Poly1. A stellation of the icosahedron. It is also five
interlocking tetrahedra. The model is lighted by eight

light sources.

Automatic Creation of

Object Hierarchies for Ray

Tracing

Jeffrey Goldsmith
Jet Propulsion Laboratory

John Salmon
California Institute of Technology

D ue to the increased demand for visual realism in
computer generated images, ray tracing has become a
very popular rendering algorithm. Ray tracing programs
simulate the interaction of light with the environment,
thus simply determining such optical effects as reflec-
tion, refraction, and shadowing. The basic algorithm®?
traces rays from an eyepoint through a simulated screen
at a set of objects to be seen.

Since ray tracing is a brute force algorithm, taking very
little advantage of global information about the picture
to be rendered, it is very costly in computer time.
Whitted® discovered that 75 percent of the time
required for simple scenes was taken in the calculations
that determined which objects were hit by each ray. The
original algorithm required intersecting each ray with
each object in the scene. Since then the algorithm has

14 027241716/87/0500-0014$01.00 ©1987 IEEE

Intersection calculations dominate the run time of
canonical ray tracers. A common algorithm to reduce
the number of intersection tests required is the inter-
section of rays with a tree of extents, rather than the
whole database of objects. A shortcoming of this
method is that these trees are difficult to generate.
Additionally, manually generated trees can be poor,
greatly reducing the run-time improvement available.
We present methods for evaluation of these trees in
approximate number of intersection calculations
-required and for automatic generation of good trees.
These methods run in O(nlogn) expected time where n
is the number of objects in the scene. We report some
examples of speedups.

been improved so that each ray need not be intersected
with each object.*® Each method involves intersection
calculations with simple bounding volumes to determine
if a more complex intersection calculation can be
avoided. Warren, Glassner, Fujimoto, and Kaplan%57:8
differ from Rubin and Whitted® in that they trade space
(computer memory) for time in attempts to speed up the
algorithm. In a limited space machine, such as a hyper-
cube parallel processor,? these methods are currently
not practical to use, though in the future that will likely
not be so, as memory space on these machines increases.
The method of hierarchical extents® uses a tree search
to find the objects that are hit by a ray. In the best case
it yields O(logn) intersection calculations per ray. Since
tree nodes are small in comparison to object data, only
about 30 percent extra space is required to store the hier-

IEEE CG&A

y e

Z

Figure 1. Some objects surrounded by their bounding
boxes.

T a2

= =y

/m:ﬂj
| LV LV

o War,
DD

Figure 2.The bounding boxes represented by the struc-
ture of the tree you will see in Figure 4. Note that the
boxes fit much more tightly than they are drawn here.

archy required for machine use in a typical implemen-
tation.

To use the method of hierarchical extents, a tree of
bounding volumes must be constructed. Bounding
volumes are simple geometric objects that fit around the
objects that make up the model. Bounding volumes are
chosen to be objects that are simple to intersect with a
ray, such as spheres or rectangular prisms that have sides
parallel to the coordinate planes. See Figure 1 for some
examples. These bounding volumes are combined into
a tree by picking some of them and surrounding them
with another bounding volume. This process is repeated
recursively until a bounding volume is generated that
surrounds the whole scene. See Figure 2 for an example
of a hierarchy of bounding volumes.

Many different trees can be built for a given scene, and
they require differing computation times to render the
image. The time required to render a simple image can

May 1987

Seven spheres. Seven diffusely reflecting
spheres.

easily vary by a factor of fifty due simply to the choice
of different trees. Thus, it is important to find a way to
choose a tree that reduces that time, Normally, the tree
is built from the structure used to model the scene. Some-
times, trees are built manually for simple or combined
models. A tree so generated is generally not a particu-
larly good one, because building these trees manually is
very difficult. This is due to the large amount of data that
must be manipulated all at once, as well as the difficulty
of performing complex tasks in three dimensions.

