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Abstract

A hand posture recognition system using 3D data is described. The system relies on a novel 3D sensor that generates a dense range
image of the scene. The main advantage of the proposed system, compared to other gesture recognition techniques, is the capability for
robust unconstrained recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by
explicitly utilizing 3D hand geometry. Moreover, the proposed approach does not rely on color information, and guarantees robust seg-
mentation of the hand under varying illumination conditions, and scene content. Several novel 3D image analysis algorithms are pre-
sented, covering the complete processing chain: 3D image acquisition, arm segmentation, hand–forearm segmentation, hand pose
estimation, 3D feature extraction, and gesture classification. The proposed system is extensively evaluated.
� 2008 Published by Elsevier B.V.
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1. Introduction

Even though, in the last two decades we have witnessed
a rapid evolution of computing, communication and dis-
play technology, the physical human–computer interface
has largely remained unchanged since the first worksta-
tions. However, traditional interface devices, keyboards
and mice, are inadequate for modern applications such as
interaction with complex three-dimensional environments
and sign language recognition. Recently, several innovative
controllers and sensors have been investigated with a view
towards a more ‘‘natural’’ interaction with the machine.
Several of these new systems, such as glove-based devices,
compromise convenience by requiring the user to be instru-
mented with encumbering devices in order to achieve high
expressiveness.

The use of gesture recognition provides an attractive
alternative to the cumbersome interface devices for
human–computer interaction that are typical today.
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Vision-based recognition of hand gestures in particular,
promises natural, unobtrusive, human–computer interac-
tion [25]. This is based on analyzing signals acquired by
imaging sensors such as video, infrared or ultrasonic, infer-
ring the geometry and motion of the hand, and finally map-
ping to a set of predefined gestures. An important potential
application of this technology comes from the possibility to
develop advanced interfaces for the interaction with virtual
objects. These objects can be images on a computer screen.
The user can ‘‘manipulate’’ the objects by moving his/her
hand and performing actions like ‘‘grasping’’ and ‘‘releas-
ing’’. The computer uses gesture recognition to reproduce
the user actions on the virtual object and the result of the
operation is shown in the graphical interface so as to pro-
vide feedback to the user. Application is in simulation,
robot teaching, graphical interface control, device control,
and virtual reality. Another important application is the
interpretation of gestures from the sign-language alphabet
to aid natural interaction of hearing impaired people with
computing devices [30].

Vision-based recognition of hand gestures, especially
dynamic hand gestures, is an extremely challenging
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interdisciplinary task due to following four reasons: (1)
hand gestures are rich in diversity, ambiguity, and space–
time variation; (2) the human hand is a complex non-rigid
object; (3) computer vision itself is an ill-posed problem; (4)
it is difficult to obtain estimates faster than standard video
frame rate.

Much of recent research effort has been concentrated on
gesture recognition, i.e. the interpretation of dynamic hand
trajectory patterns. Color-based [30] or model-based track-
ing techniques [26] together with temporal pattern classifi-
ers such as Hidden Markov Models have demonstrated
acceptable performance. The problem of posture recogni-
tion, that is the interpretation of finger configuration, has
received less attention.

Model-based techniques (see [11] for a recent review)
rely on fitting articulated 3D models of the hand on 2D
image features. Use of a 3D model allows exploitation of
geometric (and kinematic) constraints on finger configura-
tion which helps dealing with the ambiguity caused by per-
spective projection of a 3D structure on a 2D image.
However if only a single frame is available then the prob-
lem has still multiply solutions. One approach around this
problem is to perform an expensive global search in a data-
base of hand templates labelled by the corresponding finger
configuration parameters [1,2], and resorts to measuring
the similarity between the input image and the template
image. Template images are synthesized using the 3D
model. Other techniques rely on the detection of high-level
features such as the fingertips and using inverse kinematics
[5] or non-linear regression [15] to solve for the unknown
configuration parameters. Markers are used to facilitate
feature detection. Model-based techniques have demon-
strated good results but on the expense of computational
complexity which makes them not suitable for real-time
application.

In many cases posture recognition is performed on a
limited set of predefined postures and therefore full 3D fin-
ger configuration estimation is not necessary. In this case
one can work in a bottom-up fashion using image features
directly. The main difficulties in this case is the selection of
features which are invariant to illumination and pose vari-
ations (e.g. orientation histograms, silhouettes), and to deal
with self-occlusions, clutter backgrounds and within-class
variations of postures. The most recent techniques in this
domain [37,31] rely on extensive training databases to effi-
ciently model within-class variability.

The majority of reported techniques facilitate hand seg-
mentation using a uniform background and/or assume that
the hand is the only object visible in the scene. Good results
on hand segmentation may be obtained using color infor-
mation as soon as the skin-color model has been trained
for the specific sensor/environment [36].

