
Efficient ray tracing has been a contradic-
tion in terms since its introduction as a

computer version of ideas found in Dürer’s
Underweysung der Messung (1525) and Descartes’ La
Dioptrique (1637). The most effective acceleration tech-
niques developed to reduce ray tracing’s high compu-
tational cost are based on space coherence: bounding
box hierarchies and space subdivision.1 During pre-
processing, a space subdivision algorithm associates
objects with the space elements in which they reside.
During ray runtime, a ray traverses the volume ele-
ments and is tested for intersection only with the objects
inhabiting those voxels.

Partitioning 3D space into a regular mesh of voxels
has attracted much attention.
Fujimoto et al.2 showed that in real-
istic scenes the method combined
with an incremental ray traversal
outpaces the adaptive octree
approach by an order of magnitude.
While octrees avoid excessive space
subdivision in empty and sparsely
populated regions, they require ver-
tical traversal for detecting neigh-
boring cells—a costly process even
with improved methods, such as the
Digital Differential Analyzer (DDA)
octree traversal algorithm. The reg-
ular grid subdivision does not
require vertical traversal, but incurs
an unnecessary overhead of voxel-
to-voxel steps in empty regions.

To deal with the problem, Devillers3 introduced
macroregions, collections of axis-aligned boxes that
replace empty voxel sets. Each empty voxel, possibly
residing in several macroregions, points to the optimal
macroregion, enabling the ray entering the voxel to leap
over the largest number of empty voxels quickly.

Yagel et al.4 proposed a 3D raster ray tracer (RRT) that
operates on a set of unit voxels associated with at most
one object. To achieve a reasonable image quality, the
voxel footprint has to be approximately pixel size. Even
though now a ray-object intersection is found as soon

as a ray enters a nonempty voxel, the method requires
more than one billion voxels to achieve 1K resolution.
This results in staggering memory requirements and an
increased ray traversal cost.

Cohen and Sheffer5 mitigated the latter problem with
proximity clouds—a method that stores in each subdi-
vision cell the distance to the nearest nonempty cell—
improving the RRT’s performance by 30 percent in
simple sparse scenes.

The regular grid is conceptually simple, efficient, and
easy to implement. However, it cannot meet the con-
tradictory requirements of sufficient space decomposi-
tion in the densely populated areas and the need to
avoid excessive partitioning in a scene’s void regions.
Although alternative solutions that mix space subdivi-
sion types accelerate ray tracing to some degree, they
might present challenges such as maintenance, read-
ability, reliability, and code size problems. In this arti-
cle we attempt to alleviate the uniform grid’s
weaknesses while capitalizing on its strengths.

Best of both worlds
Our basic idea nests regular grids hierarchically. Thus,

when a ray enters a voxel, the algorithm first computes
intersections between the ray and all objects in the voxel.
If an object is a grid, the ray proceeds into that grid to
check for additional intersections. Figure 1 illustrates
this concept.

Snyder and Barr6 were first to introduce a ray-tracing
uniform grids hierarchy. Although some of their
improvements became standard ray-tracing systems
components, the hierarchical grids concept passed unno-
ticed because no one investigated the actual impact of
hierarchical grids on rendering times. Snyder and Barr’s
work presented several questions, such as how to decide
each grid resolution or how to organize complex mod-
els for efficient ray tracing. In this article, we try to fill
these gaps and expand upon the multiple grids concept.

The structure in Figure 1 enables the ray on the right
to travel rapidly through a scene’s empty areas. If a ray,
such as the one on the left, enters more complex scene
regions, an acceleration structure—a local grid bound-
ing an object or a group of objects—aids it. But is this

Faster Ray Tracing
Using Adaptive
Grids

0272-1716/97/$10.00 © 1997 IEEE

New Image-Generation Techniques

42 January-February 1997

A new hybrid approach

outperforms the regular grid

technique in scenes with

highly irregular object

distributions by a factor of

hundreds, and combined

with an area interpolator, by

a factor of thousands.

.

Krzysztof S. Klimaszewski
Cimetrix

Thomas W. Sederberg
Brigham Young University

grid type any better than an octree or a macroregion (see
Figure 2)?

