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Direct Illumination

What’s missing?



Direct + Indirect Illum.



• Direct illumination is easy

• We will focus only on indirect illumination
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Path Tracing

128 rays/pixel

Kajiya ‘86



Photon Mapping

100000 photons / 50 photons in radiance estimate

Henrik Wann Jensen

Direct Visualization



Photon Mapping

500000 photons / 500 photons in radiance estimate

Henrik Wann Jensen

Direct Visualization



Final Gather



Motivation

• Tracing rays is costly.

• High-quality indirect illumination may 
require hundreds of gather rays per pixel 
for noise-free results.

• Hence, computing indirect illumination in 
this naive way is very costly.
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Irradiance Caching

• Irradiance caching was introduced by Ward 
et al. in 1988.

Ward et al. ‘88



Direct Illumination



Indirect Illumination



Interpolate Indirect Illum.

4621 samples

Ward et al. ‘88



Irradiance Caching

• Some questions that remain:

• How do we compute the indirect 
illumination values?

• What criterion is used to determine 
whether a cache point is ``near?''

• How do we interpolate the nearby 
cached values?

Ward et al. ‘88
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What is Irradiance?
Ward et al. ‘88

Nearly impossible to solve analytically!

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi
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Computing Irradiance

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

E(x) ≈
π

N1N2

N1∑

j=1

N2∑

i=1

Li(x, θj , φi),

where:

θj = sin
−1

(

√

j − ξ1

N1

)

, φi = 2π
i − ξ2

N2

Ward et al. ‘88



Interpolating Irradiance

• We wish to minimize the number of times 
we compute this costly irradiance integral.

• How far away can we reuse a cache point?

Ward et al. ‘88



Interpolating Irradiance

• Ward et al. derived an approximate formula 
for this error function.

• Error function is decomposed w.r.t. 
translation and orientation.

• Translation: function of distance to cache 
point & average distance to surface visible 
at cache point.

• Orientation: function of rotational offset

Ward et al. ‘88
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Interpolating Irradiance
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E(x)E(x) E(x')?
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∆x
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E(x) E(x+∆x)?

E(x′) ≈ E(x) +

(

∂E

∂x
(∆x) +

∂E

∂ϕ
(∆ϕ)

)

error

What happens if we re-use E(x) at E(x’)?
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Interpolating Irradiance

∆x

error threshold

Ward et al. ‘88



Interpolating Irradiance

• Approximate using Taylor expansion:
Ward et al. ‘88

ε !

∣

∣

∣

∣

∂E

∂x
(x − x0) +

∂E

∂ϕ
(ϕ − ϕ0)

∣

∣

∣

∣



The “Split-Sphere”

∂x

∂ϕ

Ward et al. ‘88



Interpolating Irradiance

• In the “Split-Sphere” environment the error 
becomes:

Ward et al. ‘88
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Interpolating Irradiance

• In the “Split-Sphere” environment the error 
becomes:
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Interpolating Irradiance

• In the “Split-Sphere” environment the error 
becomes:

Ward et al. ‘88

ε ! E0

(

4

π

|x − x0|

R
+ |ϕ − ϕ0|

)

“average” distance to visible surfaces in hemisphere



Interpolating Irradiance

• At each shading location, perform a 
weighted average of all cached values which 
have an error below some threshold. 

• Reciprocal of the error is used as the 
weight.

Ward et al. ‘88



Interpolating Irradiance

A

B

C

Ward et al. ‘88



Interpolating Irradiance

A

B

C

Ward et al. ‘88



Interpolating Irradiance

A

B

C

Ward et al. ‘88



Interpolating Irradiance

A

B

C

Ward et al. ‘88



Interpolating Irradiance

E(x, !n) ≈

P

i∈S

wi(x,!n) Ei
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Interpolating Irradiance

E(x, !n) ≈

P

i∈S

wi(x,!n) Ei

P

i∈S

wi(x,!n)

Ward et al. ‘88

S =
{

i : wi(x, !n) > 1

a

}

wi(x, !n) = 1

‖x − xi‖

Ri

+
√

1−!n·!ni

where:



Irradiance Caching

• Pros:

• Independent of resolution.

• Concentrates computation in visible 
regions.

• Hundreds of times faster than naive path 
tracing.

Ward et al. ‘88



Irradiance Caching

• Cons:

• Interpolation/extrapolation can introduce 
visible artifacts.

• Limited to Lambertian (matte) surfaces.

• Still slow.

Ward et al. ‘88



Improvements/Extensions

• Ward and Heckbert ‘92 - better interpolation

• Křivánek et al. ‘05a, ‘05b - glossy surfaces

• Tabellion and Lamorlette ‘04 - speed

• Tawara et al. ‘04 - animation

• Yee ‘00 - speed/perception

• Kato ‘02 - parallel/distributed computation

• Arikan et al. ‘05 - speed
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Irradiance Gradients

• Improve quality by performing higher-order 
interpolation/extrapolation.

