
Using Intel Streaming SIMD Extensions for 3D
Geometry Processing

Wan-Chun Ma and Chia-Lin Yang

Dept. of Computer Science and Information Engineering
National Taiwan University

firebird@cmlab.csie.ntu.edu.tw,
yangc@csie.ntu.edu.tw

Abstract. Three dimensional (3D) graphics applications is an impor-
tant workload running on today’s computer system. A cost-effective
graphics solution is to use a general processor for 3D geometry pro-
cessing and a specialized hardware for rasterization. 3D geometry pro-
cessing is an inherently parallel task. Therefore, many CPU vendors add
SIMD (Single Instruction Multiple Data) instruction extensions to ac-
celerate 3D geometry processing. In this paper, we evaluate the perfor-
mance impact of using the Intel Streaming SIMD Extensions (SSE) for
3D geometry processing. We use SIMD-FP to improve the computational
throughput by processing four vertices in parallel. We find that the lay-
out of vertices in memory is important for the effectiveness of SIMD-FP.
We also study the effect of using prefetch instructions to improve the
memory performance. The experimental results show that using Intel
SSE can achieve close to 4x speedup for geometry processing.

1 Introduction

Multimedia applications (e.g. speech, audio/video, image and graphics applica-
tions) have become important workloads running on general processors. This
type of applications often presents data parallelisms. Therefore, one important
architectural enhancement to accelerate multimedia applications is the SIMD
(Single Instruction Multiple Data) instruction extensions. In 1996, Intel intro-
duced the MMX technology [3], which packs 8-bit or 16-bit fixed-point data into
a 64-bit register and performs arithmetic or logical operations on the packed
data in parallel. The MMX works well for applications with integer data type,
such as image and video processing. However, several visual and 3D graphics ap-
plications are floating-point intensive. To accelerate floating-point computation
Intel develops the Streaming SIMD Extensions (SSE) [1] [4]. The key component
of the SSE is the SIMD-FP extensions, which can process four single-precision
floating-point values in parallel. Another important feature of the SSE is the
memory streaming instruction extensions, which allow programmers to prefetch
data into a specified level of the cache hierarchy. Most multimedia applications
present the streaming data access pattern; that is, data are accessed sequentially

Y.-C. Chen, L.-W. Chang, and C.-T. Hsu (Eds.): PCM 2002, LNCS 2532, pp. 1080–1087, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Using Intel Streaming SIMD Extensions for 3D Geometry Processing 1081

and seldom reused. Therefore, prefetching this type of data into the L2 cache is
an effective way to improve the memory system performance.

3D graphics is an important workload of nowadays multimedia applications.
3D graphics pipeline contains three stages: 1) database traversal, 2) geometry
processing, and 3) rasterization. The first stage reads in the scene models and
the second stage transforms 3D coordinates into 2D coordinates. Finally, the
rasterization stage converts transformed primitives into pixel values and stores
them in the frame buffer for display. For cost consideration, a commodity system
usually uses the host processor for geometry processing and a custom hardware
to accelerate rasterization. 3D geometry processing has streaming data access
pattern and floating-point intensive computation. The vertex information (e.g.
coordinate and color) are stored in the floating-point format and read sequen-
tially from the storage. Geometry processing is an inherently parallel task since
each vertex can be processed independently. Therefore, 3D geometry processing
is one of the targeted applications for the SSE.

Previous studies on the SSE focused primarily on the usage and only analyze
the performance effect for application kernels [2]. In this paper, we perform
detailed performance analysis of using the SSE on the complete 3D geometry
pipeline. We first evaluate the performance impact of using SIMD-FP and the
effect of different data layout. We then analyze how much memory stall time
can be eliminated through prefetching. Experimental results show that using
SIMD-FP along can achieve close to 3x speedup, and arranging the vertices
favorable to SIMD computation can further improve performance. We also find
that prefetching vertices into the L2 cache one iteration ahead can eliminate
most of the L2 cache misses. The overall speedup of using SSE in 3D geometry
processing is up to 4x. The paper is organized as follows. Section 2 provides
background information on the SSE and 3D geometry processing. Section 3
describes our experimental methodology. Section 4 presents the performance
analysis. Section 5 discusses related work. Section 6 concludes this paper.