An octree might require many subdivisions to isolate
an object. This results in a deep hierarchy and an expen-
sive vertical ray traversal. Moreover, octrees suffer from
the “teapot in a stadium” problem, in which large size
disproportions between rendered objects result in deep
trees and insufficient space decomposition. The
macroregions’ strength apparently stems from the lack
of hierarchy. Nevertheless, macroregions still have to be
entered and exited. Since they can overlap, you have to
make a correct decision regarding
which one to use as a vehicle for
passing through the scene. The uni-
form grid applied locally in Figure 2
acts as both a bounding box isolat-
ing objects from a scene’s void and
a means of space decomposition in
the object’s vicinity (which might
contain many smaller primitive
objects). The grid’s resolution can
be set as the local conditions
demand, while macroregions pre-
serve the original grid’s resolution.
Further, a local grid bounding vol-
ume is the minimum, thus a more
efficient, axis-aligned bounding box.
Again, macroregions produce larg-
er bounding boxes based on the underlying grid.

As Figure 3 illustrates, macroregions applied to a
scene with slanted surfaces often result in an excessive
number of empty overlapping areas. In our method,
local uniform grids can also overlap. However, the num-
ber of grids does not depend on an object’s shape or ori-
entation. Local grids thus combine the octrees’
adaptability with the macroregions’ efficiency in empty
areas. They also increase the uniform grid’s efficiency
in densely populated areas.

Spatial associations
Because local grids act as bounding boxes, structur-

ing them hierarchically is advisable. To create efficient
hierarchy grids, we would put them in densely popu-
lated areas during preprocessing. Devillers3 proposed a
method to detect such areas. The technique, however,
is difficult and expensive, and as we said before, does
not produce the most efficient bounding boxes. Many
design systems ensure that modeler grouping and hier-
archies are based on spatial relationships and proximi-
ty, which aids efficient ray tracing. However, while tree
nodes usually contain spatially associated objects, the
hierarchy itself can be unsuitable for fast ray tracing,
having been generated primarily to simplify modeling of
the scene. Therefore, we need to organize these nodes
into a new hierarchy that lends itself to fast ray tracing.

Grid hierarchy and its serendipity
To ensure that the local grids’ bounding box function

performs well, we apply a grids hierarchy by using
Goldsmith and Salmon’s algorithm.7 In this approach,
the criterion of the minimum total bounding volume
surface area guides the structure’s construction. The

algorithm addresses the question of generating an effi-
cient bounding volumes hierarchy, given a set of objects
or their clusters. The problem of regrouping and chang-
ing the number of object clusters obtained from a mod-
eler to improve performance has not been solved. Since
the number of possible hierarchical arrangements grows
exponentially with the number of objects, exhaustive
search is usually impractical. This issue becomes even
more complex when we attempt to convert the bound-
ing boxes surrounding the clusters into uniform grids.

After finding a low-cost bounding box hierarchy, we
can increase the speed of finding intersections with the
objects by voxelizing the boxes. This leads to a uniform
grids hierarchy in which grids are treated as regular
primitive objects and appear on the lists of objects resid-
ing in the parent grids’ voxels. The objects enclosed in a
grid are listed only within this immediate grid and are
not visible to the parent grid.

For most scenes, this approach gives significantly bet-

IEEE Computer Graphics and Applications 43

1 Adaptive
grids.

(a) (b) (c)

2 Comparing
(a) the octree,
(b) macro-
regions, and
(c) adaptive
grids.

Macroregions Uniform grids

3 Overlapping
of macroregions
and grids.

.

ter timings than the standard regular grid algorithm.
Nonetheless, through simple experiments we find that
different object groupings in the same scene—conse-
quently, different grid numbers, sizes, and resolutions—
result in different speedups. We made a serendipitous
discovery that substituting grids containing object clus-
ters close to one another with one larger grid usually
improves the rendering speed. Our goal is to avoid large
disparities among voxel populations, or reduce a scene’s
nonuniformity, which is a ratio of standard deviation
over the average voxel occupancy.

Grid merging
To make merging close grids efficient, we condition-

ally replace two candidate bounding boxes with a new
one before voxelization (hence, grid merging is merely
box merging). The new bounding box surrounds the two
dependent boxes tightly. To qualify the candidates, we
require that the proposed new bounding box’s surface
area, A, be smaller than a prescribed fraction, f, of the
sum of the surface areas of the two boxes to be merged,
A1 and A2 (Figure 4a):

(1)

A bounding box with only a small void area between
itself and another bounding box causes most rays enter-
ing the parent box to also hit the child box. Thus, the
inner box intersection calculations are wasted.
Accordingly, we ensured that the new grid is sufficient-
ly smaller than the root grid of area Ar (Figure 4b):

(2)

The f and m factors may have to be found experi-
mentally for implementations supporting different
primitive types or utilizing different ray traversal
schemes. Since optimum grid formulas involve times to
perform certain runtime operations, optimum values of
f and m may vary from machine to machine.