Many of the above difficulties have more tractable solu-
tions if 3D information is exploited. Several researchers
have proposed using more than one camera, or exploiting
3D information acquired by passive stereo sensors. In
[34] a gesture recognition system based on a range sensor
is proposed. The algorithm is capable of recognizing a lim-
ited set of simple manipulative gestures, containing static
finger configuration, while the hand segmentation problem
is not addressed. To cope with the problem of occlusions, a
multi-viewpoint hand gesture tracking system is proposed
in [35]. The best viewpoint is selected based on the esti-
mated hand rotation in 3D. Then, 2D shape Fourier
descriptors are extracted and used to recognize a limited
set of simple postures. A finger tracking scheme relying
on a multiple camera configuration is proposed in [16].
The system combines various cues such as color, edges,
3D shape and motion for robust detection of fingertip posi-
tion and orientation. A similar system, relying however on
dense stereo measurements, is described in [18]. The hand
pose estimation problem is also addressed in [8]. A 3D
model of the hand is used that is iteratively fitted to dense
3D data. A stereo-based gesture recognition technique is
described in [14]. The orientation of the arm and location
of the hand is estimated by means of sparse 3D data. This
is subsequently used to drive a color-based hand segmenta-
tion algorithm. Moment-based 2D shape gesture classifica-
tion is finally performed on the perspectively unwarped
color images. In [20] depth data from a time-of-flight cam-
era are used for gesture recognition. A limited set of hand
postures are recognized but constraints are posed on the
placement and orientation of the hand with respect to the
body. Finally, methods for fitting articulated 3D models
on 3D point clouds have been proposed in [3,9], which
are however expensive for real-time applications.

In this paper a novel hand posture recognition system
using 3D data is described. The system relies on a novel
3D sensor that generates a dense range image of the scene.
The main novelty and advantage of the proposed system,
compared to the 3D gesture recognition techniques men-
tioned above, is the use of 3D data for posture classifica-
tion, and the capability for robust recognition of complex
hand postures such as those encountered in sign language
alphabets over unconstrained environments. The proposed
approach does not rely on color information, and guaran-
tees robust segmentation of the hand under various illumi-
nation conditions and scene contents. Finally, using novel
3D image analysis algorithms, the paper addresses the
complete processing chain, unlike other techniques which,
by means of simplifying assumptions, bypass one or more
of the following stages: 3D image acquisition, arm segmen-
tation, hand–forearm segmentation, hand pose estimation,
3D feature extraction, and posture classification. Apart
from demonstrating very satisfactory classification results
the system achieves real-time performance on conventional
hardware. The system is also evaluated for use in a key-
board-less application interface scenario.

In the following section we briefly describe the employed
3D acquisition setup. 3D images are then processed and the
arm is segmented from the rest of the body. This is
described in Section 3. Then in Section 4 we present algo-
rithms that further segment the hand from the arm. A pose
compensation algorithm (Section 5) is subsequently applied



S. Malassiotis, M.G. Strintzis / Image and Vision Computing 26 (2008) 1027–1037 1029
on the cloud of 3D points belonging to the detected hand
region. This results in normalized depth images which are
classified to a set of predefined posture classes as described
in Section 6. The performance of the algorithms is evalu-
ated with extensive experiments in Section 7 while Section
8 concludes the paper.

2. 3D data acquisition

A sensor capable of real-time acquisition of 3D dynamic
scenes is employed in this paper. It is based on low cost
devices, an off-the-shelf CCTV-color camera and a stan-
dard video projector. The sensor relies on active illumina-
tion of the scene with a colored illumination pattern by
means of a video or slide projector. A color camera cap-
tures the resulting image and by analyzing the deformation
of the pattern on the object surface the 3D coordinates of
each point on the surface may be computed (see Fig. 1).
This computation is performed sufficiently fast to allow
real-time 3D image acquisition. Unlike similar structured
light system, this device may capture dynamic scenes,
thanks to the special color-encoded light pattern used.
The reader is refereed to [33] for further technical details.

In our experiments the system was optimized for an
application scenario, where subjects are located about
one meter from the camera, and so that the upper torso
and their arms are contained in the working space of the
sensor (75 cm� 75 cm� 75 cm). Inside this volume the
average depth accuracy is about 1 mm. The spatial resolu-
tion of the range images is equal to the color camera reso-
lution in the one direction while in the other direction it is
dependent on the width of the color stripes of the projected
light pattern (see Fig. 1) and the bandwidth of the surface
signal. For a low-bandwidth surface such as the human
body the resolution is thus close to the resolution of the
color camera 768 · 576.