2 Background

In this section, we describe two main kernels of 3D geometry processing and
illustrate how to apply the SSE to speed up the process.

2.1 3D Geometry Pipeline

The 3D geometry pipeline consists of two main kernels:

1. Transformation: 3D geometry processing contains three stages of coordi-
nates transformation: viewing, modeling and projection. Each transforma-
tion requires a multiplication of a 1x4 vector and a 4x4 matrix. Hence, each
transformation needs 12 multiplications and 16 additions.

2. Lighting: the lighting stage of the 3D geometry pipeline determines the color
of each vertex. For each light source in the scene, the following illumination
model is used to calculate the light intensity of a vertex [14]:



1082 W.-C. Ma and C.-L. Yang

Fig. 1(a). Illustration of using SIMD-FP to process four vertices in parallel using
AOS data structure .

Fig. 1(b). Illustration of using SIMD-FP to process four vertices in parallel using
SOA data structure .

I = ka × IV + (
1
d
) × (kd × IL × (N · L) + ks × IL × V · Rns)

In this paper, we simplify the illumination model by discarding the specular
component of the formula. Therefore, lighting calculation requires one division,
16 multiplications, 6 additions, 3 subtractions and one square root operation
assuming single light source.

2.2 Using the SSE

To support the SSE Intel adds eight new 128-bit registers (XMM registers).
Thus we can pack four single-precision floating-point operands into a register
and use SIMD-FP to operate in parallel on all packed data operands. The most
intuitive way to apply the SIMD-FP to 3D geometry processing is to exploit the
parallelism between vertices as shown in Figure 1(a). The x (y and z) coordinates
of four vertices are first packed into one XMM register. We then apply SIMD-
FP arithmetic instructions to the packed data. The computed data is unpacked
before stored back to the memory.



Using Intel Streaming SIMD Extensions for 3D Geometry Processing 1083

struct coordinate
{

float x,y,z,w;
}

coordinate vertex[10000];

Fig. 2(a). AOS declaration

struct coordinate
{

float x[10000]; float y[10000];
float z[10000]; float w[10000];

}
coordinate vertex;

Fig. 2(b). SOA declaration

As we can see from the illustration, organizing data into the SIMD format
incurs significant overhead. To avoid this overhead Intel proposes to transpose
the data layout. The conventional approach stores vertices in memory using AOS
(array of structures) format (see Figure 2(a)). Intel suggests to store vertices
in the SOA (structure of arrays) format (see Figure 2(b)) such that the x (y
and z) coordinate of different vertices are stored contiguously in the memory.
Therefore, we can reduce the data packing/unpacking overhead for realizing
SIMD computation in this new data layout as shown in Figure 1(b). In Section
4, we evaluate the effect of SIMD-FP using both data layout.

3D geometry processing has poor cache performance because of the large
working set and streaming access patterns. Therefore, to improve the cache per-
formance we can use the prefetching instructions provided in the SSE to reduce
memory stall time. Prefetching hides memory latency by bringing data close to
the CPU earlier than demand fetches. The following pseudo code segment shows
the usage of prefetch instructions:

for i = 0 to # of vertices
prefetch vertex[i+x];
process vertex[i]; /* computation on a vertex*/

end loop

The variable x controls the prefetching distance; that is how far ahead we
need to prefetch data in order to completely hide memory latency. The amount
of computation on each vertex and memory latency determines the value of x.

3 Experimental Methodology

We evaluate the SSE on a Pentium 4 processor running Window 2000. The pro-
cessor and memory configurations are summarized in Table 1. We first implement
the 3D geometry pipeline in C and then modify it to use the SSE assembly

Table 1. System configuration

Fig. 3. 3D models used in the experi-
ments.



1084 W.-C. Ma and C.-L. Yang

Fig. 4. Speedup from the SIMD-FP im-
plementation for 3D transformation and
lighting.