We ensured that individual bounding boxes were effi-
cient by removing the underpopulated ones. Otherwise,
the cost of intersecting a ray with a box would be close
to the cost of intersecting the object inside, and the box
would reduce processing speed. Although we removed
the boxes containing one element, systems with a rich
variety of primitive objects might rate them according to
their individual costs and declare “underpopulation” at
different thresholds.

In certain instances, underpopulated bounding boxes
prevail, while their contents en masse form spatially
related and densely populated clusters. Removing all
bounding boxes in this instance would result in a struc-
ture as inefficient as the object arrangement the process
began with. Therefore, we mark the objects whose
bounding boxes were deleted as “orphans.” The orphan
objects are then placed in an additional bounding box,
which later will be fed into the box merging process
along with all other bounding boxes. The resulting
orphanage grid (Figure 5) is usually more efficient than
the larger existing grids to which the orphan objects
would otherwise have to be added.

After merging all close bounding boxes, we tested the
surviving ones to check if they contained any other
bounding boxes. If a box tests positively, we verify that
its potential child is sufficiently smaller than the box. In
general, we want to preserve boxes that are small com-
pared to the surrounding box and get rid of larger ones.
This means that the parent bounding box with surface
area A might have to be merged with its child, if

(3)

where Ac is the child box’s surface area and m is the
embedding factor from Equation (2). Every box removal
makes the structure less complex and potentially less

deep. Since the calculations of the
area of an x1 by x2 by x3 bounding box
may be repeated many times during
the hierarchy’s construction, the
area ratios in equations 1 through 3
can be computed most efficiently if
we use the half area formula x1x2 +
(x1 + x2)x3.

The next step is connecting the
remaining bounding boxes into a
hierarchy through Goldsmith
Salmon’s algorithm, after which
individual boxes are voxelized. The
result is a uniform grids hierarchy.
Each grid is now well adapted to
local conditions, since its size is

A

A
mc >

A

A
m

r

<

A

A A
f

1 2+() <

New Image-Generation Techniques

44 January-February 1997

A1
A

A2

A
Ar

(b)(a)

4 Bounding
box merging.
(a) Replacing
two candidate
bounding boxes
with (b) a more
efficient bound-
ing box for
optimal vox-
elization.

Orphanage grid

5 Orphanage grid. Many objects
left without bounding boxes after
removing underpopulated extents
“coagulate” into spatially related
clusters. A new common bounding
box should be made for them and
later undergo the merging process
with all other bounding boxes.

.

determined by the objects’ extent
and its resolution by the number of
objects enclosed by the grid. A leaf
grid usually contains many
objects—none of them visible to any
other grid. The objects are distrib-
uted more evenly, which speeds up
ray-object intersections. Because
objects are hidden in subgrids, grids
higher in the hierarchy split into few
voxels. This expedites fast ray tra-
versal through empty scene regions.
The whole process—performed dur-
ing the preprocessing phase—is
view independent. Therefore, as
long as the objects remain unmodi-
fied, the same grid hierarchy can be
used for multiple renderings. A hier-
archy thus created usually has very
little in common with the structure built by the user dur-
ing the modeling process; it is suitable for rapid ray trac-
ing. Figure 6 outlines the algorithm. A few passes
through the list of bounding boxes are necessary, but
the cost of the operation is not too high because the list
shortens significantly after merging boxes that are in
close spatial proximity to one another.

Heterogeneous grids
Since tessellation speeds up ray tracing procedural

surfaces, we can assume that distributing polygons over
a surface will be relatively uniform and that the poly-
gon sizes will be similar. Consequently, distributing the
polygons will cause most of them to face the largest sides
of a bounding box. More voxels will be needed along the
longer edges of the bounding box, as shown in Figure 7.

This tendency is ignored by the popular formula

(4)

to calculate the total number of voxel rows, N, in a grid
containing n objects. Let us assume that the voxel allo-
cation is proportional to the lengths of the edges, x1, x2,
and x3 of the grid. Under such conditions, the respec-
tive numbers of voxels along these edges, N1, N2, and N3,
are computed as

(5)

where square brackets denote a round-up operation.
These heterogeneous grids also help avoid numerical
problems due to excessively subdividing very thin local
grids and often reduce ray-tracing time. Rarely can so
much be gained in the rendering realm for so little.
Replacing regular grids with heterogeneous grids affects

only the ray initialization and traversal routines with
minor modifications. The effect that heterogeneous
grids have on rendering selected scenes is shown in
Table 1 (next page), in which heterogeneous grid per-
formance is compared with the performance of an iden-
tical local grid hierarchy of homogenous grids.