The acquired range images contain artifacts and missing
points mainly over areas that cannot be reached by the pro-
jected light. Instead of filtering or interpolating 3D data, a
process that may lead to further artifacts, we prefer making
subsequent processing stages robust to the above artifacts.
Fig. 1. Typical color (b) and range image (c) acquired by the 3D sensor. The
encoded to show the complete range of values. The image on the left (a) is th
Given the camera–projector calibration parameters we
may reconstruct the 3D coordinates of image points. The
projection equation is:
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where P is a 3� 4 projection matrix containing implicit
and explicit camera calibration parameters, x ¼ ðX ; Y ; ZÞ
are the coordinates of the 3D point, X ¼ ðx; yÞ are the pro-
jected point coordinates, and s is a scaling constant [12].
Therefore, for a range image pixel X with depth value
Z ¼ ZðXÞ it is possible to estimate the X ; Y coordinates of
x. Using a simple pinhole camera model:
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on the coordinate frame fixed on the camera. In the follow-
ing when the term ‘‘3D data’’ will be used this will actually
denote the 3D coordinates of the corresponding range im-
age pixel values.

Finally, we note that it is possible to acquire color
images of the object quasi-synchronously with the corre-
sponding 3D images. This may be achieved by rapidly
alternating a striped light pattern with white light giving
rise to a striped image (which is further processed to give
3D data) followed by a normal color image. In this way
we may achieve a frame rate of 12 frames (color +depth)
per second. Although in principle one may exploit color
information to increase classification accuracy, in this
paper we concentrate on 3D image sequences only so that
the method will be applicable to a wide variety of sensors.
range image depth resolution is 12 bits per pixel, and therefore is color-
e striped-image used to compute depth information.



Fig. 2. Range image clustering procedure. (a) Original image, (b) initial
clustering, (c) refinement, (d) final clustering.
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3. Arm segmentation

An important step in vision-based gesture recognition is
the segmentation of user hands from the background, i.e.
the user’s body and other objects in the scene. The problem
is usually simplified by several assumptions on the scene
content, illumination, motion and camera configuration,
by controlling the environment and by limiting the working
space. Under these constraints, skin color-based segmenta-
tion, motion detection and background subtraction based
on a previously trained background model have demon-
strated relatively good performance [25]. The benefit of
using depth information is that robust image segmentation
may be achieved without posing any constraints to the
environment or the users of the system. This is a very
important requirement for natural human–computer
interaction.

An initial segmentation of the scene may be obtained by
means of thresholding the depth values, assuming that the
background, user body, and arms span distinct ranges of
depth. If the above assumption holds, then the histogram
of depth values consists of well separated modes, and an
optimal threshold is estimated. In many situations, how-
ever, this is not the case, especially when the user’s body
is slanted with respect to the camera plane. We have used
a thresholding technique [24] in order to subtract the back-
ground that may be reasonably assumed to be well sepa-
rated from the user.

The segmentation of the subject’s arms is achieved by
means of a hierarchical un-supervised clustering procedure.
This is based on the observation that the various parts of
the body, such as the arms, torso and head, form compact
3D clusters in space. Clustering techniques such as K-
means lead to poor results since clusters are elongated
and linearly transformed with respect to each other, while
maximum-likelihood techniques such as the Expectation-
Maximisation approach rely on good initial values for
the cluster centers and orientations. The proposed agglom-
erative (hierarchical) segmentation algorithm consists of
the following steps:

(1) An initial clustering is obtained by sequentially scan-
ning the depth image, and classifying each pixel
according to the distance from previously classified
pixels in its neighborhood. The distance measure used
is the Euclidian metric in the Z component. This pro-
cedure leads to a large number of small regions
(Fig. 2b).

(2) The aim of this step is to favor larger regions, by merg-
ing small regions into larger ones. The smallest cluster
Di is selected and merged with the cluster Dj which
minimizes the inter-cluster variance SBði; jÞ, given by
SBði; jÞ ¼ Tracefniðmi �mÞðmi �mÞT

þ njðmj �mÞðmj �mÞTg
¼ nikmi �mk2 þ njkmj �mk2

; ð4Þ
where mi;mj, and m are the centers of clusters Di, Dj

and total cluster, respectively. The iterative procedure
is terminated as soon as a specific number of clusters
is reached (Fig. 2c).
(3) Finally, hierarchical merging of adjacent clusters is
performed. Two clusters Dk, Dl are merged if the
total scatter of the combined cluster is minimized.
The total scatter STðk; lÞ measure is given by
STðk; lÞ ¼ tracefSTðk; lÞg

¼ trace
X

x2Dk ;Dl

ðx�mÞðx�mÞT
( )

;

where STðk; lÞ is the total scatter matrix. The proce-
dure is repeated iteratively and terminated when a
specific number of clusters is reached (Fig. 2d).
The clusters corresponding to the arms may be subse-
quently selected by employing prior knowledge. From the
3-4 clusters closer to the camera, we select those that have
a relatively elongated shape, corresponding to the arms.
The distance of a cluster from the camera is measured by:

d ¼ min
xi

Zi;
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while the elongation criterion is

kmin < k2=k1 < kmax;

where k1; k2 are the largest eigenvalues of the cluster’s scat-
ter matrix, and k1 > k2. Their ratio is a measure of the
width of the cluster to its length, and for human arms this
is limited to a range of a-priori determined values.

