
Irradiance Caching Methods

Wojciech Jarosz
CSE 168

May 27, 2008

Outline

Outline

• Introduction

• What is indirect illumination?

Outline

• Introduction

• What is indirect illumination?

• What is Irradiance Caching?

Outline

• Introduction

• What is indirect illumination?

• What is Irradiance Caching?

• Extensions to Irradiance Caching

Outline

• Introduction

• What is indirect illumination?

• What is Irradiance Caching?

• Extensions to Irradiance Caching

• Future Work

Direct Illumination

Comparison

RealSimulated

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Computing Indirect Illum.

Direct Illumination

Direct + Indirect Illum.

Indirect Illumination

Direct Illumination

Direct Illumination

What’s missing?

Direct + Indirect Illum.

• Direct illumination is easy

• We will focus only on indirect illumination

Path Tracing

4 rays/pixel

Kajiya ‘86

Path Tracing

8 rays/pixel

Kajiya ‘86

Path Tracing

16 rays/pixel

Kajiya ‘86

Path Tracing

32 rays/pixel

Kajiya ‘86

Path Tracing

64 rays/pixel

Kajiya ‘86

Path Tracing

128 rays/pixel

Kajiya ‘86

Photon Mapping

100000 photons / 50 photons in radiance estimate

Henrik Wann Jensen

Direct Visualization

Photon Mapping

500000 photons / 500 photons in radiance estimate

Henrik Wann Jensen

Direct Visualization

Final Gather

Motivation

• Tracing rays is costly.

• High-quality indirect illumination may
require hundreds of gather rays per pixel
for noise-free results.

• Hence, computing indirect illumination in
this naive way is very costly.

Outline

• Introduction

• What is Irradiance Caching?

• Extensions to Irradiance Caching

• Future Work

Irradiance Caching

• Irradiance caching was introduced by Ward
et al. in 1988.

Ward et al. ‘88

Direct Illumination

Indirect Illumination

Interpolate Indirect Illum.

4621 samples

Ward et al. ‘88

Irradiance Caching

• Some questions that remain:

• How do we compute the indirect
illumination values?

• What criterion is used to determine
whether a cache point is ``near?''

• How do we interpolate the nearby
cached values?

Ward et al. ‘88

What is Irradiance?

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Ward et al. ‘88

What is Irradiance?

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Ward et al. ‘88

What is Irradiance?

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Ward et al. ‘88

What is Irradiance?
Ward et al. ‘88

Nearly impossible to solve analytically!

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance
Ward et al. ‘88

Computing Irradiance

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Ward et al. ‘88

Computing Irradiance

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

Ward et al. ‘88

Computing Irradiance

E(x) =

∫
Ω

Li(x, !ωi)(!ωi · !n) d!ωi

E(x) ≈
π

N1N2

N1∑

j=1

N2∑

i=1

Li(x, θj , φi),

where:

θj = sin
−1

(

√

j − ξ1

N1

)

, φi = 2π
i − ξ2

N2

Ward et al. ‘88

Interpolating Irradiance

• We wish to minimize the number of times
we compute this costly irradiance integral.

• How far away can we reuse a cache point?

Ward et al. ‘88

Interpolating Irradiance

• Ward et al. derived an approximate formula
for this error function.

• Error function is decomposed w.r.t.
translation and orientation.

• Translation: function of distance to cache
point & average distance to surface visible
at cache point.

• Orientation: function of rotational offset

Ward et al. ‘88

Interpolating Irradiance
Ward et al. ‘88

Interpolating Irradiance
Ward et al. ‘88

Interpolating Irradiance
Ward et al. ‘88

E(x)

Interpolating Irradiance
Ward et al. ‘88

E(x)E(x) E(x')?

What happens if we re-use E(x) at E(x’)?

Interpolating Irradiance
Ward et al. ‘88

E(x)E(x) E(x')?

{

∆x

E(x) E(x+∆x)?

What happens if we re-use E(x) at E(x’)?

Interpolating Irradiance
Ward et al. ‘88

E(x)E(x) E(x')?

{

∆x

E(x) E(x+∆x)?{
∆x

E(x) E(x+∆x)?

What happens if we re-use E(x) at E(x’)?

Interpolating Irradiance
Ward et al. ‘88

E(x)E(x) E(x')?

{

∆x

E(x) E(x+∆x)?{
∆x

E(x) E(x+∆x)?

E(x′) ≈ E(x) +

(

∂E

∂x
(∆x) +

∂E

∂ϕ
(∆ϕ)

)

What happens if we re-use E(x) at E(x’)?

Interpolating Irradiance
Ward et al. ‘88

E(x)E(x) E(x')?