Subvoxel grids
Even with grids applied locally in a hierarchical fash-

ion and using heterogeneous grid subdivision, some
voxels may remain overpopulated. Rays in such voxels
will spend too much time searching for only one visible
intersection. To equalize the object distributions there,
we insert subvoxel grids, an improved version of the
adaptive voxel subdivision proposed by Jevans and
Wyvill.8 Instead of stretching an overpopulated voxel’s
grid limits to the boundaries, we can convert only the
bounding box of the objects residing in the voxel into a
grid, as illustrated in Figure 8 (next page). Subdividing
only the box in lieu of the whole voxel increases the ratio
of nonempty voxels to empty voxels and improves the
whole grid structure’s adaptability. The ray box defined
by the two points at which a ray pierces the current voxel
quickly determines if a ray misses a subvoxel grid. If one
of the six comparisons shown in Figure 8b gives a posi-
tive result, all the objects inside the subvoxel grid are
trivially rejected. Otherwise, a more accurate ray-box

N
nx

x x

N
nx

N x

N
n

N N

3
3
2

1 2

3

2
2

3 1

1
2 3

=














=












=












 N n= 3

IEEE Computer Graphics and Applications 45

FOR all nodes of modeler hierachy
surround node with bounding box

/*Create unstructured grids*/
FOR all bounding boxes

merge close boxes
/*Create structured grids*/

FOR all remaining bounding boxes
insert box into tree using minimum

surface criterion (Goldsmith
and Salomon 1987)

IF box surface area is too large OR
box is underpopulated merge box
with its parent

FOR all bounding boxes in hierarchy
voxelize box

6 Pseudocode
for creating an
adaptive grids
hierarchy.

(a) (b)

7 (a) Homo-
geneous grid
and (b) hetero-
geneous grid.

.

intersection test is performed. The ray box can be
dynamically shrunk to the box defined by the ray’s entry
point and the nearest intersection point each time the
latter has been found inside the voxel box. The technique
is applicable to local grids as well.

Obviously, a subvoxel grid is a ray-
tracing microcosm in its own right.
All that we have said about tracing
rays in regular grids holds here too,
including local, heterogeneous, and
subvoxel grids—all of which could
be generated recursively. However,
the enhancements applied on the
hierarchy’s higher levels have
already alleviated the problems that
might call for similar measures with-
in subvoxel grids. Experiments show
that one subvoxel grid generation
accelerates ray tracing in the local
grids’ environment up to 50 percent.
Next generations, however, con-
tribute much less and incur severe
memory and preprocessing time
penalties. Figure 9 outlines the sub-

voxel grid enhancement.
Caspary9 concluded that for the octree, five objects

per cell was the optimum. The results shown in Table 2
indicate that adaptive grids are more memory-efficient,
since as larger speedups are achievable when more than

five objects populate a voxel. The
rows in Table 2 contain the results
obtained for the same local grids’
hierarchy, each with a different
maximum number of objects per
voxel and/or a different number
of subvoxel grid generations
(Max_Objects and Max_Levels in
Figure 9, respectively). The first row
contains the results obtained when
no subvoxel grids were generated.
The gain factor in the last column
was computed with respect to the
first row’s timings.

Results
The adaptive grid algorithm was

tested on a Hewlett-Packard
730CRX24Z workstation with a 66-
MHz clock, and 96 Mbytes of main
memory, rated at 23.7 Linpack dou-

New Image-Generation Techniques

46 January-February 1997

Table 1. The influence of heterogeneous grids on ray-tracing time.

Heterogeneous Empty Tracing Time Speedup of
Grids Voxels (%) Nonuniformity (mm:ss) Previous Row

Bezier patch* No 86.2 2.8 1:54 —-
Yes 25.7 0.7 0:49 2:31

F15 No 91.5 6.1 2:42 —-
Yes 90.0 5.5 2:21 1.15

Teapot No 81.4 3.9 1:28 —-
Yes 79.9 3.5 1:19 1.12

Mirrors No 89.8 6.1 29:14 —-
Yes 79.8 5.2 22:43 1.29

*Bezier patch is a flat tensor product patch parallel to the projection plane and tesselated into 1,922 triangles. The other
test scenes contain very few axis-aligned elements.

(a) (b)

Sleft > Rright
or

Sleft > Rright
or

Sbottom > Rtop
or

Sbottom > Rtop
or

Snear > Rfar
or

Snear > Rfar
Subvoxel

grid

Voxel Ray
box

R

S

8 (a) Subvoxel
grid and its
culling using
(b) a ray box.

