depth comparisons
turned on, then results are undefined. If a shadow texture call is made to a sampler that represents a depth
texture with depth comparisons turned off, then results are undefined. If a shadow texture call is made to
a sampler that does not represent a depth texture, then results are undefined.

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in a vertex shader. For a fragment shader, if bias is present, it is added to the calculated level of
detail prior to performing the texture access operation. If the bias parameter is not provided, then the
implementation automatically selects level of detail: For a texture that is not mip-mapped, the texture is
used directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the
implementation is used to do the texture lookup. If it is mip-mapped and running on the vertex shader,
then the base texture is used.

The built-ins suffixed with “Lod” are allowed only in a vertex shader. For the “Lod” functions, lod is
directly used as the level of detail.

Syntax Description
vec4 texture1D (sampler1D sampler,
 float coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
 vec2 coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
 vec4 coord [, float bias])
vec4 texture1DLod (sampler1D sampler,
 float coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
 vec2 coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
 vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 1D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
coord.s is divided by the last component of
coord.

67

8 Built-in Functions

Syntax Description
vec4 texture2D (sampler2D sampler,
 vec2 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
 vec3 coord [, float bias])
vec4 texture2DProj (sampler2D sampler,
 vec4 coord [, float bias])
vec4 texture2DLod (sampler2D sampler,
 vec2 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
 vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,
 vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 2D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
(coord.s, coord.t) is divided by the last
component of coord. The third component
of coord is ignored for the vec4 coord
variant.

vec4 texture3D (sampler3D sampler,
 vec3 coord [, float bias])
vec4 texture3DProj (sampler3D sampler,
 vec4 coord [, float bias])
vec4 texture3DLod (sampler3D sampler,
 vec3 coord, float lod)
vec4 texture3DProjLod (sampler3D sampler,
 vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate is
divided by coord.q.
These functions are only available if the
extension name string GL_OES_texture_3D
is enabled.

vec4 textureCube (samplerCube sampler,
 vec3 coord [, float bias])
vec4 textureCubeLod (samplerCube sampler,
 vec3 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the cube map texture
currently bound to sampler. The direction of
coord is used to select which face to do a 2-
dimensional texture lookup in, as described
in section 3.8.6 in version 1.42.0 of the
OpenGL specification.

68

8 Built-in Functions

Syntax Description
vec4 shadow1D (sampler1DShadow sampler,
 vec3 coord [, float bias])
vec4 shadow2D (sampler2DShadow sampler,
 vec3 coord [, float bias])
vec4 shadow1DProj (sampler1DShadow sampler,
 vec4 coord [, float bias])
vec4 shadow2DProj (sampler2DShadow sampler,
 vec4 coord [, float bias])
vec4 shadow1DLod (sampler1DShadow sampler,
 vec3 coord, float lod)
vec4 shadow2DLod (sampler2DShadow sampler,
 vec3 coord, float lod)
vec4 shadow1DProjLod(sampler1DShadow sampler,
 vec4 coord, float lod)
vec4 shadow2DProjLod(sampler2DShadow sampler,
 vec4 coord, float lod)

Use texture coordinate coord to do a depth
comparison lookup on the depth texture
bound to sampler, as described in section
3.8.14 of version 1.4 of the OpenGL
specification. The 3rd component of coord
(coord.p) is used as the R value. The texture
bound to sampler must be a depth texture, or
results are undefined. For the projective
(“Proj”) version of each built-in, the texture
coordinate is divide by coord.q, giving a
depth value R of coord.p/coord.q. The
second component of coord is ignored for
the “1D” variants.

69

8 Built-in Functions

8.8 Fragment Processing Functions
Fragment processing functions are only available in shaders intended for use on the fragment processorthe
fragment language. The built-in derivative functions dFdx, dFdy, and fwidth are optional, and must be
enabled by

#extension GL_OES_standard_derivatives : enable

before being used. Derivatives may be computationally expensive and/or numerically unstable.
Therefore, an OpenGL implementation may approximate the true derivatives by using a fast but not
entirely accurate derivative computation.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

 F xdx−F  x ~ dFdx x⋅dx 1a

 dFdx x ~ F xdx−F x
dx 1b

Backward differencing:

 F  x−dx−F  x ~−dFdx  x⋅dx 2a

 dFdx x  ~ F x−F  x−dx
dx 2b

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

A GL implementation may use the above or other methods to perform the calculation, subject to the
following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives within the
body of a non-uniform conditional are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.1 of the
OpenGL 1.42.0 specification is relaxed for derivative calculations, because the method may be a
function of fragment location.