Fig. 3 illustrates segmentation results where one arm is
adjacent to the body and the other is very close to it (10–
15 cm).
4. Hand–forearm segmentation

The segmentation of the palm and fingers from the fore-
arm is important for the accurate estimation of the hand
pose and the subsequent feature extraction procedure.
Our approach relies on statistical modelling of the arm
points in 3D space. This is similar to the approach adopted
in [18] for the segmentation of the arm from the body.

The probability distribution of a 3D point x is modelled
as a mixture of two Gaussians:

P ðxÞ ¼ P ðhandÞP ðxjhandÞ þ P ðforearmÞP ðxjhandÞ ð5Þ
¼ p1Nðx; l1;R1Þ þ p2Nðx; l2;R2Þ ð6Þ

where p1; p2 are prior probabilities of the hand and forearm
respectively, and

Nðx; l;RÞ ¼ 1

ð2pÞ3=2jRj1=2
exp � 1

2
ðx� lÞTR�1ðx� lÞ

� �
:

Maximum-likelihood estimation of the unknown parame-
ters pk, lk, Rk, k ¼ 1; 2 from the 3D data is obtained by
means of the Expectation–Maximisation algorithm [19]:
Fig. 3. Range image
pkn ¼
pkNðxn; lk;RkÞP

iNðxn; li;RiÞ
;

lk ¼
P

nxnpknP
npkn

;

Rk ¼
P

nðxn � lkÞðxn � lkÞ
TpknP

npkn

;

pk ¼
P

npknP
n

P
kpkn

;

where pkn are the posterior probabilities of the the state k

given the data and the model parameters. The convergence
of the above iterative procedure relies on good initial
parameter values. In our case these may be obtained by
exploiting prior knowledge of the arm geometry. Let
ui; i ¼ 1; . . . ; 3 be the eigenvectors of the arm scatter matrix
RT ¼ tracef

P
xðx�mÞðx�mÞTg, computed from the data

points xi belonging to the arm, ordered according to the
magnitude of the corresponding eigenvalues. Initial esti-
mates of the unknown parameters were selected by:

l1 ¼ mþ q1sminu1; l2 ¼ mþ q2smaxu1

where

smin ¼ min
xi
fðxi �mÞTu1g; smax ¼ max

xi

fðxi �mÞTu1g;

Rk ¼ UKkUT; Kk ¼ diagðq2
kk1; k2; k3Þ;

pk ¼ qk; k ¼ 1; 2;

where U is the orthogonal eigenvector matrix of RT and
ki; i ¼ 1; . . . ; 3 the corresponding eigenvalues, while q1,
q2 are constants related to the relative length of the hand
and forearm with respect to the arm (in the experiments
q1 ¼ 1=3, and q2 ¼ 2=3 were used).

Classification of a 3D point xn to the class k is dictated
by the maximum likelihood criterion i.e. by selecting the
clustering results.



Fig. 4. Hand–forearm segmentation results.

Fig. 5. 3D pose estimation and compensation results. The first row shows
original depth images and estimated local coordinate frame (projections of
x and y axis on the camera plane). The second raw shows the
corresponding normalised depth images.
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class that maximizes pkn. Experimental results demonstrate
robustness of the algorithm under various orientations of
the palm and finger configurations (see Fig. 4).

5. 3D pose estimation and compensation

Availability of 3D information leads to efficient estima-
tion of the orientation of the hand. This allows transforma-
tion of input point cloud into a canonical pose
compensated depth image, where a variety of classification
algorithms may be efficiently applied.

The pose estimation algorithm takes as input a cloud of
3D points which were classified as belonging to the hand.
An estimate of the 3D orientation of the hand is obtained
by computing the principal direction of the 3D points,
given by the eigenvector u1 of the hand scatter matrix
HT, corresponding to its largest eigenvalue. Geometrically,
it is easy to see that the 3D line p ¼ mþ ku1 passing from
the center of mass m of the points with direction u1, mini-
mises the orthogonal distance of the points from this line.

Equivalently, the 3D plane ðp�mÞTu3 ¼ 0, where u3 is
the eigenvector corresponding to the smallest eigenvalue,
is the best fitting plane, i.e. minimizes the orthogonal dis-
tance of the 3D points from this plane. To limit the effects
of the fingers to the estimated orientation vector, each 3D
point xi is weighted by its distance kdk from the center of
the palm, estimated using the algorithm proposed in [7]:

wi ¼
1

1þ kwkdk2
;

where kw is a constant. To cope with outliers that are due to
3D sensor noise, a robust least median of squares (LMS)
algorithm [27] was used.