9 Pseudocode
for recursive
subvoxel grid
decomposition.
Max_Objects is
the maximum
number of
objects per
voxel.
Max_Level is
the maximum
depth of the
voxel grid tree.

FOR each grid in the local hierarchy
recursion_level = 0
GenerateSubvoxelGrids
(grid, recursion_level)

procedure GenerateSubvoxelGrids (grid, level)
level = level + 1
FOR each voxel of grid

IF the number of objects in the voxel
> Max_Objects

determine the extent of the objects in
the voxel

subdivide the object extent into a
heterogeneous voxel_grid (Eq. (5))
IF level < Max_Levels

GenerateSubvoxelGrids
(voxel_grid, level)

.

ble Mflops, or 76.0 Dhrystone MIPS. To compare our
method with other space subdivision methods, we com-
puted a gain factor as a ratio of a timing for our method
and a timing for the regular grid method. We chose reg-
ular grid subdivision as a benchmark for the new algo-
rithm because numerous comparisons between the
regular grid and other methods existed, making an indi-
rect comparison possible. Both algorithms incorporat-
ed exactly the same enhancements wherever applicable.
The regular grid method was derived from an optimized
production code; the two algorithms access the same
traversal code, requiring two additions and two com-
pares to step from one voxel to another. All pictures were
generated at 512 by 512 pixel resolution.

The eight test images shown in Figures 10 through 17
on the following pages represent a large variety of scene
complexity, both in terms of the number of objects and
their spatial distribution. For example, if compiled into
a 10 by 10 by 10 grid, Teapot (Figure 12) and Space
(Figure 17) differ in their object “dispersion” over the
voxels by a factor of 1 to 442. With the exception of
Space, the scenes are characterized by full screen cov-
erage, that is, the images contain no background pixels.

The results are presented in Table 3. Compared to the
regular grid, adaptive grids equalize voxel occupancy,
even though they slightly increase (double, on the aver-
age) the mean voxel population. At the same time, how-
ever, the algorithm reduces the dispersion, symmetry,
and peakedness of the object distribution, mathemati-
cally characterized by variance, skewness, and kurto-
sis, respectively. More important, the distribution’s

nonuniformity diminishes dramatically.
The same arbitrarily chosen conditions were applied

to all the scenes. Local grid merging was performed in
accordance with Inequalities 1 through 3, at f = 2.0 and
m = 0.1. One level of subvoxel grids was created inside
the voxels containing more than 12 objects (Max_Levels
= 1 and Max_Objects = 12 in Figure 9).

The adaptive grid algorithm resulted in a significant
speedup. The most sparse scenes, Space (Figure 17) and
Eagles (Figure 16), manifested the largest improvement.
Now they can be rendered nearly as fast as the scenes
with ten times less objects (for example, Museum
(Figure 13) and Flake (Figure 10)). The speedup is
smaller for the more compact scenes, since they contain
a large number of equally sized and relatively uniform-
ly distributed objects in close proximity to one another.
An example of such a scene is Mirrors (Figure 14), with
its finely triangulated parametric patches congregating
closely in a tight space.

Results in perspective
Flake enjoys a special place among the data sets used

to test various programs and hardware configurations
supporting ray tracing. Along with the Utah teapot, it is
the image seen most frequently in ray-tracing publica-
tions. By comparing the adaptive grids’ efficiency with
Flake’s best results, we will be able to see our own results
in a better perspective.

Flake is an example of a scene with a large prepro-
cessing expense (see Table 3). In this scene, each of the
7,381 spheres is put into a separate node in the model-

IEEE Computer Graphics and Applications 47

Table 2. The influence of sobvoxel grids on ray tracing. The scene is Teapot.

Max Object
Per Voxel Voxel Grids Total Gain Factor
on Level: on Level: NumberNonempty CPU Time (seconds) With Respect

1 2 3 1 2 3 of Voxels Voxels (%) Preprocessing Tracing to First Row

— — — — — — 7,592 20 1.1 77.4 —
8 — — 814 — — 24,709 51 1.8 54.7 1.42
8 8 — 814 3,255 — 57,445 69 6.5 53.3 1.45
8 8 8 814 3,255 5,090 104,692 77 20.0 52.5 1.47
5 — — 954 — — 25,491 51 1.8 57.2 1.34
2 — — 1,415 — — 26,567 52 2.0 65.8 1.18

Table 3. The efficiency of the adaptive grid algorithm.