{

∆x

E(x) E(x+∆x)?{
∆x

E(x) E(x+∆x)?

E(x′) ≈ E(x) +

(

∂E

∂x
(∆x) +

∂E

∂ϕ
(∆ϕ)

)

error

What happens if we re-use E(x) at E(x’)?

Interpolating Irradiance

E(x)
∆x

Ward et al. ‘88

Interpolating Irradiance

∆x

er
ro
r

Ward et al. ‘88

Interpolating Irradiance

error threshold

∆x

Ward et al. ‘88

Interpolating Irradiance

error threshold

∆x

Ward et al. ‘88

Interpolating Irradiance

∆x

error threshold

Ward et al. ‘88

Interpolating Irradiance

• Approximate using Taylor expansion:
Ward et al. ‘88

ε !

∣

∣

∣

∣

∂E

∂x
(x − x0) +

∂E

∂ϕ
(ϕ − ϕ0)

∣

∣

∣

∣

The “Split-Sphere”

∂x

∂ϕ

Ward et al. ‘88

Interpolating Irradiance

• In the “Split-Sphere” environment the error
becomes:

Ward et al. ‘88

ε !

∣

∣

∣

∣

∂E

∂x
(x − x0) +

∂E

∂ϕ
(ϕ − ϕ0)

∣

∣

∣

∣

Interpolating Irradiance

• In the “Split-Sphere” environment the error
becomes:

Ward et al. ‘88

ε ! E0

(

4

π

|x − x0|

R
+ |ϕ − ϕ0|

)

Interpolating Irradiance

• In the “Split-Sphere” environment the error
becomes:

Ward et al. ‘88

ε ! E0

(

4

π

|x − x0|

R
+ |ϕ − ϕ0|

)

“average” distance to visible surfaces in hemisphere

Interpolating Irradiance

• At each shading location, perform a
weighted average of all cached values which
have an error below some threshold.

• Reciprocal of the error is used as the
weight.

Ward et al. ‘88

Interpolating Irradiance

A

B

C

Ward et al. ‘88

Interpolating Irradiance

A

B

C

Ward et al. ‘88

Interpolating Irradiance

A

B

C

Ward et al. ‘88

Interpolating Irradiance

A

B

C

Ward et al. ‘88

Interpolating Irradiance

E(x, !n) ≈

P

i∈S

wi(x,!n) Ei

P

i∈S

wi(x,!n)

Ward et al. ‘88

Interpolating Irradiance

E(x, !n) ≈

P

i∈S

wi(x,!n) Ei

P

i∈S

wi(x,!n)

Ward et al. ‘88

S =
{

i : wi(x, !n) > 1

a

}

wi(x, !n) = 1

‖x − xi‖

Ri

+
√

1−!n·!ni

where:

Irradiance Caching

• Pros:

• Independent of resolution.

• Concentrates computation in visible
regions.

• Hundreds of times faster than naive path
tracing.

Ward et al. ‘88

Irradiance Caching

• Cons:

• Interpolation/extrapolation can introduce
visible artifacts.

• Limited to Lambertian (matte) surfaces.

• Still slow.

Ward et al. ‘88

Improvements/Extensions

• Ward and Heckbert ‘92 - better interpolation

• Křivánek et al. ‘05a, ‘05b - glossy surfaces

• Tabellion and Lamorlette ‘04 - speed

• Tawara et al. ‘04 - animation

• Yee ‘00 - speed/perception

• Kato ‘02 - parallel/distributed computation

• Arikan et al. ‘05 - speed

Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04

Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04

Irradiance Gradients

• Improve quality by performing higher-order
interpolation/extrapolation.

• Estimate a derivative to the irradiance.

• Apply this derivative to the weighted
average.

Ward and Heckbert ‘92

Extrapolating Irradiance

Scanline Pixels

Ir
ra

d
ia

n
ce actual irradiance

extrapolated irradiance

irradiance cache point

a

b

Irradiance Gradients

• Decomposed into:

• Rotational Gradient - captures change in
irradiance w.r.t. change in surface
orientation

• Translational Gradient - captures change
in irradiance w.r.t. change in position

Ward and Heckbert ‘92

Irradiance Gradients
Ward and Heckbert ‘92

Applying Gradients
Ward and Heckbert ‘92

E(x, !n) ≈

P

i∈S

wi(x,!n) Ei

P

i∈S

wi(x,!n)

Applying Gradients
Ward and Heckbert ‘92

E(x, !n) ≈

P

i∈S

wi(x,!n)(Ei+(!ni×!n)·!∇rEi+(x−xi)·!∇tEi)
P

i∈S

wi(x,!n)

Applying Gradients
Ward and Heckbert ‘92

E(x, !n) ≈

P

i∈S

wi(x,!n)(Ei+(!ni×!n)·!∇rEi+(x−xi)·!∇tEi)
P

i∈S

wi(x,!n)

estimated change due to rotation and translation

Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04

Radiance Caching

• Extends irradiance caching to glossy
surfaces.