Compensation of the 3D pose is performed by transfor-
mation of the 3D data using the estimated pose parameters,
and then projection into the camera plane to create nor-
malized (pose compensated) depth images, which are even-
tually used for classification. An orthonormal coordinate
frame is defined, with center m, and its x, y and z axis given
by u1; u2 and u3, respectively. We wish to align this frame
with the frame of the camera, and place the center of mass
m at a distance ~z from the camera center. This may be
accomplished by the rigid transformation:

p0 ¼ RTpþ c� RTm; ð7Þ
where p is a 3D point on the camera frame, p0 is the corre-
sponding point in the normalized frame, R is the matrix
with columns u1; u2; u3 i.e. R ¼ ½u1; u2; u3� and c ¼ ½0; 0;~z�T.
Given (7), pose compensated depth images are created by
means of image warping. A 3D rectangular mesh is first de-
fined using the 3D points. The vertex connectivity is di-
rectly available from the corresponding depth image. The
vertices of the mesh are then transformed using (7) and a
scan-line Z-buffer rendering algorithm [13] is applied to
the transformed mesh. The resulting Z-buffer contains the
rectified depth image. Alternatively, one may use a more
efficient 2D warping from the original to the compensated
depth image, as proposed in [14]. However, this approach
relies on the assumption that all points lie on a plane,
and thus introduces distortions for certain finger configura-
tions. where this assumption does not hold. We have alter-
natively applied a warping algorithm that is relatively
Experimental results of the proposed 3D pose estimation
and compensation procedure are illustrated in Fig. 5.
6. Hand posture classification

Several approaches have been recently proposed for the
recognition of free form objects from range image data (see
[4] for an extensive review). However, the problem of range
classification of non-rigid objects such as the human hand
has not been explicitly addressed. Object recognition tech-
niques may be roughly divided to appearance-based and
feature-based techniques.

Feature-based techniques, such as spin-images [17] and
point-signatures [6] work by extraction of a view-invariant
representation of the 3D object based on 3D surface curva-
ture information. The reliance on curvature makes them
sensitive to noisy or incomplete data. Also the computa-
tional complexity of these techniques is prohibitive for
real-time application [4]. Appearance-based techniques on
the contrary represent a 3D object by a series of depth



Fig. 6. Subset of the synthetic 3D hand models used for generating
training images.

S. Malassiotis, M.G. Strintzis / Image and Vision Computing 26 (2008) 1027–1037 1033
images corresponding to different viewing angles. With this
approach 3D object classification resorts to measuring the
similarity of 2D images (depth images).

In this paper we have employed an appearance-based
eigenspace technique. Principal component analysis
(PCA) applied on a set of depth images was used to com-
pute an orthogonal space of reduced dimension.

Let f i; i ¼ 1; . . . ; k be vectors constructed by lexico-
graphical scanning of k training images, and
F ¼ ½f1 � ~f; f2 � ~f; . . . ; fk � ~f� be a d � k matrix with:

~f ¼ 1

k

Xk

i¼1

f i:

Let vi; i ¼ 1; . . . ; k be the eigenvectors of FFT ordered by
the descending magnitude of the corresponding eigenvalues
r1 > r2 > � � � > rk. Then, a feature vector a of reduced
dimension r may be computed, by projecting f correspond-
ing to an input image on the sub-space defined by the first r
eigenvectors:

a ¼ ½v1; v2; . . . ; vr�Tðf � ~fÞ:

Classification of an input depth image, to one of the prede-
fined hand posture classes represented by the training set is
performed using the k-nearest-neighbor rule [10]. This rule
classifies a new input image and extracted feature vector a

by computing the set of posture classes of the k nearest
training samples and selecting from them the class which
appears most often in this set. The proximity of input vec-
tor to training sample vectors is evaluated using the follow-
ing distance measure:

Dða; aiÞ ¼ ða� aiÞTK�1ða� aiÞ; R ¼ diagfr1; r2; . . . ; rrg:
ð8Þ

The success of this approach relies on the use of a rich
training set containing a representative subset of all possi-
ble variations of the hand. Then the eigenspace is guaran-
teed to capture the degrees of freedom of these variations
[21]. However, the appearance of the hand of a user per-
forming a specific posture (as captured by the range sen-
sor), may change due to user specific finger configuration
and hand geometry and also due to variations in the 3D
pose of the hand. Although, user specific posture variations
produce less pronounced appearance variations, and thus a
small number of users are needed to train the system this is
not the case with appearance variations which are due to
different hand orientation. Training the system with all
possible 3D pose variations, for all postures and all persons
is a cumbersome procedure. In order to cope with this
problem we have investigated three alternative techniques.

The first approach, which is similar to that in [22], is
based on the generation of novel views of a hand posture
using a prototypical view. A set of training examples is
recorded (a few images per posture per person), segmented
and rectified to an upright pose (as in Sections 4 and 5).
Then for each image in the above training set a series of
novel 3D views is generated by applying a 3D rigid trans-
formation to the input 3D data. The 6D space of rigid
transformations is sampled appropriately to cover the
range of possible 3D variations. Then, the enriched train-
ing set is used to construct a global eigenspace.