Fig. 5. Instruction distribution in AOS
and SOA implementations.

codes. The program codes are compiled by Microsoft Visual C++ 6.0 with Pro-
cessor Pack 5. The 3D model used in this study is shown in Figure 3. We use
mesh re-sampling technique to change the number of vertices in the model. To
evaluate the SSE we use two performance profiling tools:

1. TrueTime [6]: TrueTime is a performance profiler developed by NuMega. It
automatically pinpoints slow codes and accurately reports application and
component performance. We use TrueTime to obtain the execution time of
different geometry pipeline implementations.

2. VTune Performance Analyzer [5]: VTune is a system performance pro-
filing tool created by Intel. This tool is able to monitor several important
events, such as mis-predicted branches, cache misses, etc. We use VTune to
evaluate the memory system performance.

4 Analysis of Results

In this section, we analyze the performance impact of the SSE instructions on 3D
geometry processing. In order to get more insight into the performance increase,
we first present the results for transformation and lighting kernels, respectively.
The effect of using the SSE on complete geometry pipeline is presented last.
We measure the speedup from using only SIMD-FP instructions, evaluate the
benefit from using the SOA structure, and finally use prefetch instructions to
improve the memory system performance.

Effect of SIMD-FP

The SIMD-FP implementation could achieve the speedup of 4x potentially since
we can process four vertices simultaneously. The experimental result shows about
2x and 3x speedup for transformation and lighting as shown in Figure 4. Note
that we obtain the speedup using the following formula:

Execution-Time(without SIMD-FP)
Execution-Time(with SIMD-FP)



Using Intel Streaming SIMD Extensions for 3D Geometry Processing 1085

Fig. 6. Speedup from the SOA implemen-
tation.

Fig. 7. Speedup from the SOA implemen-
tation with prefetching instructions.

The data packing/unpacking overhead undermines the effect of using the
SSE. Lighting has higher speedup than transformation because lighting performs
more computation on a vertex as described in Section 2. This implies that data
manipulation overhead is less significant in lighting compared to transformation.
Next, we evaluate how much of the overhead can be eliminated using the SOA
structure.

AOS vs. SOA

Figure 5 shows the instruction distribution of transformation and lighting in two
different data layouts - AOS vs. SOA. The number of instructions is normalized
to the AOS implementation. The results show that SOA reduce 30% of instruc-
tions for transformation and 37% for lighting. Note that data packing/unpacking
instructions are completely eliminated and the number of load instructions is also
reduced significantly. Figure 6 shows the speedup of the kernels using SIMD-FP
SOA implementation. The AOS speedup is included for comparison. For trans-
formation, using SOA can achieve the speedup of 3x while AOS can only achieve
the speedup of 2x for the largest model. However, SOA shows little performance
benefit for lighting even though it reduces 37% of instructions. The computation
on lighting requires long latency operations, such as square root and division.
Therefore, the number of instructions is not a good indication on the execution
time. As mentioned before, the data manipulation overhead is less significant in
lighting kernel compared to transformation. So we see less performance gained
from using SOA for lighting.

Effect of Prefetching

In this section, we examine the prefetching effect. Because of the streaming
access pattern, the vertex data is only prefetched into the L2 cache to avoid the
L1 cache pollution. We only prefetch one vertex ahead since it is enough to hide
memory latency (in the VTune cache profiling statistics, all the L2 cache misses
are eliminated). Figure 7 shows the speed up from prefetching. The results show
that prefetching



1086 W.-C. Ma and C.-L. Yang

Fig. 8. The L2 cache miss rate of SOA
kernels.

Fig. 9. Speedup of the complete geome-
try pipeline implementation (AOS, SOA,
SOA with prefetching).

achieve significant performance improvement for lighting but little for transfor-
mation. From the VTune statistics, we find that lighting has higher L2 miss
rate than transformation as shown in Figure 8. It indicates that lighting has
more memory stall time than transformation, thus prefetching is more effective
for lighting. Note that prefetching could incur overhead, such as wasting mem-
ory bandwidth and issuing more instructions. That is why prefetching shows
negative performance impact for transformation in some testing cases.