Other properties that are desirable, but not required, are:

4. Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

70

8 Built-in Functions

5. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.6 of the OpenGL 1.42.0 specification), allowing a user to make an image quality versus speed
trade off.

Syntax Description
genType dFdx (genType p) Returns the derivative in x using local differencing for

the input argument p.

genType dFdy (genType p) Returns the derivative in y using local differencing for
the input argument p.

These two functions are commonly used to estimate the
filter width used to anti-alias procedural textures. We
are assuming that the expression is being evaluated in
parallel on a SIMD array so that at any given point in
time the value of the function is known at the grid points
represented by the SIMD array. Local differencing
between SIMD array elements can therefore be used to
derive dFdx, dFdy, etc.

genType fwidth (genType p) Returns the sum of the absolute derivative in x and y
using local differencing for the input argument p, i.e.:
abs (dFdx (p)) + abs (dFdy (p));

71

8 Built-in Functions

8.9 Noise Functions
The built-in noise functions noise1, noise2, noise3, and noise4 are optional, and must be enabled by

#extension GL_OES_standard_noise : enable

before being used. Noise functions are available to both fragment and vertex shaders. They are stochastic
functions that can be used to increase visual complexity. Values returned by the following noise functions
give the appearance of randomness, but are not truly random. The noise functions below are defined to
have the following characteristics:

• The return value(s) are always in the range [-1.0,1.0], and cover at least the range [-0.6, 0.6], with a
Gaussian-like distribution.

• The return value(s) have an overall average of 0.0

• They are repeatable, in that a particular input value will always produce the same return value

• They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it has the same
statistical character)

• They have a statistical invariance under translation (i.e., no matter how the domain is translated, it has
the same statistical character)

• They typically give different results under translation.

• The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.

• They are C1 continuous everywhere (i.e., the first derivative is continuous)

Syntax Description
float noise1 (genType x) Returns a 1D noise value based on the input value x.

vec2 noise2 (genType x) Returns a 2D noise value based on the input value x.

vec3 noise3 (genType x) Returns a 3D noise value based on the input value x.

vec4 noise4 (genType x) Returns a 4D noise value based on the input value x.

72

9 Shading Language Grammar

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

ATTRIBUTE CONST BOOL FLOAT INT
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 IN OUT INOUT UNIFORM VARYING
SAMPLER1D SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW
STRUCT VOID WHILE

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

INVARIANT
HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION

The following describes the grammar for the OpenGL ES Shading Language in terms of the above tokens.

variable_identifier:
 IDENTIFIER

primary_expression:
 variable_identifier
 INTCONSTANT
 FLOATCONSTANT
 BOOLCONSTANT
 LEFT_PAREN expression RIGHT_PAREN

postfix_expression:
 primary_expression
 postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET

73

9 Shading Language Grammar

 function_call
 postfix_expression DOT FIELD_SELECTION
 postfix_expression INC_OP
 postfix_expression DEC_OP

integer_expression:
 expression

function_call:
 function_call_generic

function_call_generic:
 function_call_header_with_parameters RIGHT_PAREN
 function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters:
 function_call_header VOID
 function_call_header

function_call_header_with_parameters:
 function_call_header assignment_expression
 function_call_header_with_parameters COMMA assignment_expression

function_call_header:
 function_identifier LEFT_PAREN

function_identifier:
 constructor_identifier
 IDENTIFIER

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as
// keywords.

constructor_identifier:
 FLOAT
 INT
 BOOL
 VEC2
 VEC3
 VEC4

74

9 Shading Language Grammar

 BVEC2
 BVEC3
 BVEC4
 IVEC2
 IVEC3
 IVEC4
 MAT2
 MAT3
 MAT4

 TYPE_NAME

unary_expression:
 postfix_expression
 INC_OP unary_expression
 DEC_OP unary_expression
 unary_operator unary_expression

// Grammar Note: No traditional style type casts.

unary_operator:
 PLUS
 DASH
 BANG
 TILDE // reserved

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression:
 unary_expression
 multiplicative_expression STAR unary_expression
 multiplicative_expression SLASH unary_expression
 multiplicative_expression PERCENT unary_expression // reserved

additive_expression:
 multiplicative_expression
 additive_expression PLUS multiplicative_expression
 additive_expression DASH multiplicative_expression

shift_expression:

75

9 Shading Language Grammar

 additive_expression
 shift_expression LEFT_OP additive_expression // reserved
 shift_expression RIGHT_OP additive_expression // reserved

relational_expression:
 shift_expression
 relational_expression LEFT_ANGLE shift_expression
 relational_expression RIGHT_ANGLE shift_expression
 relational_expression LE_OP shift_expression
 relational_expression GE_OP shift_expression

equality_expression:
 relational_expression
 equality_expression EQ_OP relational_expression
 equality_expression NE_OP relational_expression

and_expression:
 equality_expression
 and_expression AMPERSAND equality_expression // reserved

exclusive_or_expression:
 and_expression
 exclusive_or_expression CARET and_expression // reserved

inclusive_or_expression:
 exclusive_or_expression
 inclusive_or_expression VERTICAL_BAR exclusive_or_expression // reserved

logical_and_expression:
 inclusive_or_expression
 logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression:
 logical_and_expression
 logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:
 logical_xor_expression
 logical_or_expression OR_OP logical_xor_expression

76

9 Shading Language Grammar

conditional_expression:
 logical_or_expression
 logical_or_expression QUESTION expression COLON conditionalassignment_expression

assignment_expression:
 conditional_expression
 unary_expression assignment_operator assignment_expression

assignment_operator:
 EQUAL
 MUL_ASSIGN
 DIV_ASSIGN
 MOD_ASSIGN // reserved
 ADD_ASSIGN
 SUB_ASSIGN
 LEFT_ASSIGN // reserved
 RIGHT_ASSIGN // reserved
 AND_ASSIGN // reserved
 XOR_ASSIGN // reserved
 OR_ASSIGN // reserved

expression:
 assignment_expression
 expression COMMA assignment_expression

constant_expression:
 conditional_expression

declaration:
 function_prototype SEMICOLON
 init_declarator_list SEMICOLON
 PRECISION precision_qualifier type_specifier_no_prec SEMICOLON

function_prototype:
 function_declarator RIGHT_PAREN

function_declarator:
 function_header
 function_header_with_parameters

77

9 Shading Language Grammar

function_header_with_parameters:
 function_header parameter_declaration
 function_header_with_parameters COMMA parameter_declaration

function_header:
 fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:
 type_specifier IDENTIFIER
 type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

parameter_declaration:
 type_qualifier parameter_qualifier parameter_declarator
 parameter_qualifier parameter_declarator
 type_qualifier parameter_qualifier parameter_type_specifier
 parameter_qualifier parameter_type_specifier

parameter_qualifier:
 /* empty */
 IN
 OUT
 INOUT

parameter_type_specifier:
 type_specifier
 type_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET

init_declarator_list:
 single_declaration
 init_declarator_list COMMA IDENTIFIER
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET
 init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:
 fully_specified_type
 fully_specified_type IDENTIFIER
 fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
 fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

78

9 Shading Language Grammar

 fully_specified_type IDENTIFIER EQUAL initializer
 INVARIANT IDENTIFIER // Vertex only.

// Grammar Note: No 'enum', or 'typedef'.

fully_specified_type:
 type_specifier
 type_qualifier type_specifier

type_qualifier:
 CONST
 ATTRIBUTE // Vertex only.
 VARYING
 INVARIANT VARYING
 UNIFORM

type_specifier:
 type_specifier_no_prec
 precision_qualifier type_specifier_no_prec

type_specifier_no_prec:
 VOID
 FLOAT
 INT
 BOOL
 VEC2
 VEC3
 VEC4
 BVEC2
 BVEC3
 BVEC4
 IVEC2
 IVEC3
 IVEC4
 MAT2
 MAT3
 MAT4
 SAMPLER1D

79

9 Shading Language Grammar

 SAMPLER2D
 SAMPLER3D
 SAMPLERCUBE
 SAMPLER1DSHADOW
 SAMPLER2DSHADOW
 struct_specifier
 TYPE_NAME

precision_qualifier:
 HIGH_PRECISION
 MEDIUM_PRECISION
 LOW_PRECISION

struct_specifier:
 STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:
 struct_declaration
 struct_declaration_list struct_declaration

struct_declaration:
 type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:
 struct_declarator
 struct_declarator_list COMMA struct_declarator

struct_declarator:
 IDENTIFIER
 IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

initializer:
 assignment_expression

declaration_statement:
 declaration

statement:
 compound_statement
 simple_statement

80

9 Shading Language Grammar

// Grammar Note: No labeled statements; 'goto' is not supported.