The second approach bypasses the first recording step by
utilizing a 3D articulated hand model. This model is con-
trolled by a set of parameters that correspond to the config-
uration and structure of the fingers. A data-glove device is
used to capture the above parameters from the user in
real-time. Then, small perturbations are introduced to the
model parameters, in order to generate rigid and non-rigid
variations of the given hand posture and simulate user spe-
cific attributes such as finger length. Then a subset of the
generated models is selected, and depth images are gener-
ated for each of them by defining a virtual camera and mea-
suring the distance of the 3D model surface from the camera
plane (see Fig. 6). The obvious advantages of the above
training process is the efficiency in adding new postures
and the direct control over the parameters of variability.
Also, the training samples are free from any errors that
may be introduced by the 3D sensor, such as occluded areas.

Finally, the third approach replaces the 3D pose gener-
ation step of the first approach by the 3D pose compensa-
tion algorithm described in Section 5.

In the following sections an evaluation of the above
techniques is described.
7. Experimental results

A set of 20 hand postures was selected from the German
sign language alphabet [23]. Ten of these postures



Table 2
Correct recognition rates for hand posture classification using 2D EFD

EFD coefficient Training database size

Session A Session B

30% 60% 100% 30% 60% 100%

10 73 76 77 68 70 72

Table 1
Correct recognition rates for hand posture classification using 2D EFD

EFD coefficient Training database size

Session A Session B

30% 60% 100% 30% 60% 100%

10 72 75 76 63 64 67
15 73 76 78 66 68 71
20 75 78 81 67 70 74

Hand silhouettes were extracted using range images.
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correspond to the numbers 0–9, while the other ten corre-
spond to letters. Two sets of images were recorded, one
for training and one for testing.

Three volunteers participated in the recording of the
training set. They were selected mainly according to the
size of their hand (small, medium and large). The users
were asked to rotate and translate their hands slowly.
For each person and each posture about 50 images were
acquired with the arm apart from the body and in horizon-
tal orientation (over 3000 images). Both depth images and
corresponding color image were acquired. The hand–fore-
arm segmentation algorithm and the image rectification
algorithms described in Sections 4 and 5 were applied to
the recorded images.

The test set was recorded similarly by employing two
volunteers other than the three above. Two recording ses-
sions were performed (we shall refer to them as session A
and session B in the sequel) corresponding to different
application scenarios. In the first session the arm of the
user is vertical and apart from the body. In the second ses-
sion the arm is in front of the body with the hand pointing
upwards. On the average, 50 images per person, per pos-
ture, and per session have been acquired (over 4000
images). Also in this case both depth images and corre-
sponding color image were acquired.

We used the above training and test set to evaluate the
efficiency of the proposed algorithms on the basis of differ-
ent classification techniques (Section 6). More results, par-
ticularly in arm/hand segmentation as well as videos from
the real-time operation of the system, are published in our
web site. 1

We have performed two experiments using the above
data sets. In the first experiment we report posture classifi-
cation results using 2D hand silhouettes only. This experi-
ment aims at quantifying the benefit of using 3D data. In
the second experiment an extensive evaluation of the 3D
posture classification techniques described in Section 6 is
performed. The results demonstrate the superiority of the
technique which is based on pose compensation.

7.1. Hand posture classification using 2D features

We have implemented a hand posture classification tech-
nique that is based on 2D hand silhouettes. Two hand sil-
houette extraction techniques were investigated. In the first
technique (EFD-A in the sequel) the silhouette is obtained
directly from the range images by means of contour follow-
ing. In the second technique (EFD-B), we have applied color
skin segmentation on the corresponding color images,
instead of range images. In particular we have applied the
skin segmentation algorithm proposed in [36] inside the
region obtained by the hand detector in Section 4. The
skin-detection algorithm was trained on 1000 pre-segmented
(hand only) color images in our training data set.
1 http://server-5.iti.gr/sotiris/gesture/gesture.html.
Once silhouette contours were extracted we compute a
rotation, translation and scale invariant representation by
means of Elliptic Fourier Descriptors (EFDs) [32]. The
accuracy of the representation may be controlled by the
number of EFD coefficients used. However fewer coeffi-
cients also contribute to some robustness to noise.

Posture classification is achieved by estimating the min-
imum Euclidian distance between the EFDs extracted from
an input image with the EFDs extracted for each image in a
training set.

In Table 1 the correct recognition rate achieved with
the EFD-A technique is shown. The algorithm was tested
for different combinations of the number of descriptors
used to approximate the hand shape and the size of
the database used for training (a percentage of the total
database images is randomly selected). As expected, the
rate increases when a more accurate approximation and
a richer training set is used. The poor recognition rate
of session B images is mainly due to inferior quality of
the depth images (especially along the discontinuity
boundary) acquired when the hand is parallel to the pro-
jected pattern stripes.