Trees that a modeler generates are also usually not
good because they were not generated to speed up the
ray-tracing operation, but instead to simplify modeling
of the scene. Trees built for modeling are generally too
simple, and often have large branching ratios, whereas
ray-tracer trees tend to be better if they have small
branching ratios to generate as many tree-pruning oper-
ations as possible. In fact, for a checkerboard, a binary
tree is the optimal configuration for the tree; yet few
would choose to model it using two repeated polygons
and a very deep hierarchy.

Since it is possible to use many different trees to ren-
der a scene, and since manual construction of trees is
tedious and not as effective as desired, computer pro-
grams have been written to build these trees automati-
cally. The simplest such algorithm constructs a complete

n-ary tree, filling the leaf nodes with objects in some sim-

ple order. Not surprisingly, this method yields poor
results, since it takes no model information into account.

Another method, the median cut algorithm, divides
the scene into halves along some spatial axis and sur-
rounds each half with a bounding volume. It then repeats
this procedure recursively on each half. This method
works better than the previous one, but it still does not
adequately account for the intended use of the tree dur-

15

| s
Poly2. Another stellation of the icosahedron. This,
too, is illuminated by eight lights. Both Poly1 and
Poly2 were computed by Roy Williams on a hyper-
cube.

ing the rendering process. In the next section we
describe how to build good trees based on a metric
described in detail in the subsequent section.

Automatic generation of trees

A useful tree generation algorithm must be applicable
to scenes with hundreds of thousands of objects; thus,
any algorithm that runs in O(n?) time or worse is likely
to be too slow. This means that when considering place-
ment of a node, one must not use information about all
of the other nodes, just some small portion of them. This
constraint will not permit the optimal tree to be found.
For most models, however, many trees exist, with render-
ing costs that are only slightly higher than the optimal
one. This is because the number of possible trees that
exist is exponentially proportional to the number of
objects, and local changes in the structure of the tree tend
to have small effects on the overall cost. Thus, generat-
ing a suboptimal tree is of little consequence, as long as
it is much better than trees generated by other methods,
since the choice of trees only affects the amount of com-
putation needed to render the image, and small differ-
ences of time are not critical.

The general strategy used to construct the tree is a heu-
ristic tree search. Objects are added successively and the
tree is searched to find a suitable insertion point for each
new node. Since not all nodes in the tree can be consid-
ered as a point for insertion, the search must follow only
a few paths. The choice of subtrees to search from a given
node is determined by the smallest increase in surface
area of the node’s bounding volume that would occur if
the new node were to be inserted as a child of it. (See the

16

/ /

® 6 ®/ \@

ol — o
o

Figure 3. In (a) is the insertion of node 4 as child of
node 1. In (b) is insertion of node 2 at position of leaf
node 1 to create new node 3.

next section for a justification of this heuristic.) During
the search process, two or more children of a node may
have the same increase in bounding volume surface area.
after adding the new node. This occurs most frequently
when the children are large and the increase is zero,
usually near the root of the tree. In that case, all equiva-
lently costly subtrees can be searched to find the best
location for insertion, or the tie can be broken by close-
ness of the object to the center of the old bounding vol-
ume, or even random selection. In practice, only the first
two or three levels of the tree have nodes with big enough
bounding volumes for this to happen, and then only near
the end of the construction. Thus, all those paths usually
can be searched without undue cost. Also, since the tree
setup usually takes only a small fraction of the computer

" time that rendering the image takes, many paths can

usually be searched without significant extra time.

At each level of the tree during the search, the new
node is considered a prospective child of each node that
will be searched (see Figure 3a). The tree is evaluated
with the proposed insertion and the location with the
smallest increase in tree cost is saved. When the search
reaches leaf nodes, the new node and the leaf node are
proposed as siblings of a new nonleaf node constructed
in the position of the old leaf node (see Figure 3b). When -
the search is complete, the node is inserted in the tree
wherever the increased cost of the tree will be
minimized,

Thus, for each object to be inserted, an O(log n) tree
search must be done. This yields a total asymptotic time
complexity of O{nlogn).