simple_statement:
 declaration_statement
 expression_statement
 selection_statement
 iteration_statement
 jump_statement

compound_statement:
 LEFT_BRACE RIGHT_BRACE
 LEFT_BRACE statement_list RIGHT_BRACE

statement_no_new_scope:
 compound_statement_no_new_scope
 simple_statement

compound_statement_no_new_scope:
 LEFT_BRACE RIGHT_BRACE
 LEFT_BRACE statement_list RIGHT_BRACE

statement_list:
 statement
 statement_list statement

expression_statement:
 SEMICOLON
 expression SEMICOLON

selection_statement:
 IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:
 statement ELSE statement
 statement

// Grammar Note: No 'switch'. Switch statements not supported.

condition:

81

9 Shading Language Grammar

 expression
 fully_specified_type IDENTIFIER EQUAL initializer

iteration_statement:
 WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope
 DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
 FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope

for_init_statement:
 expression_statement
 declaration_statement

conditionopt:
 condition
 /* empty */

for_rest_statement:
 conditionopt SEMICOLON
 conditionopt SEMICOLON expression

jump_statement:
 CONTINUE SEMICOLON
 BREAK SEMICOLON
 RETURN SEMICOLON
 RETURN expression SEMICOLON
 DISCARD SEMICOLON // Fragment shader only.

// Grammar Note: No 'goto'. Gotos are not supported.

translation_unit:
 external_declaration
 translation_unit external_declaration

external_declaration:
 function_definition
 declaration

function_definition:
 function_prototype compound_statement_no_new_scope

82

10 Appendix A: Standard Extensions

10 Appendix A: Standard Extensions

10.1 Standard Noise Language Extension
Name

OES_standard_noise

Name Strings

GL_OES_standard_noise

Contributors

Standard core OpenGL.

Contact

John Kessenich (johnk 'at' 3dlabs.com)

Notice

Copyright © 2005 The Khronos Group Inc.

Status

Complete.

Version

Date: July 7, 2005
Revision: 0.90

Number

N/A

Dependencies

OpenGL ES 2.0 is required.

Overview

The standard noise functions and semantics from OpenGL version 2.0 are optional for OpenGL
ES 2.0. When this extension is enabled, it makes available these standard functions with the
semantics already documented in the OpenGL ES 2.0 Shading Language Specification.

Using this extension requires it to be enabled, e.g.

#extension GL_OES_standard_noise : enable

Issues

83

10 Appendix A: Standard Extensions

1) Should we use an exact algorithmic description of noise (e.g. a Perlin algorithm), instead of a
functional description? This would aid portability in getting the same results on different
implementations.

Yes, this is desirable, but not possible until such a description is freely available to include in the
specification.

New Keywords

None.

New Built-in Functions

noise1()
noise2()
noise3()
noise4()

New Macro Definitions

#define GL_OES_standard_noise 1

Additions to Chapter 8:

Already documented, see main specification, section 8.9 Noise Functions, in the OpenGL ES 2.0
Shading Language Specification.

Revision History

7/7/2005 Created.

84

10 Appendix A: Standard Extensions

10.2 Standard Derivatives Extension
Name

OES_standard_derivatives

Name Strings

GL_OES_standard_derivatives

Contributors

Standard core OpenGL.

Contact

John Kessenich (johnk 'at' 3dlabs.com)

Notice

Copyright © 2005 The Khronos Group Inc.

Status

Complete.

Version

Date: July 7, 2005
Revision: 0.90

Number

N/A

Dependencies

OpenGL ES 2.0 is required.

Overview

The standard derivatives functions and semantics from OpenGL version 2.0 are optional for
OpenGL ES 2.0. When this extension is enabled, it makes available these standard functions
with the semantics already documented in the OpenGL ES 2.0 Shading Language Specification.

Using this extension in a shader requires it to be enabled, e.g.

#extension GL_OES_standard_derivatives : enable

Issues

None.

New Keywords

None.

New Built-in Functions

85

10 Appendix A: Standard Extensions

dFdx()
dFdy()
fwidth()

New Macro Definitions

#define GL_OES_standard_derivatives 1

Additions to Chapter 8:

Already documented, see main specification, section 8.8 Fragment Processing Functions, in the
OpenGL ES 2.0 Shading Language Specification.

Revision History

7/7/2005 Created.

86