Regular (n1/3 × n1/3 × n1/3) grid Adaptive grids Total Runtime
Number of Non- Pre- Ray Non- Pre- Ray Gain Gain
Primitives n uniformity processing Tracing uniformity processing Tracing Factor Factor

Flake 7,382 19.5 0:02 45:14 1.2 1:32* 1:14 16.4 36.7
F15 7,021 22.5 0:01 29:05 1.9 0:02 0:38 43.7 46.0
Teapot 7,742 11.6 0:01 15:47 1.5 0:02 0:55 16.6 17.2
Museum 11,512 66.5 0:02 35:24 1.7 0:04 2:38 13.1 13.4
Mirrors 123,008 14.0 0:16 54:48 1.7 0:43 10:47 4.8 5.1
Car 86,155 32.5 0:11 1:19:08 1.5 0:24 2:13 30.3 35.7
Eagles 85,412 104.1 0:18 15:51:08 4.5 0:26 1:25 514.3 671.4
Space 103,699 125.2 0:13 13:24:35 3.0 0:27 3:33 201.2 226.6

*Worst case—reduces to 0:04 for best case. CPU time shown in the hh:mm:ss format.

.

ing hierarchy. Our algorithm merges most of the nodal
bounding boxes while testing if each new larger box
should be merged with the other boxes. The process is
time consuming. However, the modeling structure used
as the starting point is an unlikely arrangement, since
all the spheres form one cluster. As we pointed out ear-
lier, most modelers would place the objects in a few
nodes, or even in a single node. Therefore, Flake’s pre-
processing time is a worst-case timing. When all the
spheres are placed in one node, the scene’s spatial
decomposition takes only 4.5 seconds. Although we
have succeeded in making the adaptive grids’ organi-
zation largely independent of the starting object hier-
archy, the time it takes to create it remains the original
structure’s function.

Extended preprocessing times are not unusual for
accelerated ray tracers. Yagel4 found that the prepro-
cessing time in RRT was linear in the number of objects.
Yagel’s example lets us compute the time needed to vox-
elize Flake using the RRT method for the required 5123

resolution as up to five times (424 seconds) longer than
the time required for the adaptive grid method’s worst
case.

Unlike Devillers3 and Yagel,4 we did not tweak the
data in Flake. Devillers explained the dramatic speed
improvement he achieved for this scene—from more
than 16 hours to 43 minutes—solely by making the
background plane smaller. This is an expected result in
light of what we have said about the detrimental influ-
ence scene sparseness has on ray tracing’s efficiency.
Reducing the background plane in Flake or removing it
completely (Yagel) is equivalent to decreasing the
scene’s sparseness. Nevertheless, we attempted to ren-
der Flake under conditions similar to those in Yagel’s
paper. The results appear in Table 4.

The 91-sphereflake (Figure 18) and 820-sphereflake
(Figure 19) duplicate the scenes shown by Yagel. We sim-
ulated the case of the 7,381-sphereflake without the sup-
port plane using the recursive structure in Figure 10. The
computing platform we used was 3.8 times faster than the

New Image-Generation Techniques

48 January-February 1997

10 Flake. 11 F15.

12 Teapot. 13 Museum.

.

computer on which RRT was tested, as reflected in the
“Scaled” column of Table 4. The gain factor resulted from
comparing the scaled results with the RRT’s speed. In all
the test cases the preprocessing was much shorter with
adaptive grids than with RRT. The three images contain
many background pixels and only one compact object
cluster. Such scenes are seldom found in the real world,
and the adaptive grid approach is not designed for them.
In spite of that, our results suggest that adaptive grids out-
perform RRT by a substantial margin even in an unfavor-
able environment. Additionally, the new algorithm
exhibits a higher degree of scene independence: While

the image in Figure 19 on the next page required some 40
percent more time than the image in Figure 18, the same
difference in the case of RRT exceeded 300 percent.

Proximity clouds5 intended to accelerate RRT by skip-
ping a 3D grid’s empty regions would not have had much
impact on the comparison’s outcome. The 30-percent
speedup reported for proximity clouds was achieved with
scenes whose volumetric sparseness resembles that of

IEEE Computer Graphics and Applications 49

16 Eagles.

17 Space.

14 Mirrors.

15 Car. Designed by Gary Morales using Evans &
Sutherland’s CDRS software.

Table 4. The efficiency of raster subdivision and adaptive grids in a compact Flake.

Rendering Time (seconds)
Scene Image Screen Raster Adaptive Grids Gain

Resolution Subdivision Unscaled Scaled Factor

91-sphereflake Figure 18 320 × 320 85.0 10.7 40.7 2.1
820-sphereflake Figure 19 320 × 320 352.0 15.0 57.0 6.2
7,381-sphereflake Figure 10* 256 × 256 38.4 9.1 34.6 1.1
*Modified—without the background plane.