Since the tree is being constructed without complete
knowledge of the model, the order in which objects are
added is significant, Several data orders were tested. The
obvious choice is the order in which the modeler sup-
plies objects. This has some spatial coherence and some

IEEE CG&A

ible via ‘different ‘automatic hierarchy ‘generation
“ _methods. The third through seventh row data are for the
automatic tree construction algorithm described in this
 paper, and they are indicated by the data order used for
the test. The values are In numbeér of intersection cal-

 generate the hierarchies In rows three through seven.

e e s | e

95 free | der | omo | e

:21'010 e | 133 1 ado s

; 0 199 | 1ds [oas | aos | ass
“Be Shufrlcd o9 el wns) 5677 ey
worscsuitied || 632 |99 14 | os | a2 o
‘ e 011|067 f”;.581‘ :" “4.,947 450 o

 Thisis asummary of the approximate speedups avail-

culations per ray, regardless of implementation.
. Expected improvement can be found as the ratio of
. .before and after values. Note that the run time of Poly2-
“willnot be significantly improved. This is due to all the !
.i-polygons intersecting almost all the.others. The last .
““‘row lists the amount 6f VAX 750 computer time used to-

randomness. Sometimes, however, the modeler’s output
is in very bad order for the tree generation program, To
try to correct for this, the data is shuffled once™ before
being used as input to the program. Since a random seed
is used for the shuffle algorithm, the tree produced by the
algorithm can be represented by that seed, just one addi-
tional number. With shuffled data, the resulting trees
tend to be slightly worse than ones generated from data
in model order, but for models without a symmetry rep-
resented in the original data order, by trying several
seeds, a tree can be found that is better than the one
generated from unshuffled data. - :

The effect of sorting the input data along a line was
also investigated. It seems that sorting is the worst thing
to doto the data, because the top levels of the thus gener-
ated tree do not represent the whole scene adequately.
They are based on only a local section of the database
and cannot be revised with this algorithm. Sorted data
tends to yield results similar to worst case shuffled data.

The results of each of these programs are summarized
in Table 1. Though no results are available from other
methods for it, a model with 16,373 objects was run
through the automatic tree generator. The resulting hier-

MAay 1987

archy predicted (and ran with) an average of 30.1 inter-
section tests per ray.

Evaluation of bounding box trees

In the tree construction algorithm we needed to esti-
mate the additional cost of insertion of an object into the
hierarchy. This required evaluating the cost of the whole
tree, atleast initially. To achieve the desired results— that
is, a speedup of the rendering operation—it is necessary
to use a cost function based on the intended use of the
tree, Ray-tracing hierarchies are used to avoid intersect-
ing rays with the objects in the hierarchy by finding that
a ray fails to hit a simple bounding volume in the hier-
archy, and thus determining that all objects below that
node in the tree can be eliminated from further consider-
ation. To do this, bounding volumes must be tested for
intersection with the ray, incurring a cost in computer
time. The quality of a tree is determined by the number
of bounding volume intersections incurred during ren-
dering, using the tree. Thus, we will evaluate a tree as the
expected number of bounding volume intersections
required to determine which objects to test for intersec-
tion during an average traversal (ray).

The simplest bounding volumes to intersect are the
sphere and the rectangular prism with all sides parallel
to coordinate planes. Each requires about ten floating-
point operations on average to check for an intersection.
The most effective bounding volumes are more com-
plex," and vary with the primitive objects they sur-
round,’ but the advantages of improving the structure
of the hierarchy will be seen regardless of the types of
bounding volume used, since the structure of the hier-
archy does not affect the size of the bounding volumes
around the primitive objects (leaves). The examples all

17

Checker. Same model as before, but with transpar-
ent sphere, illustrating spherical aberration and
internal reflection.

use only orthogonal prisms, but mixed types would work
as well by prorating each bounding volume by its cost to
intersect.

The first step in estimating the number of intersection
calculations that will be needed to intersect rays with a
hierarchy is determining the probability with which an
arbitrary ray will hit a given bounding volume. Since any
ray that does not hit the root-level bounding volume will
require exactly one intersection calculation, only rays
that do hit it need be considered. Thus, the conditional
probability that a ray hits a bounding volume if it hits the
root bounding volume can be used instead.

