
SIMD Ray Tracing TipsSIMD Ray Tracing Tips

Toshiya HachisukaToshiya Hachisuka

SIMDSIMD

� Single Instruction Multiple Data

� Perform the same operation
on multiple data at a time

� Example: addition of vectors

� Non-SIMD
c.x = a.x + b.x; c.y = a.y + b.y;

c.z = a.z + b.z; c.w = a.w + b.w;

� SIMD
c = a + b

SIMDSIMD

� One of the keys to achieve
high performance in ray tracing

� Mostly 4-way SIMD

� Can be x4 faster (but difficult to achieve)

� SSE (x86), Altivec (PowerPC)

� Only basic operations

� Add, Subtract, Multiply etc.

� No Dot, Cross

� ...and it is fun to code!

AoSAoS and and SoASoA

� Array of Structure

� Each vector is a
SIMD variable

� Vector 0 (V[0])

� x, y, z, w

� Vector 1 (V[1])

� x, y, z, w

� Vector 2 (V[2])

� x, y, z, w

� Vector 3 (V[3])

� x, y, z, w

� Structure of Array

� Each array of elements of 4
vectors is a SIMD variable

� X elements (vx)

� vx[0], vx[1], vx[2], vx[3]

� Y elements (vy)

� vy[0], vy[1], vy[2], vy[3]

� Z elements (vz)

� vz[0], vz[1], vz[2], vz[3]

� W elements (vw)

� vw[0], vw[1], vw[2], vw[3]

AoSAoS and and SoASoA

x y z wVector 0

x y z wVector 1

x y z wVector 2

x y z wVector 3

AoS

x y z wVector 0

x y z wVector 1

x y z wVector 2

x y z wVector 3

SoA

single SIMD variable

AoSAoS and and SoASoA

� Pitfall1:
Well… since AoS (a single SIMD variable as
a single vector) sounds natural, let’s use it

� Actually, you will prefer SoA in the end

� vx[4], vy[4], vz[4], vw[4]

� We will see the reason very soon

Using SIMD EfficientlyUsing SIMD Efficiently

� Pitfall2:
Replacing a Vector class by SIMD variable. For
instance, use SIMD add in vector addition.

� It is not efficient, beecause of additional copies

� Use SIMD locally

� e.g., write SIMD ray-triangle intersection

� Always try to use all 4-elements in SIMD

� AoS is wasteful for 3-elements vectors

SIMD SIMD Ray(s)Ray(s)--Triangle(sTriangle(s)) Intersection(sIntersection(s))

� 2 Ways to utilize SIMD

� 4 Rays – Single Triangle Intersection

� Need to bundle 4 rays

� Not trivial, but the state of the art

� Single Ray – 4 Triangles Intersection

� Need to bundle 4 triangles

� Trivial (just use 4 triangles
in a leaf node of BVH)

Dot Product in SIMDDot Product in SIMD

� Remember:
� a.x * b.x + a.y * b.y + a.z * b.z

� In AoS:
� vd0 = a0 * b0; vd1 = a1 * b1;
vd2 = a2 * b2; vd3 = a3 * b3;

� dots[0] = vd0.x + vd0.y + vd0.z
dots[1] = vd1.x + vd1.y + vd1.z
dots[2] = vd2.x + vd2.y + vd2.z
dots[3] = vd3.x + vd3.y + vd3.z

� In SoA:
� dots = ax * bx + ay * by + az * bz
� Note that ax = (a0.x, a1.x, a2.x, a3.x)

Cross Product in SIMDCross Product in SIMD

� Remember:
� (ay*bz – az*by, az*bx – ax*bz, ax*by – ay*bx)

� In AoS:
� $!#)%#$’!)%’#!

� Need shuffle operations (high latency)

� (ax, ay, az, aw) (ay, az, ax, aw) etc.

� In SoA:

� CrossX = ay*bz – az*by;

� CrossY = az*bx – ax*bz;

� CrossZ = ax*by – ay*bx;

� Straightforward

Branching in SIMDBranching in SIMD

� No branch instructions

� Solution: Bit operations

� Example:

� c = (min(a.x,b.x), ….)

� In SIMD:

� isAltB = (a < b) // returns (a.x < b.x, …)

� c = (a & isAltB) + (b & ~isAltB)

Branching in SIMDBranching in SIMD

� Example:

� a = b + c;

� d = e + f;

� If (a > 0) {d = a * d};

� In SIMD:

� a = b + c;

� d = e + f;

� isAgt0 = (a > 0)

� d = ((a * d) & isAgt0) + (d & ~isAgt0)

� Note that we compute a * d always

Practical (Annoying) IssuesPractical (Annoying) Issues

� In general, all addresses of
SIMD data should be 16-byte aligned

� Address should be 0x1234560

� Usually they are not

� Solution depends on implementation

� Search the Internet

� It is FAQ

SummarySummary

� SIMD is the key for high performance

� Use SoA (structure of array), not AoS

� vx[4], vy[4], vz[4], vw[4]

� Simply replacing Vector by
SIMD is not efficient

� Use masking instead of branching

� Do single ray-4 triangles intersections

� Be aware of the address alignment

More on SIMDMore on SIMD

� Is SIMD useful only for ray-triangle intersection?

� Ray-triangle intersection is not the only one

� Use SIMD for the ray traversal of BVH

� Obvious idea: 4-ary BVH instead of binary BVH

� Each node has 4 child nodes

� Two levels of splits to construct 4 child nodes

� 4 ray-AABBs intersections at a time

� … and many more (shading, BVH construction etc)
Use wisely!

Useful ResourcesUseful Resources

� The article about SIMD ray tracing by Intel

� http://softwarecommunity.intel.com/articles/eng/2658.htm

� Contains SIMD traversal as well (4 rays)

� “Optimizing Ray-Triangle Intersection via Automated Search”
by Kensler and Shirley

� http://www.cs.utah.edu/~aek/research/triangle.pdf

� Perhaps the fastest SIMD ray-triangle intersection code

� “Shallow Bounding Volume Hierarchies for Fast SIMD Ray
Tracing of Incoherent Rays” by Dammertz et al.

� http://www.uniulm.de/fileadmin/website_uni_ulm/iui.inst.1
00/institut/Papers/QBVH.pdf

� Latest implementation of 4-ary BVH