• Estimate a derivative to the irradiance.

• Apply this derivative to the weighted 
average.

Ward and Heckbert ‘92



Extrapolating Irradiance

Scanline Pixels

Ir
ra

d
ia

n
ce actual irradiance

extrapolated irradiance

irradiance cache point

a

b



Irradiance Gradients

• Decomposed into:

• Rotational Gradient - captures change in 
irradiance w.r.t. change in surface 
orientation

• Translational Gradient - captures change 
in irradiance w.r.t. change in position

Ward and Heckbert ‘92



Irradiance Gradients
Ward and Heckbert ‘92



Applying Gradients
Ward and Heckbert ‘92
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Applying Gradients
Ward and Heckbert ‘92

E(x, !n) ≈

P

i∈S

wi(x,!n)(Ei+(!ni×!n)·!∇rEi+(x−xi)·!∇tEi)
P

i∈S

wi(x,!n)

estimated change due to rotation and translation



Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04



Radiance Caching

• Extends irradiance caching to glossy 
surfaces.

Křivánek et al. ‘05a, ‘05b



Glossy Surfaces

Matte surface



Glossy surface
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Glossy surface

Glossy Surfaces

Matte surface



Glossy surface

Glossy Surfaces

Matte surface



Glossy surface

Glossy Surfaces

Matte surface

Bidirectional Reflectance Distribution Function
BRDF



Radiance Caching

• Can no longer cache just the average 
irradiance value.

• Cache full hemispherical radiance field at 
sparse locations.

Křivánek et al. ‘05a, ‘05b



Radiance Interpolation

• Interpolate the radiance field from nearby 
locations.

Křivánek et al. ‘05a, ‘05b



Radiance Storage

• Use spherical harmonics (SH) or 
hemispherical harmonics (HSH).

• Generalization of Fourier series onto 
spherical and hemispherical domains.

• Can efficiently approximate smooth 
functions with just a few numbers. 

Křivánek et al. ‘05a, ‘05b



(H)SH

• Projecting a function, s, onto the (H)SH 
basis functions results in a set of 
coefficients:

Křivánek et al. ‘05a, ‘05b

ψm
l =

∫ 2π

0

∫ π

2

0

s(θ, φ)Hm
l (θ, φ) sin θ dθ dφ



(H)SH

• Projecting a function, s, onto the (H)SH 
basis functions results in a set of 
coefficients:

• From these coefficients, we can 
approximate the original function:

Křivánek et al. ‘05a, ‘05b

ψm
l =

∫ 2π

0

∫ π

2

0

s(θ, φ)Hm
l (θ, φ) sin θ dθ dφ

s(θ, φ) ≈
n−1∑

l=0

l∑

m=−l

ψm
l Hm

l (θ, φ)



Outgoing Radiance

• Incoming radiance must be convolved with 
the BRDF to attain outgoing radiance.

• If BRDFs are also stored in (H)SH basis this 
convolution is just a dot product!

Křivánek et al. ‘05a, ‘05b



Glossy Surfaces
Křivánek et al. ‘05a, ‘05b

from Křivánek et al. ‘05a, ‘05b

Path Tracing Radiance Caching



Radiance Gradients

• Improve interpolation quality by storing 
gradient of incoming radiance field.

Křivánek et al. ‘05a, ‘05b



Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04



Simplified Geometry

• Apply approximations to speed up 
rendering.

• Use simplified scene geometry for 
indirect illumination.

Tabellion and Lamorlette ‘04



Simplified Geometry

  

preventing the recursion to happen. If radiosity maps have been 
pre-computed, then no surface shader is invoked and the 
corresponding texture map is queried instead. 
 This limitation requires the user to fake highly indirect lighting 
situations where light bounces several times before contributing to 
the image. In practice users can manually place artificial light 
sources and bouncing geometry, which simulate secondary 
indirect illumination and offer a more direct and separate control. 
 The present choice protects the user from excessive render 
times by restricting the framework to discard highly indirect 
contributions. It also provides a better workflow, by avoiding the 
necessity of pre-computing radiosity maps. 
 
4.2 Surface Properties 
 
We decide to narrow the scope of our solution further treating 
only diffuse surface interreflections. It is desirable to prevent 
surfaces from casting specular indirect lighting onto each other. 
Simulating these phenomena tends to require the use of more 
sophisticated sampling techniques without giving much visual 
contribution. Caustics and glossy reflections are exceptions to this 
rule, which we leave for more specific algorithms to solve 
efficiently. 
 When programmable surface shaders are evaluated during the 
light gathering algorithm, they are specifically instructed to only 
consider the diffuse component of their BRDF. It prevents 
specular interreflections to happen but captures however local 
color texturing which will contribute to the richness of color 
bleeding effects. 
 During final shading, this restriction would be extreme for 
surfaces seen directly by the camera or through ideally specular 
reflections. In those cases, our goal is to let indirect illumination 
interact with arbitrary BRDFs, while keeping the benefits and 
efficiency of the irradiance caching scheme. We describe an 
approximate lighting model in section 4.6, which achieves this 
goal capturing important characteristics of such interactions. 
 