For rays with an endpoint at a fixed distance from a
bounding volume, the probability that an arbitrary one
will hit the bounding volume is proportional to the solid
angle subtended by the surface of the bounding volume.
For convex objects, such as prisms and spheres, at large
distances this is approximately proportional to the sur-
face area of the object.’® For an orthogonal prism of size
I'by m by n, the surface area is 2lm+2In+2mn; for a
sphere of radius r the surface area is 4nr.2 For more
complex bounding volumes, approximations to their sur-
face area can be used.

The relationship between the surface area of a bound-
ing volume and the likelihood that an arbitrary ray
emanating at some large distance will hit it is approxi-
mately linear. Since all bounding volumes are contained
within the root node’s bounding volume, the conditional
probability of a ray hitting a given node if it hits the root
node can be approximated as the area of the given node’s
bounding volume divided by the area of the root node’s
bounding volume. In general, this division need not be
done during the generation of the tree, since only com-

18

parisons between conditional probabilities are needed
in most cases.

To compute the expected number of intersection cal-
culations of a whole tree, the conditional probabilities
must be scaled correctly, but the division can be factored
out and done only once. In fact, since bounding volume
surface areas are only used in ratios, they need only be
calculated to within a constant factor. If all the bound-
ing volumes for a model are orthogonal prisms, their
areas can be computed as (I + m)n +Im, which only costs
two multiplications and two additions to compute. If
only spherical bounding volumes are used, r* can be
used as their area. (I, m,n, and r are as above.,)

These conditional probabilities can be combined with
the structure of the tree to estimate how many nodes of
the tree will be hit by an arbitrary ray. Only rays that hit
the root node are considered, since the structure of the
tree is irrelevant to all other rays, and the structure of the
tree has no effect on the size of the root bounding box.
This assumes that the tightest fit volume of the given type
is used for the set of objects it contains, which is natu-
ral for orthogonal prisms and space slices.”? If a ray hits
the root, then k more intersection calculations need to
be done, where k is the number of children it has.

In fact, if any node is hit, the minimum number of
additional intersection calculations that must be done
is equal to the number of children it has. Since the cost
of performing intersection calculations with the bound-
ing volumes of the children of a node is incurred by a ray
hitting that node, and the conditional probability of hit-
ting it is as above, the total average cost of a node in units
of intersection calculations is the product of the number
of children it has and its surface area divided by the root
node’s surface area. Note that the root node’s cost is its
number of children, and the cost of all leaf nodes is zero;
however, each leaf node’s existence adds to its parent’s
cost. The estimated number of intersections required to
intersect a ray with a tree is the sum of the costs of its
nodes.

Figure 4 contains a simple example of a hierarchy. The
numbers on the nodes are the areas of the bounding
volumes. The expected number of intersection calcula-
tions required to intersect a ray with this tree is 7.3, bro-
ken down as follows. One intersection is required for the
root node, which is assumed to be a hit. This causes three
more intersections at level two. The leftmost node at level
two has probability .6 (6/10) and two children, yielding
a cost of 1.2 intersections. The second node at that level
has probability .3 and three children, for .9 more calcu-
lations. The third node has no children and thus no addi-
tional cost. Two level-three nodes have children. They
each have two children and probabilities of .2 and .4, giv-
ing costs of .4 and .8, respectively. Thus, the tree costs
one intersection at level zero, three at level one, 2.1 at level
two, and 1.2 at level three, for a total of 7.3.

Evaluating the cost of a tree is an O(n) calculation. Dur-
ing the construction of the tree, different possible trees

IEEE CG&A

o o o
LB

Figure 4. A tree with 7.3 expected intersections per
ray. Numbers in the nodes are bounding volume areas.

may need to be evaluated; an incremental cost for the
addition of a node can be calculated in O(log n) time. This
calgulation can also be done while building the tree
using the algorithm in the previous section, incurring no
additional time complexity. If the node is being added
as a child of another node (see Figure 3a), then the
incremental cost of its parent is (area,,,, — area, gk + ar-
€0, where k is the number of siblings the new node
will have, and the areas are those of the parent’s bound-
ing volume before and after proposed insertion. If a new
node is being combined with a leaf node to cause a new

parent node to be created (see Figure 3b), its incremen-
tal cost is 2ared,,,. Also, the increased cost to grandpar-
ents and other ancestors must be included. It is just
ared,,, — aredygk of these ancestor nodes, where k is
the number of children they have. Note that this is just
a term in the general node cost increase.