.

Car and other test scenes in this article rather than any of
the images in Yagel’s original article.4

A similar comparison of the results achieved for Flake
on the Pixel Machine10 showed that adaptive grids per-
formed roughly 7.1 times better than the (unidentified)
algorithm running on the AT&T supercomputer.
Reportedly, that algorithm improved on a hierarchical
bounding box approximately 1,000-fold.

Museum attempts to duplicate Snyder’s Teapot
Museum Piece.6 The image, containing 15 percent more
elements than the original, was antialiased and ren-
dered approximately 10 times faster than the manually
tuned search structure used in the adaptive grids’ 1987
predecessor.

Using adaptive grids does not preclude applying any
acceleration techniques devised either for the uniform
grid or for the ray tracer built around a routine tracing
a single ray. To verify that, we combined the algorithm
with an adaptive area sampling scheme.11 The scheme
takes advantage of the human eye’s low keenness and
samples the image space sparsely. This reduces the num-
ber of calls to the mentioned single ray routine. Even

without selecting optimal parameters controlling area
sampling, rendering time for each of the scenes
increased by 50 percent. For example, the runtime gain
factor from Table 3 for Eagles rose from 671 to 1,927.

Memory considerations
The memory requirements for regular grids are rel-

atively high. Admittedly, developing the adaptive grid
algorithm was driven mainly by the need to improve
ray tracing’s efficiency. Each new voxel requires stor-
age space, and subvoxel grids can quickly multiply the
number of voxels. Additionally, each grid (excluding
voxels) occupies some space in memory. Almost as a
rule, the number of subvoxel grids dwarfs the number
of local grids.

However, adaptive grids do not require more than one
or two subvoxel grid levels. The memory cost then has
never been prohibitive. Table 5 summarizes the memo-
ry requirements for spatial decompositions of the test
scenes using adaptive grids and compares them with
the uniform grid’s memory requirements. The maxi-
mum cost recorded during preprocessing is shown in
megabytes. Since some auxiliary arrays are not used
during runtime any longer, small amounts of memory (4
to 11 percent in the case of the tested scenes) are
released. Further savings are made using hashing and
bit-encoding techniques.

Future directions
Our new decomposition technique is a hybrid of a few

known methods. This article illustrates the still
untapped resources lurking in previous work. It is not
difficult to envision other potentially successful mutant
systems. For example, Devillers’ macroregions3 might
adopt our adaptive grids in the nonempty areas to avoid
focusing solely on empty areas. In RRT, the discrete ray
traversal algorithm consumes up to 90 percent of the
ray tracer execution time,4 and the entire approach
normally requires a huge amount of memory.5 Adaptive
grids reduce the ray traversal time considerably in a
scene’s empty regions and have moderate memory
requirements. It would be extremely interesting to find
out how raster voxelization within adaptive grids would
compare with each of the techniques individually.

Axis-aligned rectangular grids have a few nice fea-
tures that simplify the algorithm and its implementa-
tion, but their bounds do not provide the tightest fit
possible. To achieve a better fit, arbitrarily oriented grids

New Image-Generation Techniques

50 January-February 1997

18 91-sphere-
flake.

19 802-sphere-
flake.

Table 5. Memory requirements.

Regular Adaptive
Grid (Mb) Grids (Mb)

Flake 0.10 0.39
F15 0.13 0.50
Teapot 0.12 0.53
Museum 0.16 1.14
Mirrors 2.21 7.24
Car 2.40 4.39
Eagles 1.04 3.02
Space 1.24 4.79

.

should be used. Preliminary tests showed that Car, for
example, is rendered 26 percent slower if the vehicle is
oriented so that the empty space in the axis-aligned
grids is maximized. This does not mean that arbitrarily
oriented grids would speed up a scene’s rendering by
the converse 26 percent because arbitrary orientation
requires that each ray be converted to the local coordi-
nate systems of all the grids it visits. Moreover, the opti-
mizations relying on the common orientation of various
boxes, as shown in Figure 8, would no longer be possi-
ble. Wu12 suggested that a near-optimal orientation of
such grids could be determined using either multivari-
ate calculus or interval arithmetic. We found that a
method based on an inertia tensor is considerably less
expensive11 and plan to apply it when exploring arbi-
trarily oriented grids concepts.

Voxelization in our implementation is based on extent
overlapping—a fast yet very inaccurate method that can
mark all voxels in a grid containing a tesselated sphere
as populated with no regard to the subdivision’s reso-
lution. A more accurate procedure might treat a voxel
as an interval and evaluate a surface’s implicit equation
at each voxel according to interval analysis rules. The
interval test would have to be performed only for those
voxels that overlap an object’s bounding box. We are cur-
rently implementing this technique.