Křivánek et al. ‘05a, ‘05b

Glossy Surfaces

Matte surface

Glossy surface

Glossy Surfaces

Matte surface

Glossy surface

Glossy Surfaces

Matte surface

Glossy surface

Glossy Surfaces

Matte surface

Glossy surface

Glossy Surfaces

Matte surface

Bidirectional Reflectance Distribution Function
BRDF

Radiance Caching

• Can no longer cache just the average
irradiance value.

• Cache full hemispherical radiance field at
sparse locations.

Křivánek et al. ‘05a, ‘05b

Radiance Interpolation

• Interpolate the radiance field from nearby
locations.

Křivánek et al. ‘05a, ‘05b

Radiance Storage

• Use spherical harmonics (SH) or
hemispherical harmonics (HSH).

• Generalization of Fourier series onto
spherical and hemispherical domains.

• Can efficiently approximate smooth
functions with just a few numbers.

Křivánek et al. ‘05a, ‘05b

(H)SH

• Projecting a function, s, onto the (H)SH
basis functions results in a set of
coefficients:

Křivánek et al. ‘05a, ‘05b

ψm
l =

∫ 2π

0

∫ π

2

0

s(θ, φ)Hm
l (θ, φ) sin θ dθ dφ

(H)SH

• Projecting a function, s, onto the (H)SH
basis functions results in a set of
coefficients:

• From these coefficients, we can
approximate the original function:

Křivánek et al. ‘05a, ‘05b

ψm
l =

∫ 2π

0

∫ π

2

0

s(θ, φ)Hm
l (θ, φ) sin θ dθ dφ

s(θ, φ) ≈
n−1∑

l=0

l∑

m=−l

ψm
l Hm

l (θ, φ)

Outgoing Radiance

• Incoming radiance must be convolved with
the BRDF to attain outgoing radiance.

• If BRDFs are also stored in (H)SH basis this
convolution is just a dot product!

Křivánek et al. ‘05a, ‘05b

Glossy Surfaces
Křivánek et al. ‘05a, ‘05b

from Křivánek et al. ‘05a, ‘05b

Path Tracing Radiance Caching

Radiance Gradients

• Improve interpolation quality by storing
gradient of incoming radiance field.

Křivánek et al. ‘05a, ‘05b

Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04

Simplified Geometry

• Apply approximations to speed up
rendering.

• Use simplified scene geometry for
indirect illumination.

Tabellion and Lamorlette ‘04

Simplified Geometry

preventing the recursion to happen. If radiosity maps have been
pre-computed, then no surface shader is invoked and the
corresponding texture map is queried instead.
 This limitation requires the user to fake highly indirect lighting
situations where light bounces several times before contributing to
the image. In practice users can manually place artificial light
sources and bouncing geometry, which simulate secondary
indirect illumination and offer a more direct and separate control.
 The present choice protects the user from excessive render
times by restricting the framework to discard highly indirect
contributions. It also provides a better workflow, by avoiding the
necessity of pre-computing radiosity maps.

4.2 Surface Properties

We decide to narrow the scope of our solution further treating
only diffuse surface interreflections. It is desirable to prevent
surfaces from casting specular indirect lighting onto each other.
Simulating these phenomena tends to require the use of more
sophisticated sampling techniques without giving much visual
contribution. Caustics and glossy reflections are exceptions to this
rule, which we leave for more specific algorithms to solve
efficiently.
 When programmable surface shaders are evaluated during the
light gathering algorithm, they are specifically instructed to only
consider the diffuse component of their BRDF. It prevents
specular interreflections to happen but captures however local
color texturing which will contribute to the richness of color
bleeding effects.
 During final shading, this restriction would be extreme for
surfaces seen directly by the camera or through ideally specular
reflections. In those cases, our goal is to let indirect illumination
interact with arbitrary BRDFs, while keeping the benefits and
efficiency of the irradiance caching scheme. We describe an
approximate lighting model in section 4.6, which achieves this
goal capturing important characteristics of such interactions.