To test our estimate of a tree’s cost, the number of
bounding volume intersections done was measured for
some simple pictures. Only rays shot from the eye (pri-
mary rays) were used for the lest because secondary
{(shadow, reflection, and refraction) rays emanate from
a surface and thus must intersect that object’s (and all its
ancestors’) bounding volumes. This causes the minimum
number of intersection tests needed for a secondary ray
to be at least equal to the depth in the tree of the node
that contains the object from which it emanates. Thus,
the average number of intersection tests needed for a
secondary ray should be somewhat higher than it would
be for a truly arbitrary ray. Subtracting the average depth
of the tree from the number of intersections found for
secondary rays yields results about the same as for pri-
mary rays, only somewhat noisier. Also, only primary
rays that hit the largest bounding volume were counted,
since others are not affected by tree structure. Since pri-
mary rays tend to be similar to each other, three test runs
were done, from three different directions.

Table 2 shows the results of these tests. Overall, the
predicted results agree fairly well with the measured
results. Data for all (including secondary) rays is also

May 1987

Spheres. 378 spheres arranged as a twisted cylinder.

g e Table Z
Intersectlons per ray. for some model trees, -

“Madel: “Ispheres

nl [oPeray | Total | Ints/ | “Ints/ | Expected
Ints Ints ’P-my 1. Ray | Ints/Ray
S s16 | Bs9 | 538 | 55| 594
£7656 100 98677 683 | 632 | 594
956 |- 1662 | 488 | ‘526 | 594
S 212873507 548 | 562 |- 594

- “Model:; Poly2 ‘ e
“Proy,. Total ™| 'Ints/- | Tats/ | Expécted
JAnts | nts P-ray- [Ray. | Ints/Ray

3362 {12516 150 [224 | 180
©.3077.| 14484 | 157 | 225) 150
286013306 1127 L 214) k50 .

9299 |.140506 | 144 | 2201 | 150

~.+ Model Spheres| i

g P-,hvn"y' ~‘Toml ’ln‘ts/‘ lnté/ :| Expécred:

“Ints | Intst | Peray | Ray | Ints/Ray.
1 3480 | 3948 | 7150336 ‘17134313 432 [434 | 426
213480+ 13938 | 205668|. 226829 | 59,1 '} 57,6 | 426 .
3000348000 3936 | (95352 | 116506 | 274|296 .| 426
total) ,n‘m

451356 514578_ 432 |45 | 426

mber of expected intersectlons per ray is approx-

,the same as the actual number of them for pri-

rays. The expected number is a little fow for

; dary rays Poly2 has eight light sources, so0its
3¢ condary ray count is very high

included for comparison. Note that the intersection
count for secondary rays is about log(the number of
objects) higher than it is for primary rays. (See, especially,
data for Poly2.)

19

Antenna. The high-gain antenna from Planet A,
a Japanese spacecraft investigating Halley’s
comet.

Applications

Several other techniques have been found to speed up
the method of hierarchical extents.'»? The gains from
improving the tree are independent of the gains from
these other methods; so the speedups ebtained by using
more than one of these methods will multiply.

Better trees are especially valuable in animation. The
small preprocessing cost of building the trees is further
reduced by being distributed over many frames worth of
rendering time. If objects move, the whole tree does not
have to be rebuilt. All the static objects in the scene can
be combined into a tree, and the moving objects can be
added before each frame. Objects that do not move very
far can be time/space bounded and included in the static
tree.

The ahility to estimate tree costs is valuable to some
parallel processing applications. The tree evaluator
allows one to determine the size of the workload repre-
sented by a portion of the hierarchy. If the model data-
base must be split up to fit in the local memory of a
processor of a parallel machine, then the intersection cal-
culation, which is the bulk of the ray-tracing
computation® will be split up. It is important that this
split is into roughly equal parts, or the processors that
do the smaller amounts of calculation will not be used
effectively. |

Acknowledgments

thanks to the reviewers for pointing out some details that
we missed.