4.3 Ray Tracing Simplified Geometry 
 
Even though valuable research has been done to efficiently ray 
trace complex displacement-mapped geometry, we refrain the user 
from doing so. Our goal is to minimize the ray tracing effort, 
which is the main bottleneck of the light gathering algorithm. 
Reordering shading calculations does not apply in our case, since 
irradiance caching introduces a dependency between the rays cast 
during the evaluation of each irradiance sample. Inspired by 
previous work [Rushmeier et al. 1993; Christensen et al. 2003], 
we make the decision to ray trace coarsely tessellated geometry, 
even near the ray origin. 
 Since rays initiate from positions that lie on displaced micro-
polygons, we are faced with the problem of detecting self-
intersections. Traditional biasing techniques that ignore 

intersections near the ray origin cannot be applied here, since they 
would create significant light or shadow leak problems. When 
tracing a ray, we use the following ray offsetting algorithm: 

• Record in a hit-list the ray intersections within a user-defined 
offset distance along the ray, after and before the ray origin. 

• Stop the ray traversal once a hit is found beyond the offset 
distance along the ray. 

• Find the closest hit to the ray origin in the hit-list, within the 
offset distance. If found, let this intersection become the new 
effective ray origin. Otherwise, leave the ray origin 
unchanged. 

• Return the next hit in the hit-list as the resulting intersection. 
Figure 3 shows two examples and illustrates how the effective ray 
origin is adjusted. To prevent self-intersection artifacts, the offset 
distance used in this algorithm needs to be bigger than the 
maximum offset between the coarse and micro-polygon geometric 
tessellations. Since we are ray tracing approximate geometry, 
diffuse self-interreflections cast by geometric micro-
displacements might not be captured accurately. This is often 
visually of small importance, as illustrated in figure 4, since the 
highly detailed surface normal is considered when sampling the 
hemisphere. 
 In our system, users can adjust tessellation rates suitable for ray 
tracing. This tune-up is done per character, prop or environment 
once and for all. Every shot receives geometry with good default 
tessellation, which rate can be modified in specific shots if needed 
(e.g. extreme closeups). The trade-off between object detail and 
polygon count can therefore be controlled manually. Using solid 
angle based tessellation was not implemented but would be a 
valuable extension to our system. 
 
4.4 Radiosity maps 
 
Another bottleneck of the light gathering algorithm is computing a 
radiance estimate for each ray. Arvo [1986], Heckbert [1990] and 
many others [Jensen 1996; Christensen 2000] exploit this idea. 
We opt for a similar strategy using texture maps, which offer a 
constant time query and take advantage of the texture 
management engine of the rendering infrastructure. 

 

 
Figure 3: To ray trace simplified geometry, we adjust the ray origin. 

  
 (a) (b) (c) 
 
Figure 4: (a) was rendered ray tracing the 2 million displaced micro-
polygons seen in that figure, without using the ray offsetting algorithm. (b) 
was rendered using the ray offsetting algorithm, ray tracing only 4 
thousand polygons, shown in image (c). 

471

Tabellion and Lamorlette ‘04

from Tabellion and Lamorlette ‘04



Simplified Geometry

• Self intersection:
Tabellion and Lamorlette ‘04

Simplified Geometry Micro-Polygons Effective Ray Origin

re-created from Tabellion and Lamorlette ‘04



Modified Error Metric

• Introduced new error metric to reduce 
clumping in corners.

Tabellion and Lamorlette ‘04



Over-Sampling/Clumping

Ward Metric



Over-Sampling/Clumping

Ward Metric Tabellion Metric



Under-Sampling

A B



Under-Sampling

Ward Metric



Under-Sampling
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Under-Sampling

Tabellion Metric



Modified Ward Metric

Modified Ward Metric Tabellion Metric



Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04
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Dynamic Objects

Direct + Indirect Indirect Illumination



Dynamic Objects

Direct + Indirect Indirect Illumination



Age-based Invalidation

• Only recompute a small subset of global 
gather rays.

• Store full stratified radiance field.

• Assign age to each stratum.

• Update a small percentage of oldest strata 
(10%) for frame.

• Can also give higher probability to strata 
which “see” moving objects.

Tawara et al. ‘04



Improvements/Extensions

• Ward and Heckbert ‘92 - better interpolation

• Křivánek et al. ‘05a, ‘05b - glossy surfaces

• Tabellion and Lamorlette ‘04 - speed

• Tawara et al. ‘04 - animation

• Yee ‘00 - speed/perception

• Kato ‘02 - parallel/distributed computation

• Arikan et al. ‘05 - speed
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• Participating Media



http://www.kevinyank.com

Participating Media

http://theory.stanford.edu/~kngk

http://mev.fopf.mipt.ru

http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
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Questions?