4.3 Ray Tracing Simplified Geometry

Even though valuable research has been done to efficiently ray
trace complex displacement-mapped geometry, we refrain the user
from doing so. Our goal is to minimize the ray tracing effort,
which is the main bottleneck of the light gathering algorithm.
Reordering shading calculations does not apply in our case, since
irradiance caching introduces a dependency between the rays cast
during the evaluation of each irradiance sample. Inspired by
previous work [Rushmeier et al. 1993; Christensen et al. 2003],
we make the decision to ray trace coarsely tessellated geometry,
even near the ray origin.
 Since rays initiate from positions that lie on displaced micro-
polygons, we are faced with the problem of detecting self-
intersections. Traditional biasing techniques that ignore

intersections near the ray origin cannot be applied here, since they
would create significant light or shadow leak problems. When
tracing a ray, we use the following ray offsetting algorithm:

• Record in a hit-list the ray intersections within a user-defined
offset distance along the ray, after and before the ray origin.

• Stop the ray traversal once a hit is found beyond the offset
distance along the ray.

• Find the closest hit to the ray origin in the hit-list, within the
offset distance. If found, let this intersection become the new
effective ray origin. Otherwise, leave the ray origin
unchanged.

• Return the next hit in the hit-list as the resulting intersection.
Figure 3 shows two examples and illustrates how the effective ray
origin is adjusted. To prevent self-intersection artifacts, the offset
distance used in this algorithm needs to be bigger than the
maximum offset between the coarse and micro-polygon geometric
tessellations. Since we are ray tracing approximate geometry,
diffuse self-interreflections cast by geometric micro-
displacements might not be captured accurately. This is often
visually of small importance, as illustrated in figure 4, since the
highly detailed surface normal is considered when sampling the
hemisphere.
 In our system, users can adjust tessellation rates suitable for ray
tracing. This tune-up is done per character, prop or environment
once and for all. Every shot receives geometry with good default
tessellation, which rate can be modified in specific shots if needed
(e.g. extreme closeups). The trade-off between object detail and
polygon count can therefore be controlled manually. Using solid
angle based tessellation was not implemented but would be a
valuable extension to our system.

4.4 Radiosity maps

Another bottleneck of the light gathering algorithm is computing a
radiance estimate for each ray. Arvo [1986], Heckbert [1990] and
many others [Jensen 1996; Christensen 2000] exploit this idea.
We opt for a similar strategy using texture maps, which offer a
constant time query and take advantage of the texture
management engine of the rendering infrastructure.

Figure 3: To ray trace simplified geometry, we adjust the ray origin.

 (a) (b) (c)

Figure 4: (a) was rendered ray tracing the 2 million displaced micro-
polygons seen in that figure, without using the ray offsetting algorithm. (b)
was rendered using the ray offsetting algorithm, ray tracing only 4
thousand polygons, shown in image (c).

471

Tabellion and Lamorlette ‘04

from Tabellion and Lamorlette ‘04

Simplified Geometry

• Self intersection:
Tabellion and Lamorlette ‘04

Simplified Geometry Micro-Polygons Effective Ray Origin

re-created from Tabellion and Lamorlette ‘04

Modified Error Metric

• Introduced new error metric to reduce
clumping in corners.

Tabellion and Lamorlette ‘04

Over-Sampling/Clumping

Ward Metric

Over-Sampling/Clumping

Ward Metric Tabellion Metric

Under-Sampling

A B

Under-Sampling

Ward Metric

Under-Sampling

Ward Metric

Under-Sampling

Tabellion Metric

Modified Ward Metric

Modified Ward Metric Tabellion Metric

Improvements/Extensions

• Ward and Heckbert ‘92

• Křivánek et al. ‘05a, ‘05b

• Tabellion and Lamorlette ‘04

• Tawara et al. ‘04

Dynamic Camera

Dynamic Camera

Dynamic Objects

Direct + Indirect Indirect Illumination

Dynamic Objects

Direct + Indirect Indirect Illumination

Age-based Invalidation

• Only recompute a small subset of global
gather rays.

• Store full stratified radiance field.

• Assign age to each stratum.

• Update a small percentage of oldest strata
(10%) for frame.

• Can also give higher probability to strata
which “see” moving objects.

Tawara et al. ‘04

Improvements/Extensions

• Ward and Heckbert ‘92 - better interpolation

• Křivánek et al. ‘05a, ‘05b - glossy surfaces

• Tabellion and Lamorlette ‘04 - speed

• Tawara et al. ‘04 - animation

• Yee ‘00 - speed/perception

• Kato ‘02 - parallel/distributed computation

• Arikan et al. ‘05 - speed

Next time:

Next time:

• Participating Media

http://www.kevinyank.com

Participating Media

http://theory.stanford.edu/~kngk

http://mev.fopf.mipt.ru

http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk
http://theory.stanford.edu/~kngk

Smoky Cornell Box

!"

#$

Foggy Road

!"

#$

Foggy Road

!"#$

Questions?