This project was funded by the JPL Director’s Discre-
tionary Fund, Department of Energy grants DE-
AS03-ER13118 and DE-FG03-85ER25009, the Parsons
Foundation, and the Systems Development Foundation.

References
1. A. Appel, “Some Techniques for Machine Renderings of Solids,”
AFIPS Conf. Proc,, SJCC, AFIPS, Reston, Va., 1968 pp. 37-45.

2.]. Kajiya, Tutorial on Ray Tracing “State of the Artin Image Syn-
thesis,” {seminar notes) Computer Graphics (Proc. SIGGRAPH 83),
July 1983.

3. T. Whitted, “An Improved [llumination Model for Shaded Dis-
play,”’ Comm. ACM, 1980, pp. 343-349.

4. LV. Warren, “Geometric Hashing for Processing Complex
Scenes,” CSDept. Memorandum, Univ. of Utah, Salt Lake City,
1985.

5. A. Glassner, “Space Subdivision for Fast Ray Tracing,” IEEE
CG&A, Oct. 1984, pp. 15-22.

6, S. Rubin and T. Whitted, “A 3-Dimensional Representation for Fast
Rendering of Complex Scenes,” Computer Graphics (Proc. SIG-
GRAPH 80), July 1980, pp. 110-116.

7. A, Fujimoto, “ARTS: Accelerated Ray-Tracing System,’” IEEE
CGEA, April 1988, pp. 16-26.

8. M. Kaplan, “Space-Tracing, a Constant Time Ray-Tracer,”” Com-
puter Graphics (Proc. SIGGRAPH 85), seminar notes from ‘‘State
of the Art in Image Synthesis,” July 1988,

9. G. Fox and 8. Otto, “Algorithms for Concurrent Processors,”
Physics Today, May 1984, pp. 50-59.
10. D. Knuth, The Art of Computer Programming, Vol. 2, Addison Wes-
ley, Reading, Mass., 1969, p. 139.

11. T. Kay and J. Kajiya, “Ray Tracing Complex Scenes,” Computer

Graphics (Proc, SIGGRAPH 86), Aug. 1986, pp. 169-278.

12, H.Weghorst, G.Hooper, and D. Greenberg, *Improved Computa-
tional Methods for Ray Tracing,” ACM Trans. on Graphics, Jan.
1984, pp. 52-69.

13. L. Stone, Theory of Optimal Search, Academic Press, New York,
1975, pp. 27-28..

14.]. Goldsmith and J. Salmon, “‘A Ray Tracing System for the Hyper-
cube,” Caltech Goncurrent Computing Project Memorandum
HM154, Calif, Inst, Of Technology, Pasadena, Calif., 1985.

Jeffrey Goldsmith has been at Jet Propulsion
Lab's Computer Graphics Laboratory since 1983.
He s currently working on computer graphics on
hypercube parallel processors as part of Califor-
nia Institute of Technology's Concurrent Com-
putation Program. He was a contributor to The
. Magic Egg, the first computer-generated movie
in Omnimax format, first shown at SIGGRAPH
84.
Goldsmith received his BS and MS in com-
puter science from Rensselaer Polytechnic Institute in 1981 and 1983,

= John Salmon is a graduate student in computa-
- tion and neural systems at the California Insti-
tuteof Technology. Hisresearchlinterests include
parallel processing, computer graphics, and
astrophysics. He received his BS in electrical
engineering computer science,and physics from
the Massachusetts Institute of Technology in

The pictures were computed on the 64-node Mark II
Caltech Hypercube. Thanks to Roy Williams for the
maodels for Poly1 and Poly2. Thanks to the JPL, Computer
Graphics Lab for the production of the slides. Also,

1981 and an MS in physics from the University
of California at Berkeley.

The authors can be contacted at the California Institute of Technol-
ogy, Synchrotron Laboratory 206-49, Pasadena, California 91125.

20 IEEE CG&A