Marginally, better results were obtained when the EFB-
B technique was applied (Table 2). The improvement may
be attributed to the quality of hand masks obtained from
the color data.
7.2. Hand posture classification using 3D data

In the following, we report results obtained using the
PCA algorithm on 3D data. All three alternative tech-
niques used to cope with 3D pose variations were evalu-
ated. In the following we shall refer to them as PCA-A
(database enrichment by 3D transformation of prototype
15 75 78 79 70 71 73
20 76 81 83 72 75 80

Hand silhouettes were extracted using color images.

http://server-5.iti.gr/sotiris/gesture/gesture.html


Table 4
Correct recognition rates for hand posture classification using PCA-B
approach

Eigenvectors 32� 32 64� 64

Var 1 Var 2 Var 3 Var 1 Var 2 Var 3

Session A

20 66.6 71.3 82.0 71.5 75.3 78.5
50 70.3 75.8 81.7 71.6 77.3 83.9

100 73.6 76.2 83.3 72.4 80.3 84.6

Session B

20 63.2 64.7 68.5 61.6 70.1 73.0
50 65.9 68.1 70.3 66.9 71.6 73.8

100 67.1 70.9 70.5 67.6 72.8 74.2

Number of variations introduced, Var 1 = 81 images/posture, Var 2 = 405
images/posture, Var 3 = 2025 images/posture.
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images), PCA-B (database containing synthetic postures
and variations), PCA-C (3D pose compensation).

Table 3 summarizes the results obtained using PCA-A
for different combinations of the number of eigenvectors,
the size of the training database (original database+varia-
tions), and the size of the training images. The variations
were determined by uniform sampling the three degrees
of freedom of hand orientation. In Var 1 the rotation
around the x and y axis is sampled at �15, 0, and 15
degrees, while rotation around the z axis is uniformly sam-
pled from �40 to 40 degrees with 10 degree steps, so giving
totally 3� 3� 9 ¼ 81 images. Similarly, in Var-2
5� 9� 9 ¼ 405 samples are used, while in Var 3 we have
also introduced 5 variations (1 cm) in hand translation
along the X and Y axis (5� 9� 9� 5 ¼ 2025).

As demonstrated by these results, by increasing the
number of eigenvectors the recognition rate improves,
reaching a threshold for large values (typically over 50).
This threshold was shown to depend on the resolution of
the images and size of the training database. The number
of 3D pose variations has a significant effect in the classifi-
cation efficiency but there is also a cut-off value; when more
variations are introduced the within class variance
increases, bringing in proximity posture clusters in the
eigenspace. Finally, there is a weaker dependency of the
recognition rate on the resolution of the images used for
training. Since the computational complexity both for
training and testing varies quadratically with the image res-
olution it is reasonable to compromise a small efficiency
reduction to achieve real-time performance. Although, this
approach leads generally to satisfactory results its compu-
tational complexity is relatively high. In Table 3, the cases
where the achieved output frame-rate is over 5 frames per
second are highlighted.

The results obtained with the PCA-B approach are dem-
onstrated in Table 4. Similar observations with PCA-A
results can be made regarding the effect of different param-
eters. The recognition rates however are about 10% worse.
This is mainly a result of missing pixels in the original test
Table 3
Correct recognition rates for hand posture classification using PCA-A
approach

Eigenvectors 32� 32 64� 64

Var 1 Var 2 Var 3 Var 1 Var 2 Var 3

Session A

20 77.7 82.2 88.5 80.2 84.9 91.2
50 80.4 84.8 89.0 82.7 88.3 91.7

100 82.5 85.7 89.1 85.5 90.2 91.8

Session B

20 69.6 74.4 79.6 71.8 76.2 82.4
50 72.1 78.4 80.3 75.6 79.7 83.0

100 74.0 79.3 80.4 76.8 81.2 83.0

Number of variations introduced, Var 1 = 81 images/posture, Var 2 = 405
images/posture, Var 3 = 2025 images/posture. The cases where the
achieved output frame-rate is over 5 frames per second are indicated in
bold text.
images due to occlusions. In order to verify this argument
we performed an experiment using synthetic test images,
(with random rotation, and random finger joint perturba-
tion), with various amounts of randomly located missing
pixels. The recognition rates achieved are near 100% for
no missing pixels but rapidly fall to 80% for 20% missing
pixels. The same experiment was performed by artificially
introducing missing pixels in the training data. Again, the
accuracy drops with the amount of missing data in the test
images but more gracefully this time. The problem of pat-
tern classification with missing data has been addressed in
the literature (e.g. using data imputation [29] or the EM
algorithm for dealing with incomplete data [28]); however
such techniques are characterized by high computational
complexity, and are therefore non suitable for real-time
applications. Training with missing data seems to partly
alleviate the problem.

