SIMD Ray Tracing Tips

Toshiya Hachisuka

} sImMD

= Single Instruction Multiple Data

= Perform the same operation
on multiple data at a time

® Example: addition of vectors

= Non-SIMD
C.X = a.Xx + b.x; c.y = a.y + b.y;
c.z=a.z+ b.z; cc.w =a.w + b.w;

« SIMD
c=a-+b

} sIMD

® One of the keys to achieve
high performance in ray tracing

= Mostly 4-way SIMD
= Can be x4 faster (but difficult to achieve)
« SSE (x86), Altivec (PowerPC)

= Only basic operations
= Add, Subtract, Multiply etc.
= No Dot, Cross

W ...and it is fun to code!

IAoS and SoA

® Array of Structure

m Each vector is a
SIMD variable

m Vector 0 (V[O])
= X, Y,Z, W

m Vector 1 (V[1])
« X, Y,2Z, W

m Vector 2 (V[2])
= X, Y,2, W

m Vector 3 (V[3])
= X, Y,Z, W

Structure of Array

Each array of elements of 4
vectors is a SIMD variable

X elements (vx)
« VvX[0], vx[1], vx[2], vX[3]

Y elements (vy)
= vy[0], vy[1], vy[2], vy[3]

Z elements (vz)
« vz[0], vz[1], vz[2], vz[3]

W elements (vw)
= vW[O], vw[1], vw[2], vw[3]

IAoS and SoA

Vector O

Vector 1

Vector 2

Vector 3

A0S

SOoA

Vector O ...
Vector 1 ...
Vector 2 ...
Vector 3 ...

single SIMD variable

IAoS and SoA

= Pitfalll:
Well... since AoS (a single SIMD variable as
a single vector) sounds natural, let's use it

m Actually, you will prefer SoA in the end
- VX[4]I VY[4]I VZ[4]I VW[4]

= We will see the reason very soon

|Using SIMD Efficiently

m Pitfall2:
Replacing a Vector class by SIMD variable. For
instance, use SIMD add in vector addition.

m [t is not efficient, beecause of additional copies

m Use SIMD locally
= e.g., write SIMD ray-triangle intersection

= Always try to use all 4-elements in SIMD
« A0S is wasteful for 3-elements vectors

ISIMD Ray(s)-Triangle(s) Intersection(s)

= 2 Ways to utilize SIMD

® 4 Rays - Single Triangle Intersection
= Need to bundle 4 rays
= Not trivial, but the state of the art

® Single Ray - 4 Triangles Intersection
= Need to bundle 4 triangles

= Trivial (just use 4 triangles
in a leaf node of BVH)

! Dot Product in SIMD

= Remember:
= a.X*b.x+ay*by+a.z*b.z

» In AoS:
= vdO = a0 * b0; vdl = al * bl;
vd2 = a2 * b2 vd3 = a3 * b3;
= dots[0] = vdO0.x + vdO.y + vdO.z
dots|1] = vdl.x + vdl.y + vdl.z
dots|2| = vd2.x + vd2.y + vd2.z
dots[3] = vd3.x + vd3.y + vd3.z
® In SOA:

-« dots = ax * bx + ay * by + az * bz
= Note that ax = (a0.x, al.x, a2.x, a3.x)

ICross Product in SIMD

® Remember:
= (ay*bz - az*by, az*bx - ax*bz, ax*by - ay*bx)

® In AoS:
= $1#)%#$')% #!
= Need shuffle operations (high latency)
« (ax, ay, az, aw)—>»(ay, az, ax, aw) etc.

m In SOA:
= CrossX = ay*bz - az*by;
« CrossY = az*bx - ax*bz;
« CrossZ = ax*by - ay*bx;
= Straightforward

IBranching in SIMD

® No branch instructions
m Solution: Bit operations

® Example:
= C = (min(a.x,b.x),)

® In SIMD:
= iISAItB = (a < b) // returns (a.x < b.x, ...)
« C = (a &isAltB) + (b & ~isAltB)

IBranching in SIMD

m Example:

« If (a>0){d=ax*d};

®m In SIMD:
=a=Db+ c;
«d=¢e +f;

= iISAgt0 = (a > 0)
«-d=((a*d) &isAgt0) + (d & ~isAgt0)
= Note that we compute a * d always

|Practica| (Annoying) Issues

m In general, all addresses of
SIMD data should be 16-byte aligned

« Address should be 0x1234560
« Usually they are not

m Solution depends on implementation

m Search the Internet
« [t is FAQ

ISummary

m SIMD is the key for high performance
®m Use SoA (structure of array), not AoS
« vX[4], vy[4], vz[4], vw[4]
= Simply replacing Vector by
SIMD is not efficient
® Use masking instead of branching

= Do single ray-4 triangles intersections

= Be aware of the address alignment

! More on SIMD

m Is SIMD useful only for ray-triangle intersection?
B Ray-triangle intersection is not the only one

= Use SIMD for the ray traversal of BVH
« Obvious idea: 4-ary BVH instead of binary BVH
= Each node has 4 child nodes
= Two levels of splits to construct 4 child nodes
= 4 ray-AABBs intersections at a time

® ... and many more (shading, BVH construction etc)
Use wisely!

| Useful Resources

® The article about SIMD ray tracing by Intel
« http://softwarecommunity.intel.com/articles/eng/2658.htm
= Contains SIMD traversal as well (4 rays)

m “Optimizing Ray-Triangle Intersection via Automated Search”
by Kensler and Shirley

« http://www.cs.utah.edu/~aek/research/triangle.pdf
= Perhaps the fastest SIMD ray-triangle intersection code

® “Shallow Bounding Volume Hierarchies for Fast SIMD Ray
Tracing of Incoherent Rays” by Dammertz et al.

« http://www.uniulm.de/fileadmin/website uni ulm/iui.inst.1
00/institut/Papers/QBVH.pdf

- Latest implementation of 4-ary BVH