As this article was going to press, it came to our atten-
tion that an alternate algorithm for determining a uni-
form grids hierarchy was proposed.13 A comparison of
the two methods is in order.

Conclusion
Much has been said about scene independence of dif-

ferent acceleration techniques and alleged superiority of
one approach over another. Several theoretical and
practical studies conducted in the past have lead to the
same conclusion: a space partitioning method that
allows the fastest rendering of one scene often fails with
another. Specialization may be the answer. This has
always been pursued, consciously or not, in developing
various ray-tracing systems. Despite our new algo-
rithm’s impressive efficiency, we don’t interpret the new
method as the fastest ray-tracing scene decomposition
possible. This is because our recent groundwork exper-
iments with a derivative method produced in some of
the test scenes presented here produced timings better
by approximately 50 percent. ■

References
1. A.S. Glassner, Introduction to Ray Tracing, Academic Press,

London, 1989.
2. A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated

Ray-Tracing System,” IEEE CG&A, Vol. 6, No. 4, Apr. 1986,
pp. 16-26.

3. O. Devillers, “The Macroregions: An Efficient Space Sub-
division Structure for Ray Tracing,” Proc. Eurographics 89,
Elsevier North-Holland, Amsterdam, 1989, pp. 27-38.

4. R. Yagel, D. Cohen, and A. Kaufman, “Discrete Ray Trac-
ing,” IEEE CG&A, Vol. 12, No. 5, Sep. 1992, pp. 19-28.

5. D. Cohen and Z. Sheffer, “Proximity Clouds: An Accelera-
tion Technique for 3D Grid Traversal,” The Visual Comput-
er, Vol. 11, 1994, pp. 27-38.

6. J.M. Snyder and A.H. Barr, “Ray Tracing Complex Models
Containing Surface Tesselations,” ACM Computer Graph-
ics (Proc. Siggraph), Vol. 21, No. 4, Jul. 1987, pp. 119-128.

7. J. Goldsmith and J. Salmon, “Automatic Creation of Object
Hierarchies for Ray Tracing,” IEEE CG&A, Vol. 7, No. 5, May
1987, pp. 14-20.

8. D. Jevans and B. Wyvill, “Adaptive Voxel Subdivision for
Ray Tracing,” Proc. Graphics Interface 89, Nat’l. Research
Council of Canada, Ottawa, Ontario, 1989, pp. 164-172.

9. E. Caspary, Sequential and Parallel Algorithms for Ray Trac-
ing Complex Scenes, doctoral dissertation, Univ. of Califor-
nia, Santa Barbara, Dept. of Electrical and Computer
Engineering, 1988.

10. M. Potmesil et al., “A Parallel Image Computer with a Dis-
tributed Frame Buffer System Architecture and Program-
ming,” Proc. Eurographics 89, Elsevier North-Holland,
Amsterdam, 1989, pp. 197-208.

11. K.S. Klimaszewski, Faster Ray Tracing Using Adaptive Grids
and Area Sampling, doctoral dissertation, Brigham Young
Univ., Provo, Utah, Dept. of Civil and Environmental Engi-
neering, 1994.

12. X. Wu, “A Linear-Time Simple Bounding Volume Algo-
rithm,” Graphics Gems III, Academic Press, San Diego,
Calif., 1992, pp. 301-306.

13. F. Cazals, G. Drettakis, and C. Puech, “Filtering, Clustering
and Hierarchy Construction: A New Solution for Ray-Trac-
ing Complex Scenes,” Proc. Eurographics 95, Blackwell Pub-
lishers, Cambridge, Mass., 1995, pp. C371-C382.

Kris Klimaszewski is a senior soft-
ware engineer at Cimetrix in Utah. His
current interests include computer
graphics, scientific visualization, soft-
ware engineering, and human-
computer interaction. Klimaszewski
received an MS in mechanical engi-

neering from Warsaw Technical University and a PhD in
civil engineering from Brigham Young University.

Thomas W. Sederberg is a profes-
sor in the Department of Computer
Science at Brigham Young University,
with research interests in computer
graphics and computer-aided geo-
metric design. He received a PhD from
Purdue University in 1983. He serves

on the editorial boards for Computer-Aided Design and
Computer Aided Geometric Design and was papers chair
for Siggraph 91.

Contact Sederberg at Dept. of Computer Science,
Brigham Young University, Provo, Utah, 84602, e-mail
tom@byu.edu.

IEEE Computer Graphics and Applications 51

.