The best results were obtained using the PCA-C
approach, both regarding recognition rates and computa-
tional efficiency. Since the variation of the training images
is now limited to finger configuration and size, an eigen-
space with lower dimensionality was used. As demon-
strated in Table 5, increasing the number of eigenvectors
over 20 does not lead to significant improvement of the rec-
ognition rates. Finally we developed a simple scheme to
eliminate false-positives (i.e. non-hand images or irrelevant
hand postures) by thresholding the distance measure func-
tion (8). An optimal threshold value is selected experimen-
tally by the analysis of the receiver operating characteristics
curve (true positives versus false positives as a function of
the threshold value) using cross-validation in a data set
containing over 1000 non-hand images and training
images. Using this approach a false positive rate less than
2% was achieved. Further reduction of false positives
may be obtained by applying application specific syntac-
tic/temporal constraints.

To demonstrate the proposed posture recognition system
a prototype application was developed and evaluated. The
system (PCA-C approach) was implemented on a PC Plat-
form with a Pentium III 1 GHz processor. Operating on
subsampled images (180� 144), without any optimization,



Table 5
Correct recognition rates for hand posture classification using PCA-C
approach

Eigenvectors 32� 32 64� 64

Var 1 Var 2 Var 3 Var 1 Var 2 Var 3

Session A

10 81.7 86.4 93.1 84.2 89.2 95.9
20 84.5 89.2 95.5 87.1 91.8 96.5
50 84.9 89.7 95.6 87.3 92.2 96.5

Session B

10 73.7 77.5 84.0 75.6 80.7 86.3
20 75.9 80.6 85.3 78.6 83.1 86.7
50 76.0 81.3 85.3 79.3 83.7 87.2

Number of variations introduced, Var 1 = 10 images/posture, Var 2 = 30
images/posture, Var 3 = 50 images/posture.
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a frame rate of 15 frames/s was achieved. The application
(Fig. 7a) provides the user with visual feedback by
displaying in real-time the acquired range image, a textual
description of the classification result as well as an icon
depicting a synthetic image of the recognized posture.
The alpha-numeric character corresponding to the recog-
nized posture is passed to the underlying application
window e.g. word-processing application, acting as a
keyboard-less typing interface. A more impressive applica-
tion scenario was also implemented (Fig. 7b), a keyboard-
less command interface to a chess game. To move a piece
the user has to perform four postures. A letter posture
followed by a number posture e.g. ‘‘E2’’ are performed to
select a piece and another pair of letter, number postures
e.g. ‘‘E3’’ are performed to specify the new position of
the piece. In this case a simple syntax checking strategy is
utilized to reject false positives. The two demo applications
were demonstrated in public exhibitions and the comments
by the users were very positive, especially regarding the
response of the system.
8. Conclusions and future work

We have demonstrated a complete system for the recog-
nition of static hand postures based on a 3D sensor. The
system relies only on range data, therefore is invariant to
Fig. 7. Screenshots of demo human–computer interface applications using th
Keyboard-less control interface to a chess game.
the content and illumination of the scene. This makes it
suitable for operation in unconstrained environments.
Also, it is tolerant to the 3D pose of the hand by including
a pose compensation procedure. The classification of hand
postures is achieved by representing the range images by a
discriminative feature vector that incorporates 3D shape
information. Experimental results demonstrate the effi-
ciency and robustness of the system and the advantages
of using 3D information instead of 2D silhouettes to obtain
discriminative feature vectors. A sub-space classification
technique with a 3D pose compensation stage was found
to be the most appropriate both regarding accuracy in pos-
ture recognition as well as computational efficiency.

The utility of the proposed system lies mainly in the
enhancement of human–computer interaction in a wide
variety of applications. It is particularly useful in applica-
tions where tactile and/or verbal interaction is difficult or
impossible, e.g. in medical operations, industrial and haz-
ardous working environments, natural interaction with vir-
tual displays in outdoor places etc. In addition if the system
is used in conjunction with a dynamic gesture recognition
system and other interaction modalities such as speech,
the prospective applications are unlimited.

This paper presents a valuable first step towards real-
time gesture-based interaction but there are several direc-
tions in which this work could be extended. One of them
is the incorporation of temporal constraints by means of
gesture recognition. Static posture and dynamic gesture rec-
ognition are commonly studied separately. Nevertheless,
posture recognition may help in identifying the boundaries
of individual gestures in a sequence. Also, given the trajec-
tory of the moving hand the conditional distribution of a
matching gesture and associated posture may be estimated.
Arguably, future work should focus in a joint investigation
of the two tasks. This will be valuable for challenging appli-
cations such as sign-language recognition. Another research
direction is in 3D non-rigid hand tracking. This is a very
challenging problem given the large number of degrees of
freedom of the hand and the ambiguity in 3D reconstruc-
tion due to occlusions. The target application domain is
enhanced virtual environment interaction (20+ degrees of
freedom mouse) especially in desktop applications.
e proposed 3D posture recognition system. (a) Keyboard-less typing, (b)
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