Overall Effect on the Complete Geometry Pipeline

The effect of the SSE on the complete geometry pipeline is shown in Figure
9. We assume three light sources in the scene, which is a common setup in
3D applications. The results show that the speedup from using SIMD-FP with
the conventional AOS data structure ranges from 2.7x to 3x (the first bar).
Using the SOA structure can further improve the performance (3.1x to 3.3x,
the second bar). Prefetching shows significant performance improvement for all
testing cases. The overall speedup ranges from 3.6x to 3.9x (the third bar).

5 Related Work

Most of papers studying instruction-set extensions for multimedia applications
focused on design issues and illustrations of their use instead of performance
analysis [7] [8] [10] [11]. Only the speedup of a small code segment (i.e. application
kernels) is reported.

Several papers stud the performance aspect of using multimedia instruction
extensions. Bharghava et al. [9] evaluated the MMX technology on Pentium-
based systems. Daniel Rice [13] and Ranganathan et al. [12] studied the perfor-
mance of Sun VIS media extensions [8] for image and video workloads. Yang et
al. [15] studied the performance impact of using SIMD instructions on 3D geom-
etry processing similar to this work. But their studies were based on simulation
and assume a perfect memory system.



Using Intel Streaming SIMD Extensions for 3D Geometry Processing 1087

6 Conclusion

We evaluate the effectiveness of using the Intel SSE extensions on the 3D geom-
etry pipeline. We observe that:

1. The SSE provides significant speedup for geometry pipeline. The speedup
ranges from 3.0x to 3.8x.

2. The layout of vertices in memory is crucial for the effectiveness of SIMD-FP.
Using SOA (structure of arrays) can eliminate the overhead of organizing
data into SIMD format.

3. Prefetching shows significant performance improvement for lighting. How-
ever, for transformation, it shows little performance benefit. Sometimes, the
prefetching overhead even outweighs the benefit.

References

1. Intel Pentium 4 and Intel Xeon processor optimization reference manual. Intel
Corporation, order number: 248966-04

2. Streaming SIMD Extensions -3D transform. Intel Corporation, order number:
243631-004, 1999.

3. The IA-32 Intel architecture software developer’s manual. Intel Corporation, order
number: 245471, 1:231–246, 2001.

4. The IA-32 Intel architecture software developer’s manual. Intel Corporation, order
number: 245471, 1: 247–268, 2001.

5. Intel VTune performance analyzer. Intel Corporation
http://developer.Intel.com/software/products/vtune/vtune60/index.htm.

6. Numega TrueTime,devpartner for visual C++. Compuware Corporation,
http://www.compuware.com/products/devpartner/visualc/truetimevc.htm.

7. M.P. et al. Altivec technology: Accelerating media processing across the spectrum.
HotChips10, 1998.

8. M.T. et al. VIS speeds new media processing. IEEE Micro, 16(4):10–20, 1996.
9. R.B. et al. Evaluating MMX technology using DSP and multimedia applications.

ACM/IEEE International Symposium on Microarchitecture, 1998.
10. A. Peleg and U. Weiser. MMX technology extension to the Intel architecture. IEEE

Mirco, 16(4):42–50, 1996.
11. S.K.Raman,V.Pentkovski,and J.Keshava.Implementing Streaming SIMD Exten-

sions on the Pentium III processor. IEEE Micro, 20(4):47–57,2000.
12. P. Ranganathan, S. Adve, and N.P. Jouppi. Performance of image and video pro-

cessing with general-purpose processors and media ISA extensions. International
Symposium on Computer Architecture, 1999.

13. D.S. Rice. High-performance image processing using special-purpose CPU instruc-
tion set. Master’s thesis, Stanford University, 1996.

14. J.D. Foley, A.V. Dam, and S.K. Feiner. Introduction to Computer Graphics Addison
Wesley, 1993.

15. C.-L.Yang, B. Sano, and A.R. Lebeck. Exploiting instruction level parallelism in
geometry processing for three dimensional graphics applications. ACM/IEEE In-
ternational Symposium on Microarchitecture, 1998.


	Using Intel Streaming SIMD Extensions for 3D Geometry Processing
	Introduction
	Background
	3D Geometry Pipeline
	Using the SSE

	Experimental Methodology
	Analysis of Results
	Related Work
	Conclusion
	References


